aboutsummaryrefslogtreecommitdiff
path: root/mesonbuild/interpreterbase.py
blob: c887115f76bf58f0df68241e508b81013514952f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
# Copyright 2016-2017 The Meson development team

# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at

#     http://www.apache.org/licenses/LICENSE-2.0

# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# This class contains the basic functionality needed to run any interpreter
# or an interpreter-based tool.

from . import mparser, mesonlib, mlog
from . import environment, dependencies

from functools import wraps
import abc
import collections.abc
import itertools
import os, copy, re
import typing as T

TV_fw_var = T.Union[str, int, float, bool, list, dict, 'InterpreterObject', 'ObjectHolder']
TV_fw_args = T.List[T.Union[mparser.BaseNode, TV_fw_var]]
TV_fw_kwargs = T.Dict[str, T.Union[mparser.BaseNode, TV_fw_var]]

TV_func = T.TypeVar('TV_func', bound=T.Callable[..., T.Any])

TYPE_elementary = T.Union[str, int, float, bool]
TYPE_var = T.Union[TYPE_elementary, T.List[T.Any], T.Dict[str, T.Any], 'InterpreterObject', 'ObjectHolder']
TYPE_nvar = T.Union[TYPE_var, mparser.BaseNode]
TYPE_nkwargs = T.Dict[str, TYPE_nvar]
TYPE_key_resolver = T.Callable[[mparser.BaseNode], str]

class InterpreterObject:
    def __init__(self) -> None:
        self.methods = {}  # type: T.Dict[str, T.Callable[[T.List[TYPE_nvar], TYPE_nkwargs], TYPE_var]]
        # Current node set during a method call. This can be used as location
        # when printing a warning message during a method call.
        self.current_node = None  # type: mparser.BaseNode

    def method_call(
                self,
                method_name: str,
                args: TV_fw_args,
                kwargs: TV_fw_kwargs
            ) -> TYPE_var:
        if method_name in self.methods:
            method = self.methods[method_name]
            if not getattr(method, 'no-args-flattening', False):
                args = flatten(args)
            return method(args, kwargs)
        raise InvalidCode('Unknown method "%s" in object.' % method_name)

TV_InterpreterObject = T.TypeVar('TV_InterpreterObject')

class ObjectHolder(T.Generic[TV_InterpreterObject]):
    def __init__(self, obj: TV_InterpreterObject, subproject: str = '') -> None:
        self.held_object = obj
        self.subproject = subproject

    def __repr__(self) -> str:
        return f'<Holder: {self.held_object!r}>'

class MesonVersionString(str):
    pass

class RangeHolder(InterpreterObject):
    def __init__(self, start: int, stop: int, step: int) -> None:
        super().__init__()
        self.range = range(start, stop, step)

    def __iter__(self) -> T.Iterator[int]:
        return iter(self.range)

    def __getitem__(self, key: int) -> int:
        return self.range[key]

    def __len__(self) -> int:
        return len(self.range)

# Decorators for method calls.

def check_stringlist(a: T.Any, msg: str = 'Arguments must be strings.') -> None:
    if not isinstance(a, list):
        mlog.debug('Not a list:', str(a))
        raise InvalidArguments('Argument not a list.')
    if not all(isinstance(s, str) for s in a):
        mlog.debug('Element not a string:', str(a))
        raise InvalidArguments(msg)

def _get_callee_args(wrapped_args: T.Sequence[T.Any], want_subproject: bool = False) -> T.Tuple[T.Any, mparser.BaseNode, TV_fw_args, TV_fw_kwargs, T.Optional[str]]:
    s = wrapped_args[0]
    n = len(wrapped_args)
    # Raise an error if the codepaths are not there
    subproject = None  # type: T.Optional[str]
    if want_subproject and n == 2:
        if hasattr(s, 'subproject'):
            # Interpreter base types have 2 args: self, node
            node = wrapped_args[1]
            # args and kwargs are inside the node
            args = None
            kwargs = None
            subproject = s.subproject
        elif hasattr(wrapped_args[1], 'subproject'):
            # Module objects have 2 args: self, interpreter
            node = wrapped_args[1].current_node
            # args and kwargs are inside the node
            args = None
            kwargs = None
            subproject = wrapped_args[1].subproject
        else:
            raise AssertionError(f'Unknown args: {wrapped_args!r}')
    elif n == 3:
        # Methods on objects (*Holder, MesonMain, etc) have 3 args: self, args, kwargs
        node = s.current_node
        args = wrapped_args[1]
        kwargs = wrapped_args[2]
        if want_subproject:
            if hasattr(s, 'subproject'):
                subproject = s.subproject
            elif hasattr(s, 'interpreter'):
                subproject = s.interpreter.subproject
    elif n == 4:
        # Meson functions have 4 args: self, node, args, kwargs
        # Module functions have 4 args: self, state, args, kwargs
        if isinstance(s, InterpreterBase):
            node = wrapped_args[1]
        else:
            node = wrapped_args[1].current_node
        args = wrapped_args[2]
        kwargs = wrapped_args[3]
        if want_subproject:
            if isinstance(s, InterpreterBase):
                subproject = s.subproject
            else:
                subproject = wrapped_args[1].subproject
    else:
        raise AssertionError(f'Unknown args: {wrapped_args!r}')
    # Sometimes interpreter methods are called internally with None instead of
    # empty list/dict
    args = args if args is not None else []
    kwargs = kwargs if kwargs is not None else {}
    return s, node, args, kwargs, subproject

