aboutsummaryrefslogtreecommitdiff
path: root/mesonbuild/interpreterbase/interpreterbase.py
blob: 5b07dc0752ab82a143d543a38a815e4c9b8c793a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
# Copyright 2016-2017 The Meson development team

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This class contains the basic functionality needed to run any interpreter
# or an interpreter-based tool.
from __future__ import annotations

from .. import environment, mparser, mesonlib

from .baseobjects import (
    InterpreterObject,
    MesonInterpreterObject,
    MutableInterpreterObject,
    ObjectHolder,
    IterableObject,
    ContextManagerObject,

    HoldableTypes,
)

from .exceptions import (
    BreakRequest,
    ContinueRequest,
    InterpreterException,
    InvalidArguments,
    InvalidCode,
    SubdirDoneRequest,
)

from .decorators import FeatureNew
from .disabler import Disabler, is_disabled
from .helpers import default_resolve_key, flatten, resolve_second_level_holders, stringifyUserArguments
from .operator import MesonOperator
from ._unholder import _unholder

import os, copy, re, pathlib
import typing as T
import textwrap

if T.TYPE_CHECKING:
    from .baseobjects import InterpreterObjectTypeVar, SubProject, TYPE_kwargs, TYPE_var
    from ..interpreter import Interpreter

    HolderMapType = T.Dict[
        T.Union[
            T.Type[mesonlib.HoldableObject],
            T.Type[int],
            T.Type[bool],
            T.Type[str],
            T.Type[list],
            T.Type[dict],
        ],
        # For some reason, this has to be a callable and can't just be ObjectHolder[InterpreterObjectTypeVar]
        T.Callable[[InterpreterObjectTypeVar, 'Interpreter'], ObjectHolder[InterpreterObjectTypeVar]]
    ]

    FunctionType = T.Dict[
        str,
        T.Callable[[mparser.BaseNode, T.List[TYPE_var], T.Dict[str, TYPE_var]], TYPE_var]
    ]


class InvalidCodeOnVoid(InvalidCode):

    def __init__(self, op_type: str) -> None:
        super().__init__(f'Cannot perform {op_type!r} operation on void statement.')


class InterpreterBase:
    def __init__(self, source_root: str, subdir: str, subproject: 'SubProject'):
        self.source_root = source_root
        self.funcs: FunctionType = {}
        self.builtin: T.Dict[str, InterpreterObject] = {}
        # Holder maps store a mapping from an HoldableObject to a class ObjectHolder
        self.holder_map: HolderMapType = {}
        self.bound_holder_map: HolderMapType = {}
        self.subdir = subdir
        self.root_subdir = subdir
        self.subproject = subproject
        self.variables: T.Dict[str, InterpreterObject] = {}
        self.argument_depth = 0
        self.current_lineno = -1
        # Current node set during a function call. This can be used as location
        # when printing a warning message during a method call.
        self.current_node: mparser.BaseNode = None
        # This is set to `version_string` when this statement is evaluated:
        # meson.version().compare_version(version_string)
        # If it was part of a if-clause, it is used to temporally override the
        # current meson version target within that if-block.
        self.tmp_meson_version: T.Optional[str] = None

    def handle_meson_version_from_ast(self, strict: bool = True) -> None:
        # do nothing in an AST interpreter
        return

    def load_root_meson_file(self) -> None:
        mesonfile = os.path.join(self.source_root, self.subdir, environment.build_filename)
        if not os.path.isfile(mesonfile):
            raise InvalidArguments(f'Missing Meson file in {mesonfile}')
        with open(mesonfile, encoding='utf-8') as mf:
            code = mf.read()
        if code.isspace():
            raise InvalidCode('Builder file is empty.')
        assert isinstance(code, str)
        try:
            self.ast = mparser.Parser(code, mesonfile).parse()
            self.handle_meson_version_from_ast()
        except mparser.ParseException as me:
            me.file = mesonfile
            # try to detect parser errors from new syntax added by future
            # meson versions, and just tell the user to update meson
            self.ast = me.ast
            self.handle_meson_version_from_ast()
            raise me