def flatten(args: T.Union[TYPE_nvar, T.List[TYPE_nvar]]) -> T.List[TYPE_nvar]:
    if isinstance(args, mparser.StringNode):
        assert isinstance(args.value, str)
        return [args.value]
    if not isinstance(args, collections.abc.Sequence):
        return [args]
    result = []  # type: T.List[TYPE_nvar]
    for a in args:
        if isinstance(a, list):
            rest = flatten(a)
            result = result + rest
        elif isinstance(a, mparser.StringNode):
            result.append(a.value)
        else:
            result.append(a)
    return result

def noPosargs(f: TV_func) -> TV_func:
    @wraps(f)
    def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
        args = _get_callee_args(wrapped_args)[2]
        if args:
            raise InvalidArguments('Function does not take positional arguments.')
        return f(*wrapped_args, **wrapped_kwargs)
    return T.cast(TV_func, wrapped)

def builtinMethodNoKwargs(f: TV_func) -> TV_func:
    @wraps(f)
    def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
        node = wrapped_args[0].current_node
        method_name = wrapped_args[2]
        kwargs = wrapped_args[4]
        if kwargs:
            mlog.warning(f'Method {method_name!r} does not take keyword arguments.',
                         'This will become a hard error in the future',
                         location=node)
        return f(*wrapped_args, **wrapped_kwargs)
    return T.cast(TV_func, wrapped)

def noKwargs(f: TV_func) -> TV_func:
    @wraps(f)
    def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
        kwargs = _get_callee_args(wrapped_args)[3]
        if kwargs:
            raise InvalidArguments('Function does not take keyword arguments.')
        return f(*wrapped_args, **wrapped_kwargs)
    return T.cast(TV_func, wrapped)

def stringArgs(f: TV_func) -> TV_func:
    @wraps(f)
    def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
        args = _get_callee_args(wrapped_args)[2]
        assert(isinstance(args, list))
        check_stringlist(args)
        return f(*wrapped_args, **wrapped_kwargs)
    return T.cast(TV_func, wrapped)

def noArgsFlattening(f: TV_func) -> TV_func:
    setattr(f, 'no-args-flattening', True)  # noqa: B010
    return f

def disablerIfNotFound(f: TV_func) -> TV_func:
    @wraps(f)
    def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
        kwargs = _get_callee_args(wrapped_args)[3]
        disabler = kwargs.pop('disabler', False)
        ret = f(*wrapped_args, **wrapped_kwargs)
        if disabler and not ret.held_object.found():
            return Disabler()
        return ret
    return T.cast(TV_func, wrapped)

class permittedKwargs:

    def __init__(self, permitted: T.Set[str]):
        self.permitted = permitted  # type: T.Set[str]

    def __call__(self, f: TV_func) -> TV_func:
        @wraps(f)
        def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
            s, node, args, kwargs, _ = _get_callee_args(wrapped_args)
            for k in kwargs:
                if k not in self.permitted:
                    mlog.warning(f'''Passed invalid keyword argument "{k}".''', location=node)
                    mlog.warning('This will become a hard error in the future.')
            return f(*wrapped_args, **wrapped_kwargs)
        return T.cast(TV_func, wrapped)


def typed_pos_args(name: str, *types: T.Union[T.Type, T.Tuple[T.Type, ...]],
                   varargs: T.Optional[T.Union[T.Type, T.Tuple[T.Type, ...]]] = None,
                   optargs: T.Optional[T.List[T.Union[T.Type, T.Tuple[T.Type, ...]]]] = None,
                   min_varargs: int = 0, max_varargs: int = 0) -> T.Callable[..., T.Any]:
    """Decorator that types type checking of positional arguments.

    This supports two different models of optional aguments, the first is the
    variadic argument model. Variadic arguments are a possibly bounded,
    possibly unbounded number of arguments of the same type (unions are
    supported). The second is the standard default value model, in this case
    a number of optional arguments may be provided, but they are still
    ordered, and they may have different types.

    This function does not support mixing variadic and default arguments.

    :name: The name of the decorated function (as displayed in error messages)
    :varargs: They type(s) of any variadic arguments the function takes. If
        None the function takes no variadic args
    :min_varargs: the minimum number of variadic arguments taken
    :max_varargs: the maximum number of variadic arguments taken. 0 means unlimited
    :optargs: The types of any optional arguments parameters taken. If None
        then no optional paramters are taken.

    Some examples of usage blow:
    >>> @typed_pos_args('mod.func', str, (str, int))
    ... def func(self, state: ModuleState, args: T.Tuple[str, T.Union[str, int]], kwargs: T.Dict[str, T.Any]) -> T.Any:
    ...     pass

    >>> @typed_pos_args('method', str, varargs=str)
    ... def method(self, node: BaseNode, args: T.Tuple[str, T.List[str]], kwargs: T.Dict[str, T.Any]) -> T.Any:
    ...     pass

    >>> @typed_pos_args('method', varargs=str, min_varargs=1)
    ... def method(self, node: BaseNode, args: T.Tuple[T.List[str]], kwargs: T.Dict[str, T.Any]) -> T.Any:
    ...     pass

    >>> @typed_pos_args('method', str, optargs=[(str, int), str])
    ... def method(self, node: BaseNode, args: T.Tuple[str, T.Optional[T.Union[str, int]], T.Optional[str]], kwargs: T.Dict[str, T.Any]) -> T.Any:
    ...     pass

    When should you chose `typed_pos_args('name', varargs=str,
    min_varargs=1)` vs `typed_pos_args('name', str, varargs=str)`?

    The answer has to do with the semantics of the function, if all of the
    inputs are the same type (such as with `files()`) then the former is
    correct, all of the arguments are string names of files. If the first
    argument is something else the it should be separated.
    """
    def inner(f: TV_func) -> TV_func:

        @wraps(f)
        def wrapper(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
            args = _get_callee_args(wrapped_args)[2]

            # These are implementation programming errors, end users should never see them.
            assert isinstance(args, list), args
            assert max_varargs >= 0, 'max_varags cannot be negative'
            assert min_varargs >= 0, 'min_varags cannot be negative'
            assert optargs is None or varargs is None, \
                'varargs and optargs not supported together as this would be ambiguous'

            num_args = len(args)
            num_types = len(types)
            a_types = types

            if varargs:
                min_args = num_types + min_varargs
                max_args = num_types + max_varargs
                if max_varargs == 0 and num_args < min_args:
                    raise InvalidArguments(f'{name} takes at least {min_args} arguments, but got {num_args}.')
                elif max_varargs != 0 and (num_args < min_args or num_args > max_args):
                    raise InvalidArguments(f'{name} takes between {min_args} and {max_args} arguments, but got {num_args}.')
            elif optargs:
                if num_args < num_types:
                    raise InvalidArguments(f'{name} takes at least {num_types} arguments, but got {num_args}.')
                elif num_args > num_types + len(optargs):
                    raise InvalidArguments(f'{name} takes at most {num_types + len(optargs)} arguments, but got {num_args}.')
                # Add the number of positional arguments required
                if num_args > num_types:
                    diff = num_args - num_types
                    a_types = tuple(list(types) + list(optargs[:diff]))
            elif num_args != num_types:
                raise InvalidArguments(f'{name} takes exactly {num_types} arguments, but got {num_args}.')

            for i, (arg, type_) in enumerate(itertools.zip_longest(args, a_types, fillvalue=varargs), start=1):
                if not isinstance(arg, type_):
                    if isinstance(type_, tuple):
                        shouldbe = 'one of: {}'.format(", ".join(f'"{t.__name__}"' for t in type_))
                    else:
                        shouldbe = f'"{type_.__name__}"'
                    raise InvalidArguments(f'{name} argument {i} was of type "{type(arg).__name__}" but should have been {shouldbe}')

            # Ensure that we're actually passing a tuple.
            # Depending on what kind of function we're calling the length of
            # wrapped_args can vary.
            nargs = list(wrapped_args)
            i = nargs.index(args)
            if varargs:
                # if we have varargs we need to split them into a separate
                # tuple, as python's typing doesn't understand tuples with
                # fixed elements and variadic elements, only one or the other.
                # so in that case we need T.Tuple[int, str, float, T.Tuple[str, ...]]
                pos = args[:len(types)]
                var = list(args[len(types):])
                pos.append(var)
                nargs[i] = tuple(pos)
            elif optargs:
                if num_args < num_types + len(optargs):
                    diff =  num_types + len(optargs) - num_args
                    nargs[i] = tuple(list(args) + [None] * diff)
                else:
                    nargs[i] = args
            else:
                nargs[i] = tuple(args)
            return f(*nargs, **wrapped_kwargs)

        return T.cast(TV_func, wrapper)
    return inner


class ContainerTypeInfo:

    """Container information for keyword arguments.

    For keyword arguments that are containers (list or dict), this class encodes
    that information.

    :param container: the type of container
    :param contains: the types the container holds
    :param pairs: if the container is supposed to be of even length.
        This is mainly used for interfaces that predate the addition of dictionaries, and use
        `[key, value, key2, value2]` format.
    :param allow_empty: Whether this container is allowed to be empty
        There are some cases where containers not only must be passed, but must
        not be empty, and other cases where an empty container is allowed.
    """

    def __init__(self, container: T.Type, contains: T.Union[T.Type, T.Tuple[T.Type, ...]], *,
                 pairs: bool = False, allow_empty: bool = True) :
        self.container = container
        self.contains = contains
        self.pairs = pairs
        self.allow_empty = allow_empty

    def check(self, value: T.Any) -> T.Optional[str]:
        """Check that a value is valid.

        :param value: A value to check
        :return: If there is an error then a string message, otherwise None
        """
        if not isinstance(value, self.container):
            return f'container type was "{type(value).__name__}", but should have been "{self.container.__name__}"'
        iter_ = iter(value.values()) if isinstance(value, dict) else iter(value)
        for each in iter_:
            if not isinstance(each, self.contains):
                if isinstance(self.contains, tuple):
                    shouldbe = 'one of: {}'.format(", ".join(f'"{t.__name__}"' for t in self.contains))
                else:
                    shouldbe = f'"{self.contains.__name__}"'
                return f'contained a value of type "{type(each).__name__}" but should have been {shouldbe}'
        if self.pairs and len(value) % 2 != 0:
            return 'container should be of even length, but is not'
        if not value and not self.allow_empty:
            return 'container is empty, but not allowed to be'
        return None


_T = T.TypeVar('_T')


class KwargInfo(T.Generic[_T]):

    """A description of a keyword argument to a meson function

    This is used to describe a value to the :func:typed_kwargs function.