    def parse_project(self) -> None:
        """
        Parses project() and initializes languages, compilers etc. Do this
        early because we need this before we parse the rest of the AST.
        """
        self.evaluate_codeblock(self.ast, end=1)

    def sanity_check_ast(self) -> None:
        if not isinstance(self.ast, mparser.CodeBlockNode):
            raise InvalidCode('AST is of invalid type. Possibly a bug in the parser.')
        if not self.ast.lines:
            raise InvalidCode('No statements in code.')
        first = self.ast.lines[0]
        if not isinstance(first, mparser.FunctionNode) or first.func_name.value != 'project':
            p = pathlib.Path(self.source_root).resolve()
            found = p
            for parent in p.parents:
                if (parent / 'meson.build').is_file():
                    with open(parent / 'meson.build', encoding='utf-8') as f:
                        if f.readline().startswith('project('):
                            found = parent
                            break
                else:
                    break

            error = 'first statement must be a call to project()'
            if found != p:
                raise InvalidCode(f'Not the project root: {error}\n\nDid you mean to run meson from the directory: "{found}"?')
            else:
                raise InvalidCode(f'Invalid source tree: {error}')

    def run(self) -> None:
        # Evaluate everything after the first line, which is project() because
        # we already parsed that in self.parse_project()
        try:
            self.evaluate_codeblock(self.ast, start=1)
        except SubdirDoneRequest:
            pass

    def evaluate_codeblock(self, node: mparser.CodeBlockNode, start: int = 0, end: T.Optional[int] = None) -> None:
        if node is None:
            return
        if not isinstance(node, mparser.CodeBlockNode):
            e = InvalidCode('Tried to execute a non-codeblock. Possibly a bug in the parser.')
            e.lineno = node.lineno
            e.colno = node.colno
            raise e
        statements = node.lines[start:end]
        i = 0
        while i < len(statements):
            cur = statements[i]
            try:
                self.current_lineno = cur.lineno
                self.evaluate_statement(cur)
            except Exception as e:
                if getattr(e, 'lineno', None) is None:
                    # We are doing the equivalent to setattr here and mypy does not like it
                    # NOTE: self.current_node is continually updated during processing
                    e.lineno = self.current_node.lineno                                               # type: ignore
                    e.colno = self.current_node.colno                                                 # type: ignore
                    e.file = os.path.join(self.source_root, self.subdir, environment.build_filename)  # type: ignore
                raise e
            i += 1 # In THE FUTURE jump over blocks and stuff.

    def evaluate_statement(self, cur: mparser.BaseNode) -> T.Optional[InterpreterObject]:
        self.current_node = cur
        if isinstance(cur, mparser.FunctionNode):
            return self.function_call(cur)
        elif isinstance(cur, mparser.AssignmentNode):
            self.assignment(cur)
        elif isinstance(cur, mparser.MethodNode):
            return self.method_call(cur)
        elif isinstance(cur, mparser.BaseStringNode):
            if isinstance(cur, mparser.MultilineFormatStringNode):
                return self.evaluate_multiline_fstring(cur)
            elif isinstance(cur, mparser.FormatStringNode):
                return self.evaluate_fstring(cur)
            else:
                return self._holderify(cur.value)
        elif isinstance(cur, mparser.BooleanNode):
            return self._holderify(cur.value)
        elif isinstance(cur, mparser.IfClauseNode):
            return self.evaluate_if(cur)
        elif isinstance(cur, mparser.IdNode):
            return self.get_variable(cur.value)
        elif isinstance(cur, mparser.ComparisonNode):
            return self.evaluate_comparison(cur)
        elif isinstance(cur, mparser.ArrayNode):
            return self.evaluate_arraystatement(cur)
        elif isinstance(cur, mparser.DictNode):
            return self.evaluate_dictstatement(cur)
        elif isinstance(cur, mparser.NumberNode):
            return self._holderify(cur.value)
        elif isinstance(cur, mparser.AndNode):
            return self.evaluate_andstatement(cur)
        elif isinstance(cur, mparser.OrNode):
            return self.evaluate_orstatement(cur)
        elif isinstance(cur, mparser.NotNode):
            return self.evaluate_notstatement(cur)
        elif isinstance(cur, mparser.UMinusNode):
            return self.evaluate_uminusstatement(cur)
        elif isinstance(cur, mparser.ArithmeticNode):
            return self.evaluate_arithmeticstatement(cur)
        elif isinstance(cur, mparser.ForeachClauseNode):
            self.evaluate_foreach(cur)
        elif isinstance(cur, mparser.PlusAssignmentNode):
            self.evaluate_plusassign(cur)
        elif isinstance(cur, mparser.IndexNode):
            return self.evaluate_indexing(cur)
        elif isinstance(cur, mparser.TernaryNode):
            return self.evaluate_ternary(cur)
        elif isinstance(cur, mparser.ContinueNode):
            raise ContinueRequest()
        elif isinstance(cur, mparser.BreakNode):
            raise BreakRequest()
        elif isinstance(cur, mparser.ParenthesizedNode):
            return self.evaluate_statement(cur.inner)
        elif isinstance(cur, mparser.TestCaseClauseNode):
            return self.evaluate_testcase(cur)
        else:
            raise InvalidCode("Unknown statement.")
        return None

    def evaluate_arraystatement(self, cur: mparser.ArrayNode) -> InterpreterObject:
        (arguments, kwargs) = self.reduce_arguments(cur.args)
        if len(kwargs) > 0:
            raise InvalidCode('Keyword arguments are invalid in array construction.')
        return self._holderify([_unholder(x) for x in arguments])

    @FeatureNew('dict', '0.47.0')
    def evaluate_dictstatement(self, cur: mparser.DictNode) -> InterpreterObject:
        def resolve_key(key: mparser.BaseNode) -> str:
            if not isinstance(key, mparser.BaseStringNode):
                FeatureNew.single_use('Dictionary entry using non literal key', '0.53.0', self.subproject)
            key_holder = self.evaluate_statement(key)
            if key_holder is None:
                raise InvalidArguments('Key cannot be void.')
            str_key = _unholder(key_holder)
            if not isinstance(str_key, str):
                raise InvalidArguments('Key must be a string')
            return str_key
        arguments, kwargs = self.reduce_arguments(cur.args, key_resolver=resolve_key, duplicate_key_error='Duplicate dictionary key: {}')
        assert not arguments
        return self._holderify({k: _unholder(v) for k, v in kwargs.items()})

    def evaluate_notstatement(self, cur: mparser.NotNode) -> InterpreterObject:
        v = self.evaluate_statement(cur.value)
        if v is None:
            raise InvalidCodeOnVoid('not')
        if isinstance(v, Disabler):
            return v
        return self._holderify(v.operator_call(MesonOperator.NOT, None))

    def evaluate_if(self, node: mparser.IfClauseNode) -> T.Optional[Disabler]:
        assert isinstance(node, mparser.IfClauseNode)
        for i in node.ifs:
            # Reset self.tmp_meson_version to know if it gets set during this
            # statement evaluation.
            self.tmp_meson_version = None
            result = self.evaluate_statement(i.condition)
            if result is None:
                raise InvalidCodeOnVoid('if')
            if isinstance(result, Disabler):
                return result
            if not isinstance(result, InterpreterObject):
                raise mesonlib.MesonBugException(f'Argument to if ({result}) is not an InterpreterObject but {type(result).__name__}.')
            res = result.operator_call(MesonOperator.BOOL, None)
            if not isinstance(res, bool):
                raise InvalidCode(f'If clause {result!r} does not evaluate to true or false.')
            if res:
                prev_meson_version = mesonlib.project_meson_versions[self.subproject]
                if self.tmp_meson_version:
                    mesonlib.project_meson_versions[self.subproject] = self.tmp_meson_version
                try:
                    self.evaluate_codeblock(i.block)
                finally:
                    mesonlib.project_meson_versions[self.subproject] = prev_meson_version
                return None
        if not isinstance(node.elseblock, mparser.EmptyNode):
            self.evaluate_codeblock(node.elseblock.block)
        return None