    :param name: the name of the parameter
    :param types: A type or tuple of types that are allowed, or a :class:ContainerType
    :param required: Whether this is a required keyword argument. defaults to False
    :param listify: If true, then the argument will be listified before being
        checked. This is useful for cases where the Meson DSL allows a scalar or
        a container, but internally we only want to work with containers
    :param default: A default value to use if this isn't set. defaults to None,
        this may be safely set to a mutable type, as long as that type does not
        itself contain mutable types, typed_kwargs will copy the default
    :param since: Meson version in which this argument has been added. defaults to None
    :param deprecated: Meson version in which this argument has been deprecated. defaults to None
    """

    def __init__(self, name: str, types: T.Union[T.Type[_T], T.Tuple[T.Type[_T], ...], ContainerTypeInfo],
                 required: bool = False, listify: bool = False, default: T.Optional[_T] = None,
                 since: T.Optional[str] = None, deprecated: T.Optional[str] = None):
        self.name = name
        self.types = types
        self.required = required
        self.listify = listify
        self.default = default
        self.since = since
        self.deprecated = deprecated


def typed_kwargs(name: str, *types: KwargInfo) -> T.Callable[..., T.Any]:
    """Decorator for type checking keyword arguments.

    Used to wrap a meson DSL implementation function, where it checks various
    things about keyword arguments, including the type, and various other
    information. For non-required values it sets the value to a default, which
    means the value will always be provided.

    If type tyhpe is a :class:ContainerTypeInfo, then the default value will be
    passed as an argument to the container initializer, making a shallow copy

    :param name: the name of the function, including the object it's attached ot
        (if applicable)
    :param *types: KwargInfo entries for each keyword argument.
    """
    def inner(f: TV_func) -> TV_func:

        @wraps(f)
        def wrapper(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
            kwargs, subproject = _get_callee_args(wrapped_args, want_subproject=True)[3:5]

            all_names = {t.name for t in types}
            unknowns = set(kwargs).difference(all_names)
            if unknowns:
                # Warn about unknown argumnts, delete them and continue. This
                # keeps current behavior
                ustr = ', '.join([f'"{u}"' for u in sorted(unknowns)])
                mlog.warning(f'{name} got unknown keyword arguments {ustr}')
                for u in unknowns:
                    del kwargs[u]

            for info in types:
                value = kwargs.get(info.name)
                if value is not None:
                    if info.since:
                        feature_name = info.name + ' arg in ' + name
                        FeatureNew.single_use(feature_name, info.since, subproject)
                    if info.deprecated:
                        feature_name = info.name + ' arg in ' + name
                        FeatureDeprecated.single_use(feature_name, info.deprecated, subproject)
                    if info.listify:
                        kwargs[info.name] = value = mesonlib.listify(value)
                    if isinstance(info.types, ContainerTypeInfo):
                        msg = info.types.check(value)
                        if msg is not None:
                            raise InvalidArguments(f'{name} keyword argument "{info.name}" {msg}')
                    else:
                        if not isinstance(value, info.types):
                            if isinstance(info.types, tuple):
                                shouldbe = 'one of: {}'.format(", ".join(f'"{t.__name__}"' for t in info.types))
                            else:
                                shouldbe = f'"{info.types.__name__}"'
                            raise InvalidArguments(f'{name} keyword argument "{info.name}"" was of type "{type(value).__name__}" but should have been {shouldbe}')
                elif info.required:
                    raise InvalidArguments(f'{name} is missing required keyword argument "{info.name}"')
                else:
                    # set the value to the default, this ensuring all kwargs are present
                    # This both simplifies the typing checking and the usage
                    # Create a shallow copy of the container (and do a type
                    # conversion if necessary). This allows mutable types to
                    # be used safely as default values
                    if isinstance(info.types, ContainerTypeInfo):
                        kwargs[info.name] = info.types.container(info.default)
                    else:
                        kwargs[info.name] = info.default

            return f(*wrapped_args, **wrapped_kwargs)
        return T.cast(TV_func, wrapper)
    return inner


class FeatureCheckBase(metaclass=abc.ABCMeta):
    "Base class for feature version checks"

    # In python 3.6 we can just forward declare this, but in 3.5 we can't
    # This will be overwritten by the subclasses by necessity
    feature_registry = {}  # type: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[str]]]]

    def __init__(self, feature_name: str, version: str, extra_message: T.Optional[str] = None):
        self.feature_name = feature_name  # type: str
        self.feature_version = version    # type: str
        self.extra_message = extra_message or ''  # type: str

    @staticmethod
    def get_target_version(subproject: str) -> str:
        # Don't do any checks if project() has not been parsed yet
        if subproject not in mesonlib.project_meson_versions:
            return ''
        return mesonlib.project_meson_versions[subproject]

    @staticmethod
    @abc.abstractmethod
    def check_version(target_version: str, feature_Version: str) -> bool:
        pass

    def use(self, subproject: str) -> None:
        tv = self.get_target_version(subproject)
        # No target version
        if tv == '':
            return
        # Target version is new enough
        if self.check_version(tv, self.feature_version):
            return
        # Feature is too new for target version, register it
        if subproject not in self.feature_registry:
            self.feature_registry[subproject] = {self.feature_version: set()}
        register = self.feature_registry[subproject]
        if self.feature_version not in register:
            register[self.feature_version] = set()
        if self.feature_name in register[self.feature_version]:
            # Don't warn about the same feature multiple times
            # FIXME: This is needed to prevent duplicate warnings, but also
            # means we won't warn about a feature used in multiple places.
            return
        register[self.feature_version].add(self.feature_name)
        self.log_usage_warning(tv)