    def evaluate_testcase(self, node: mparser.TestCaseClauseNode) -> T.Optional[Disabler]:
        result = self.evaluate_statement(node.condition)
        if isinstance(result, Disabler):
            return result
        if not isinstance(result, ContextManagerObject):
            raise InvalidCode(f'testcase clause {result!r} does not evaluate to a context manager.')
        with result:
            self.evaluate_codeblock(node.block)
        return None

    def evaluate_comparison(self, node: mparser.ComparisonNode) -> InterpreterObject:
        val1 = self.evaluate_statement(node.left)
        if val1 is None:
            raise mesonlib.MesonException('Cannot compare a void statement on the left-hand side')
        if isinstance(val1, Disabler):
            return val1
        val2 = self.evaluate_statement(node.right)
        if val2 is None:
            raise mesonlib.MesonException('Cannot compare a void statement on the right-hand side')
        if isinstance(val2, Disabler):
            return val2

        # New code based on InterpreterObjects
        operator = {
            'in': MesonOperator.IN,
            'notin': MesonOperator.NOT_IN,
            '==': MesonOperator.EQUALS,
            '!=': MesonOperator.NOT_EQUALS,
            '>': MesonOperator.GREATER,
            '<': MesonOperator.LESS,
            '>=': MesonOperator.GREATER_EQUALS,
            '<=': MesonOperator.LESS_EQUALS,
        }[node.ctype]

        # Check if the arguments should be reversed for simplicity (this essentially converts `in` to `contains`)
        if operator in (MesonOperator.IN, MesonOperator.NOT_IN):
            val1, val2 = val2, val1

        val1.current_node = node
        return self._holderify(val1.operator_call(operator, _unholder(val2)))

    def evaluate_andstatement(self, cur: mparser.AndNode) -> InterpreterObject:
        l = self.evaluate_statement(cur.left)
        if l is None:
            raise mesonlib.MesonException('Cannot compare a void statement on the left-hand side')
        if isinstance(l, Disabler):
            return l
        l_bool = l.operator_call(MesonOperator.BOOL, None)
        if not l_bool:
            return self._holderify(l_bool)
        r = self.evaluate_statement(cur.right)
        if r is None:
            raise mesonlib.MesonException('Cannot compare a void statement on the right-hand side')
        if isinstance(r, Disabler):
            return r
        return self._holderify(r.operator_call(MesonOperator.BOOL, None))

    def evaluate_orstatement(self, cur: mparser.OrNode) -> InterpreterObject:
        l = self.evaluate_statement(cur.left)
        if l is None:
            raise mesonlib.MesonException('Cannot compare a void statement on the left-hand side')
        if isinstance(l, Disabler):
            return l
        l_bool = l.operator_call(MesonOperator.BOOL, None)
        if l_bool:
            return self._holderify(l_bool)
        r = self.evaluate_statement(cur.right)
        if r is None:
            raise mesonlib.MesonException('Cannot compare a void statement on the right-hand side')
        if isinstance(r, Disabler):
            return r
        return self._holderify(r.operator_call(MesonOperator.BOOL, None))

    def evaluate_uminusstatement(self, cur: mparser.UMinusNode) -> InterpreterObject:
        v = self.evaluate_statement(cur.value)
        if v is None:
            raise InvalidCodeOnVoid('unary minus')
        if isinstance(v, Disabler):
            return v
        v.current_node = cur
        return self._holderify(v.operator_call(MesonOperator.UMINUS, None))

    def evaluate_arithmeticstatement(self, cur: mparser.ArithmeticNode) -> InterpreterObject:
        l = self.evaluate_statement(cur.left)
        if isinstance(l, Disabler):
            return l
        r = self.evaluate_statement(cur.right)
        if isinstance(r, Disabler):
            return r
        if l is None or r is None:
            raise InvalidCodeOnVoid(cur.operation)

        mapping: T.Dict[str, MesonOperator] = {
            'add': MesonOperator.PLUS,
            'sub': MesonOperator.MINUS,
            'mul': MesonOperator.TIMES,
            'div': MesonOperator.DIV,
            'mod': MesonOperator.MOD,
        }
        l.current_node = cur
        res = l.operator_call(mapping[cur.operation], _unholder(r))
        return self._holderify(res)

    def evaluate_ternary(self, node: mparser.TernaryNode) -> T.Optional[InterpreterObject]:
        assert isinstance(node, mparser.TernaryNode)
        result = self.evaluate_statement(node.condition)
        if result is None:
            raise mesonlib.MesonException('Cannot use a void statement as condition for ternary operator.')
        if isinstance(result, Disabler):
            return result
        result.current_node = node
        result_bool = result.operator_call(MesonOperator.BOOL, None)
        if result_bool:
            return self.evaluate_statement(node.trueblock)
        else:
            return self.evaluate_statement(node.falseblock)

    @FeatureNew('multiline format strings', '0.63.0')
    def evaluate_multiline_fstring(self, node: mparser.MultilineFormatStringNode) -> InterpreterObject:
        return self.evaluate_fstring(node)

    @FeatureNew('format strings', '0.58.0')
    def evaluate_fstring(self, node: T.Union[mparser.FormatStringNode, mparser.MultilineFormatStringNode]) -> InterpreterObject:
        def replace(match: T.Match[str]) -> str:
            var = str(match.group(1))
            try:
                val = _unholder(self.variables[var])
                if isinstance(val, (list, dict)):
                    FeatureNew.single_use('List or dictionary in f-string', '1.3.0', self.subproject, location=self.current_node)
                try:
                    return stringifyUserArguments(val, self.subproject)
                except InvalidArguments as e:
                    raise InvalidArguments(f'f-string: {str(e)}')
            except KeyError:
                raise InvalidCode(f'Identifier "{var}" does not name a variable.')

        res = re.sub(r'@([_a-zA-Z][_0-9a-zA-Z]*)@', replace, node.value)
        return self._holderify(res)

    def evaluate_foreach(self, node: mparser.ForeachClauseNode) -> None:
        assert isinstance(node, mparser.ForeachClauseNode)
        items = self.evaluate_statement(node.items)
        if not isinstance(items, IterableObject):
            raise InvalidArguments('Items of foreach loop do not support iterating')

        tsize = items.iter_tuple_size()
        if len(node.varnames) != (tsize or 1):
            raise InvalidArguments(f'Foreach expects exactly {tsize or 1} variables for iterating over objects of type {items.display_name()}')

        for i in items.iter_self():
            if tsize is None:
                if isinstance(i, tuple):
                    raise mesonlib.MesonBugException(f'Iteration of {items} returned a tuple even though iter_tuple_size() is None')
                self.set_variable(node.varnames[0].value, self._holderify(i))
            else:
                if not isinstance(i, tuple):
                    raise mesonlib.MesonBugException(f'Iteration of {items} did not return a tuple even though iter_tuple_size() is {tsize}')
                if len(i) != tsize:
                    raise mesonlib.MesonBugException(f'Iteration of {items} did not return a tuple even though iter_tuple_size() is {tsize}')
                for j in range(tsize):
                    self.set_variable(node.varnames[j].value, self._holderify(i[j]))
            try:
                self.evaluate_codeblock(node.block)
            except ContinueRequest:
                continue
            except BreakRequest:
                break

    def evaluate_plusassign(self, node: mparser.PlusAssignmentNode) -> None:
        assert isinstance(node, mparser.PlusAssignmentNode)
        varname = node.var_name.value
        addition = self.evaluate_statement(node.value)
        if addition is None:
            raise InvalidCodeOnVoid('plus assign')

        # Remember that all variables are immutable. We must always create a
        # full new variable and then assign it.
        old_variable = self.get_variable(varname)
        old_variable.current_node = node
        new_value = self._holderify(old_variable.operator_call(MesonOperator.PLUS, _unholder(addition)))
        self.set_variable(varname, new_value)

    def evaluate_indexing(self, node: mparser.IndexNode) -> InterpreterObject:
        assert isinstance(node, mparser.IndexNode)
        iobject = self.evaluate_statement(node.iobject)
        if iobject is None:
            raise InterpreterException('Tried to evaluate indexing on void.')
        if isinstance(iobject, Disabler):
            return iobject
        index_holder = self.evaluate_statement(node.index)
        if index_holder is None:
            raise InvalidArguments('Cannot use void statement as index.')
        index = _unholder(index_holder)