    @classmethod
    def report(cls, subproject: str) -> None:
        if subproject not in cls.feature_registry:
            return
        warning_str = cls.get_warning_str_prefix(cls.get_target_version(subproject))
        fv = cls.feature_registry[subproject]
        for version in sorted(fv.keys()):
            warning_str += '\n * {}: {}'.format(version, fv[version])
        mlog.warning(warning_str)

    def log_usage_warning(self, tv: str) -> None:
        raise InterpreterException('log_usage_warning not implemented')

    @staticmethod
    def get_warning_str_prefix(tv: str) -> str:
        raise InterpreterException('get_warning_str_prefix not implemented')

    def __call__(self, f: TV_func) -> TV_func:
        @wraps(f)
        def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
            subproject = _get_callee_args(wrapped_args, want_subproject=True)[4]
            if subproject is None:
                raise AssertionError(f'{wrapped_args!r}')
            self.use(subproject)
            return f(*wrapped_args, **wrapped_kwargs)
        return T.cast(TV_func, wrapped)

    @classmethod
    def single_use(cls, feature_name: str, version: str, subproject: str,
                   extra_message: T.Optional[str] = None) -> None:
        """Oneline version that instantiates and calls use()."""
        cls(feature_name, version, extra_message).use(subproject)


class FeatureNew(FeatureCheckBase):
    """Checks for new features"""

    # Class variable, shared across all instances
    #
    # Format: {subproject: {feature_version: set(feature_names)}}
    feature_registry = {}  # type: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[str]]]]

    @staticmethod
    def check_version(target_version: str, feature_version: str) -> bool:
        return mesonlib.version_compare_condition_with_min(target_version, feature_version)

    @staticmethod
    def get_warning_str_prefix(tv: str) -> str:
        return f'Project specifies a minimum meson_version \'{tv}\' but uses features which were added in newer versions:'

    def log_usage_warning(self, tv: str) -> None:
        args = [
            'Project targeting', f"'{tv}'",
            'but tried to use feature introduced in',
            f"'{self.feature_version}':",
            f'{self.feature_name}.',
        ]
        if self.extra_message:
            args.append(self.extra_message)
        mlog.warning(*args)

class FeatureDeprecated(FeatureCheckBase):
    """Checks for deprecated features"""

    # Class variable, shared across all instances
    #
    # Format: {subproject: {feature_version: set(feature_names)}}
    feature_registry = {}  # type: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[str]]]]

    @staticmethod
    def check_version(target_version: str, feature_version: str) -> bool:
        # For deprecation checks we need to return the inverse of FeatureNew checks
        return not mesonlib.version_compare_condition_with_min(target_version, feature_version)

    @staticmethod
    def get_warning_str_prefix(tv: str) -> str:
        return 'Deprecated features used:'

    def log_usage_warning(self, tv: str) -> None:
        args = [
            'Project targeting', f"'{tv}'",
            'but tried to use feature deprecated since',
            f"'{self.feature_version}':",
            f'{self.feature_name}.',
        ]
        if self.extra_message:
            args.append(self.extra_message)
        mlog.warning(*args)


class FeatureCheckKwargsBase(metaclass=abc.ABCMeta):

    @property
    @abc.abstractmethod
    def feature_check_class(self) -> T.Type[FeatureCheckBase]:
        pass

    def __init__(self, feature_name: str, feature_version: str,
                 kwargs: T.List[str], extra_message: T.Optional[str] = None):
        self.feature_name = feature_name
        self.feature_version = feature_version
        self.kwargs = kwargs
        self.extra_message = extra_message

    def __call__(self, f: TV_func) -> TV_func:
        @wraps(f)
        def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any:
            kwargs, subproject = _get_callee_args(wrapped_args, want_subproject=True)[3:5]
            if subproject is None:
                raise AssertionError(f'{wrapped_args!r}')
            for arg in self.kwargs:
                if arg not in kwargs:
                    continue
                name = arg + ' arg in ' + self.feature_name
                self.feature_check_class.single_use(
                        name, self.feature_version, subproject, self.extra_message)
            return f(*wrapped_args, **wrapped_kwargs)
        return T.cast(TV_func, wrapped)

class FeatureNewKwargs(FeatureCheckKwargsBase):
    feature_check_class = FeatureNew

class FeatureDeprecatedKwargs(FeatureCheckKwargsBase):
    feature_check_class = FeatureDeprecated


class InterpreterException(mesonlib.MesonException):
    pass

class InvalidCode(InterpreterException):
    pass

class InvalidArguments(InterpreterException):
    pass

class SubdirDoneRequest(BaseException):
    pass

class ContinueRequest(BaseException):
    pass

class BreakRequest(BaseException):
    pass

class MutableInterpreterObject(InterpreterObject):
    def __init__(self) -> None:
        super().__init__()

class Disabler(InterpreterObject):
    def __init__(self) -> None:
        super().__init__()
        self.methods.update({'found': self.found_method})

    def found_method(self, args: T.Sequence[T.Any], kwargs: T.Dict[str, T.Any]) -> bool:
        return False

def is_disabler(i: T.Any) -> bool:
    return isinstance(i, Disabler)

def is_arg_disabled(arg: T.Any) -> bool:
    if is_disabler(arg):
        return True
    if isinstance(arg, list):
        for i in arg:
            if is_arg_disabled(i):
                return True
    return False

def is_disabled(args: T.Sequence[T.Any], kwargs: T.Dict[str, T.Any]) -> bool:
    for i in args:
        if is_arg_disabled(i):
            return True
    for i in kwargs.values():
        if is_arg_disabled(i):
            return True
    return False

def default_resolve_key(key: mparser.BaseNode) -> str:
    if not isinstance(key, mparser.IdNode):
        raise InterpreterException('Invalid kwargs format.')
    return key.value

class InterpreterBase:
    elementary_types = (int, float, str, bool, list)

    def __init__(self, source_root: str, subdir: str, subproject: str):
        self.source_root = source_root
        self.funcs = {}    # type: T.Dict[str, T.Callable[[mparser.BaseNode, T.List[TYPE_nvar], T.Dict[str, TYPE_nvar]], TYPE_var]]
        self.builtin = {}  # type: T.Dict[str, InterpreterObject]
        self.subdir = subdir
        self.root_subdir = subdir
        self.subproject = subproject
        self.variables = {}  # type: T.Dict[str, TYPE_var]
        self.argument_depth = 0
        self.current_lineno = -1
        # Current node set during a function call. This can be used as location
        # when printing a warning message during a method call.
        self.current_node = None  # type: mparser.BaseNode
        # This is set to `version_string` when this statement is evaluated:
        # meson.version().compare_version(version_string)
        # If it was part of a if-clause, it is used to temporally override the
        # current meson version target within that if-block.
        self.tmp_meson_version = None # type: T.Optional[str]

    def load_root_meson_file(self) -> None:
        mesonfile = os.path.join(self.source_root, self.subdir, environment.build_filename)
        if not os.path.isfile(mesonfile):
            raise InvalidArguments('Missing Meson file in %s' % mesonfile)
        with open(mesonfile, encoding='utf8') as mf:
            code = mf.read()
        if code.isspace():
            raise InvalidCode('Builder file is empty.')
        assert(isinstance(code, str))
        try:
            self.ast = mparser.Parser(code, mesonfile).parse()
        except mesonlib.MesonException as me:
            me.file = mesonfile
            raise me

    def join_path_strings(self, args: T.Sequence[str]) -> str:
        return os.path.join(*args).replace('\\', '/')

    def parse_project(self) -> None:
        """
        Parses project() and initializes languages, compilers etc. Do this
        early because we need this before we parse the rest of the AST.
        """
        self.evaluate_codeblock(self.ast, end=1)

    def sanity_check_ast(self) -> None:
        if not isinstance(self.ast, mparser.CodeBlockNode):
            raise InvalidCode('AST is of invalid type. Possibly a bug in the parser.')
        if not self.ast.lines:
            raise InvalidCode('No statements in code.')
        first = self.ast.lines[0]
        if not isinstance(first, mparser.FunctionNode) or first.func_name != 'project':
            raise InvalidCode('First statement must be a call to project')

    def run(self) -> None:
        # Evaluate everything after the first line, which is project() because
        # we already parsed that in self.parse_project()
        try:
            self.evaluate_codeblock(self.ast, start=1)
        except SubdirDoneRequest:
            pass

    def evaluate_codeblock(self, node: mparser.CodeBlockNode, start: int = 0, end: T.Optional[int] = None) -> None:
        if node is None:
            return
        if not isinstance(node, mparser.CodeBlockNode):
            e = InvalidCode('Tried to execute a non-codeblock. Possibly a bug in the parser.')
            e.lineno = node.lineno
            e.colno = node.colno
            raise e
        statements = node.lines[start:end]
        i = 0
        while i < len(statements):
            cur = statements[i]
            try:
                self.current_lineno = cur.lineno
                self.evaluate_statement(cur)
            except Exception as e:
                if getattr(e, 'lineno', None) is None:
                    # We are doing the equivalent to setattr here and mypy does not like it
                    e.lineno = cur.lineno                                                             # type: ignore
                    e.colno = cur.colno                                                               # type: ignore
                    e.file = os.path.join(self.source_root, self.subdir, environment.build_filename)  # type: ignore
                raise e
            i += 1 # In THE FUTURE jump over blocks and stuff.

    def evaluate_statement(self, cur: mparser.BaseNode) -> T.Optional[TYPE_var]:
        self.current_node = cur
        if isinstance(cur, mparser.FunctionNode):
            return self.function_call(cur)
        elif isinstance(cur, mparser.AssignmentNode):
            self.assignment(cur)
        elif isinstance(cur, mparser.MethodNode):
            return self.method_call(cur)
        elif isinstance(cur, mparser.StringNode):
            return cur.value
        elif isinstance(cur, mparser.BooleanNode):
            return cur.value
        elif isinstance(cur, mparser.IfClauseNode):
            return self.evaluate_if(cur)
        elif isinstance(cur, mparser.IdNode):
            return self.get_variable(cur.value)
        elif isinstance(cur, mparser.ComparisonNode):
            return self.evaluate_comparison(cur)
        elif isinstance(cur, mparser.ArrayNode):
            return self.evaluate_arraystatement(cur)
        elif isinstance(cur, mparser.DictNode):
            return self.evaluate_dictstatement(cur)
        elif isinstance(cur, mparser.NumberNode):
            return cur.value
        elif isinstance(cur, mparser.AndNode):
            return self.evaluate_andstatement(cur)
        elif isinstance(cur, mparser.OrNode):
            return self.evaluate_orstatement(cur)
        elif isinstance(cur, mparser.NotNode):
            return self.evaluate_notstatement(cur)
        elif isinstance(cur, mparser.UMinusNode):
            return self.evaluate_uminusstatement(cur)
        elif isinstance(cur, mparser.ArithmeticNode):
            return self.evaluate_arithmeticstatement(cur)
        elif isinstance(cur, mparser.ForeachClauseNode):
            self.evaluate_foreach(cur)
        elif isinstance(cur, mparser.PlusAssignmentNode):
            self.evaluate_plusassign(cur)
        elif isinstance(cur, mparser.IndexNode):
            return self.evaluate_indexing(cur)
        elif isinstance(cur, mparser.TernaryNode):
            return self.evaluate_ternary(cur)
        elif isinstance(cur, mparser.FormatStringNode):
            return self.evaluate_fstring(cur)
        elif isinstance(cur, mparser.ContinueNode):
            raise ContinueRequest()
        elif isinstance(cur, mparser.BreakNode):
            raise BreakRequest()
        elif isinstance(cur, self.elementary_types):
            return cur
        else:
            raise InvalidCode("Unknown statement.")
        return None