        iobject.current_node = node
        return self._holderify(iobject.operator_call(MesonOperator.INDEX, index))

    def function_call(self, node: mparser.FunctionNode) -> T.Optional[InterpreterObject]:
        func_name = node.func_name.value
        (h_posargs, h_kwargs) = self.reduce_arguments(node.args)
        (posargs, kwargs) = self._unholder_args(h_posargs, h_kwargs)
        if is_disabled(posargs, kwargs) and func_name not in {'get_variable', 'set_variable', 'unset_variable', 'is_disabler'}:
            return Disabler()
        if func_name in self.funcs:
            func = self.funcs[func_name]
            func_args = posargs
            if not getattr(func, 'no-args-flattening', False):
                func_args = flatten(posargs)
            if not getattr(func, 'no-second-level-holder-flattening', False):
                func_args, kwargs = resolve_second_level_holders(func_args, kwargs)
            self.current_node = node
            res = func(node, func_args, kwargs)
            return self._holderify(res) if res is not None else None
        else:
            self.unknown_function_called(func_name)
            return None

    def method_call(self, node: mparser.MethodNode) -> T.Optional[InterpreterObject]:
        invocable = node.source_object
        obj: T.Optional[InterpreterObject]
        if isinstance(invocable, mparser.IdNode):
            object_display_name = f'variable "{invocable.value}"'
            obj = self.get_variable(invocable.value)
        else:
            object_display_name = invocable.__class__.__name__
            obj = self.evaluate_statement(invocable)
        method_name = node.name.value
        (h_args, h_kwargs) = self.reduce_arguments(node.args)
        (args, kwargs) = self._unholder_args(h_args, h_kwargs)
        if is_disabled(args, kwargs):
            return Disabler()
        if not isinstance(obj, InterpreterObject):
            raise InvalidArguments(f'{object_display_name} is not callable.')
        # TODO: InterpreterBase **really** shouldn't be in charge of checking this
        if method_name == 'extract_objects':
            if isinstance(obj, ObjectHolder):
                self.validate_extraction(obj.held_object)
            elif not isinstance(obj, Disabler):
                raise InvalidArguments(f'Invalid operation "extract_objects" on {object_display_name} of type {type(obj).__name__}')
        obj.current_node = self.current_node = node
        res = obj.method_call(method_name, args, kwargs)
        return self._holderify(res) if res is not None else None

    def _holderify(self, res: T.Union[TYPE_var, InterpreterObject]) -> InterpreterObject:
        if isinstance(res, HoldableTypes):
            # Always check for an exact match first.
            cls = self.holder_map.get(type(res), None)
            if cls is not None:
                # Casts to Interpreter are required here since an assertion would
                # not work for the `ast` module.
                return cls(res, T.cast('Interpreter', self))
            # Try the boundary types next.
            for typ, cls in self.bound_holder_map.items():
                if isinstance(res, typ):
                    return cls(res, T.cast('Interpreter', self))
            raise mesonlib.MesonBugException(f'Object {res} of type {type(res).__name__} is neither in self.holder_map nor self.bound_holder_map.')
        elif isinstance(res, ObjectHolder):
            raise mesonlib.MesonBugException(f'Returned object {res} of type {type(res).__name__} is an object holder.')
        elif isinstance(res, MesonInterpreterObject):
            return res
        raise mesonlib.MesonBugException(f'Unknown returned object {res} of type {type(res).__name__} in the parameters.')

    def _unholder_args(self,
                       args: T.List[InterpreterObject],
                       kwargs: T.Dict[str, InterpreterObject]) -> T.Tuple[T.List[TYPE_var], TYPE_kwargs]:
        return [_unholder(x) for x in args], {k: _unholder(v) for k, v in kwargs.items()}

    def unknown_function_called(self, func_name: str) -> None:
        raise InvalidCode(f'Unknown function "{func_name}".')