    def evaluate_arraystatement(self, cur: mparser.ArrayNode) -> list:
        (arguments, kwargs) = self.reduce_arguments(cur.args)
        if len(kwargs) > 0:
            raise InvalidCode('Keyword arguments are invalid in array construction.')
        return arguments

    @FeatureNew('dict', '0.47.0')
    def evaluate_dictstatement(self, cur: mparser.DictNode) -> TYPE_nkwargs:
        def resolve_key(key: mparser.BaseNode) -> str:
            if not isinstance(key, mparser.StringNode):
                FeatureNew.single_use('Dictionary entry using non literal key', '0.53.0', self.subproject)
            str_key = self.evaluate_statement(key)
            if not isinstance(str_key, str):
                raise InvalidArguments('Key must be a string')
            return str_key
        arguments, kwargs = self.reduce_arguments(cur.args, key_resolver=resolve_key, duplicate_key_error='Duplicate dictionary key: {}')
        assert not arguments
        return kwargs

    def evaluate_notstatement(self, cur: mparser.NotNode) -> T.Union[bool, Disabler]:
        v = self.evaluate_statement(cur.value)
        if isinstance(v, Disabler):
            return v
        if not isinstance(v, bool):
            raise InterpreterException('Argument to "not" is not a boolean.')
        return not v

    def evaluate_if(self, node: mparser.IfClauseNode) -> T.Optional[Disabler]:
        assert(isinstance(node, mparser.IfClauseNode))
        for i in node.ifs:
            # Reset self.tmp_meson_version to know if it gets set during this
            # statement evaluation.
            self.tmp_meson_version = None
            result = self.evaluate_statement(i.condition)
            if isinstance(result, Disabler):
                return result
            if not(isinstance(result, bool)):
                raise InvalidCode(f'If clause {result!r} does not evaluate to true or false.')
            if result:
                prev_meson_version = mesonlib.project_meson_versions[self.subproject]
                if self.tmp_meson_version:
                    mesonlib.project_meson_versions[self.subproject] = self.tmp_meson_version
                try:
                    self.evaluate_codeblock(i.block)
                finally:
                    mesonlib.project_meson_versions[self.subproject] = prev_meson_version
                return None
        if not isinstance(node.elseblock, mparser.EmptyNode):
            self.evaluate_codeblock(node.elseblock)
        return None

    def validate_comparison_types(self, val1: T.Any, val2: T.Any) -> bool:
        if type(val1) != type(val2):
            return False
        return True

    def evaluate_in(self, val1: T.Any, val2: T.Any) -> bool:
        if not isinstance(val1, (str, int, float, ObjectHolder)):
            raise InvalidArguments('lvalue of "in" operator must be a string, integer, float, or object')
        if not isinstance(val2, (list, dict)):
            raise InvalidArguments('rvalue of "in" operator must be an array or a dict')
        return val1 in val2

    def evaluate_comparison(self, node: mparser.ComparisonNode) -> T.Union[bool, Disabler]:
        val1 = self.evaluate_statement(node.left)
        if isinstance(val1, Disabler):
            return val1
        val2 = self.evaluate_statement(node.right)
        if isinstance(val2, Disabler):
            return val2
        if node.ctype == 'in':
            return self.evaluate_in(val1, val2)
        elif node.ctype == 'notin':
            return not self.evaluate_in(val1, val2)
        valid = self.validate_comparison_types(val1, val2)
        # Ordering comparisons of different types isn't allowed since PR #1810
        # (0.41.0).  Since PR #2884 we also warn about equality comparisons of
        # different types, which will one day become an error.
        if not valid and (node.ctype == '==' or node.ctype == '!='):
            mlog.warning('''Trying to compare values of different types ({}, {}) using {}.
The result of this is undefined and will become a hard error in a future Meson release.'''
                         .format(type(val1).__name__, type(val2).__name__, node.ctype), location=node)
        if node.ctype == '==':
            return val1 == val2
        elif node.ctype == '!=':
            return val1 != val2
        elif not valid:
            raise InterpreterException(
                'Values of different types ({}, {}) cannot be compared using {}.'.format(type(val1).__name__,
                                                                                         type(val2).__name__,
                                                                                         node.ctype))
        elif not isinstance(val1, self.elementary_types):
            raise InterpreterException('{} can only be compared for equality.'.format(getattr(node.left, 'value', '<ERROR>')))
        elif not isinstance(val2, self.elementary_types):
            raise InterpreterException('{} can only be compared for equality.'.format(getattr(node.right, 'value', '<ERROR>')))
        # Use type: ignore because mypy will complain that we are comparing two Unions,
        # but we actually guarantee earlier that both types are the same
        elif node.ctype == '<':
            return val1 < val2   # type: ignore
        elif node.ctype == '<=':
            return val1 <= val2  # type: ignore
        elif node.ctype == '>':
            return val1 > val2   # type: ignore
        elif node.ctype == '>=':
            return val1 >= val2  # type: ignore
        else:
            raise InvalidCode('You broke my compare eval.')