    def reduce_arguments(
                self,
                args: mparser.ArgumentNode,
                key_resolver: T.Callable[[mparser.BaseNode], str] = default_resolve_key,
                duplicate_key_error: T.Optional[str] = None,
            ) -> T.Tuple[
                T.List[InterpreterObject],
                T.Dict[str, InterpreterObject]
            ]:
        assert isinstance(args, mparser.ArgumentNode)
        if args.incorrect_order():
            raise InvalidArguments('All keyword arguments must be after positional arguments.')
        self.argument_depth += 1
        reduced_pos = [self.evaluate_statement(arg) for arg in args.arguments]
        if any(x is None for x in reduced_pos):
            raise InvalidArguments('At least one value in the arguments is void.')
        reduced_kw: T.Dict[str, InterpreterObject] = {}
        for key, val in args.kwargs.items():
            reduced_key = key_resolver(key)
            assert isinstance(val, mparser.BaseNode)
            reduced_val = self.evaluate_statement(val)
            if reduced_val is None:
                raise InvalidArguments(f'Value of key {reduced_key} is void.')
            self.current_node = key
            if duplicate_key_error and reduced_key in reduced_kw:
                raise InvalidArguments(duplicate_key_error.format(reduced_key))
            reduced_kw[reduced_key] = reduced_val
        self.argument_depth -= 1
        final_kw = self.expand_default_kwargs(reduced_kw)
        return reduced_pos, final_kw

    def expand_default_kwargs(self, kwargs: T.Dict[str, T.Optional[InterpreterObject]]) -> T.Dict[str, T.Optional[InterpreterObject]]:
        if 'kwargs' not in kwargs:
            return kwargs
        to_expand = _unholder(kwargs.pop('kwargs'))
        if not isinstance(to_expand, dict):
            raise InterpreterException('Value of "kwargs" must be dictionary.')
        if 'kwargs' in to_expand:
            raise InterpreterException('Kwargs argument must not contain a "kwargs" entry. Points for thinking meta, though. :P')
        for k, v in to_expand.items():
            if k in kwargs:
                raise InterpreterException(f'Entry "{k}" defined both as a keyword argument and in a "kwarg" entry.')
            kwargs[k] = self._holderify(v)
        return kwargs

    def assignment(self, node: mparser.AssignmentNode) -> None:
        assert isinstance(node, mparser.AssignmentNode)
        if self.argument_depth != 0:
            raise InvalidArguments(textwrap.dedent('''\
                Tried to assign values inside an argument list.
                To specify a keyword argument, use : instead of =.
            '''))
        var_name = node.var_name.value
        if not isinstance(var_name, str):
            raise InvalidArguments('Tried to assign value to a non-variable.')
        value = self.evaluate_statement(node.value)
        # For mutable objects we need to make a copy on assignment
        if isinstance(value, MutableInterpreterObject):
            value = copy.deepcopy(value)
        self.set_variable(var_name, value)

    def set_variable(self, varname: str, variable: T.Union[TYPE_var, InterpreterObject], *, holderify: bool = False) -> None:
        if variable is None:
            raise InvalidCode('Can not assign void to variable.')
        if holderify:
            variable = self._holderify(variable)
        else:
            # Ensure that we are always storing ObjectHolders
            if not isinstance(variable, InterpreterObject):
                raise mesonlib.MesonBugException(f'set_variable in InterpreterBase called with a non InterpreterObject {variable} of type {type(variable).__name__}')
        if not isinstance(varname, str):
            raise InvalidCode('First argument to set_variable must be a string.')
        if re.match('[_a-zA-Z][_0-9a-zA-Z]*$', varname) is None:
            raise InvalidCode('Invalid variable name: ' + varname)
        if varname in self.builtin:
            raise InvalidCode(f'Tried to overwrite internal variable "{varname}"')
        self.variables[varname] = variable

    def get_variable(self, varname: str) -> InterpreterObject:
        if varname in self.builtin:
            return self.builtin[varname]
        if varname in self.variables:
            return self.variables[varname]
        raise InvalidCode(f'Unknown variable "{varname}".')

    def validate_extraction(self, buildtarget: mesonlib.HoldableObject) -> None:
        raise InterpreterException('validate_extraction is not implemented in this context (please file a bug)')