    def evaluate_andstatement(self, cur: mparser.AndNode) -> T.Union[bool, Disabler]:
        l = self.evaluate_statement(cur.left)
        if isinstance(l, Disabler):
            return l
        if not isinstance(l, bool):
            raise InterpreterException('First argument to "and" is not a boolean.')
        if not l:
            return False
        r = self.evaluate_statement(cur.right)
        if isinstance(r, Disabler):
            return r
        if not isinstance(r, bool):
            raise InterpreterException('Second argument to "and" is not a boolean.')
        return r

    def evaluate_orstatement(self, cur: mparser.OrNode) -> T.Union[bool, Disabler]:
        l = self.evaluate_statement(cur.left)
        if isinstance(l, Disabler):
            return l
        if not isinstance(l, bool):
            raise InterpreterException('First argument to "or" is not a boolean.')
        if l:
            return True
        r = self.evaluate_statement(cur.right)
        if isinstance(r, Disabler):
            return r
        if not isinstance(r, bool):
            raise InterpreterException('Second argument to "or" is not a boolean.')
        return r

    def evaluate_uminusstatement(self, cur: mparser.UMinusNode) -> T.Union[int, Disabler]:
        v = self.evaluate_statement(cur.value)
        if isinstance(v, Disabler):
            return v
        if not isinstance(v, int):
            raise InterpreterException('Argument to negation is not an integer.')
        return -v

    @FeatureNew('/ with string arguments', '0.49.0')
    def evaluate_path_join(self, l: str, r: str) -> str:
        if not isinstance(l, str):
            raise InvalidCode('The division operator can only append to a string.')
        if not isinstance(r, str):
            raise InvalidCode('The division operator can only append a string.')
        return self.join_path_strings((l, r))

    def evaluate_division(self, l: T.Any, r: T.Any) -> T.Union[int, str]:
        if isinstance(l, str) or isinstance(r, str):
            return self.evaluate_path_join(l, r)
        if isinstance(l, int) and isinstance(r, int):
            if r == 0:
                raise InvalidCode('Division by zero.')
            return l // r
        raise InvalidCode('Division works only with strings or integers.')

    def evaluate_arithmeticstatement(self, cur: mparser.ArithmeticNode) -> T.Union[int, str, dict, list, Disabler]:
        l = self.evaluate_statement(cur.left)
        if isinstance(l, Disabler):
            return l
        r = self.evaluate_statement(cur.right)
        if isinstance(r, Disabler):
            return r

        if cur.operation == 'add':
            if isinstance(l, dict) and isinstance(r, dict):
                return {**l, **r}
            try:
                # MyPy error due to handling two Unions (we are catching all exceptions anyway)
                return l + r  # type: ignore
            except Exception as e:
                raise InvalidCode('Invalid use of addition: ' + str(e))
        elif cur.operation == 'sub':
            if not isinstance(l, int) or not isinstance(r, int):
                raise InvalidCode('Subtraction works only with integers.')
            return l - r
        elif cur.operation == 'mul':
            if not isinstance(l, int) or not isinstance(r, int):
                raise InvalidCode('Multiplication works only with integers.')
            return l * r
        elif cur.operation == 'div':
            return self.evaluate_division(l, r)
        elif cur.operation == 'mod':
            if not isinstance(l, int) or not isinstance(r, int):
                raise InvalidCode('Modulo works only with integers.')
            return l % r
        else:
            raise InvalidCode('You broke me.')

    def evaluate_ternary(self, node: mparser.TernaryNode) -> TYPE_var:
        assert(isinstance(node, mparser.TernaryNode))
        result = self.evaluate_statement(node.condition)
        if isinstance(result, Disabler):
            return result
        if not isinstance(result, bool):
            raise InterpreterException('Ternary condition is not boolean.')
        if result:
            return self.evaluate_statement(node.trueblock)
        else:
            return self.evaluate_statement(node.falseblock)

    @FeatureNew('format strings', '0.58.0')
    def evaluate_fstring(self, node: mparser.FormatStringNode) -> TYPE_var:
        assert(isinstance(node, mparser.FormatStringNode))

        def replace(match: T.Match[str]) -> str:
            var = str(match.group(1))
            try:
                val = self.variables[var]
                if not isinstance(val, (str, int, float, bool)):
                    raise InvalidCode(f'Identifier "{var}" does not name a formattable variable ' +
                        '(has to be an integer, a string, a floating point number or a boolean).')

                return str(val)
            except KeyError:
                raise InvalidCode(f'Identifier "{var}" does not name a variable.')

        return re.sub(r'@([_a-zA-Z][_0-9a-zA-Z]*)@', replace, node.value)

    def evaluate_foreach(self, node: mparser.ForeachClauseNode) -> None:
        assert(isinstance(node, mparser.ForeachClauseNode))
        items = self.evaluate_statement(node.items)

        if isinstance(items, (list, RangeHolder)):
            if len(node.varnames) != 1:
                raise InvalidArguments('Foreach on array does not unpack')
            varname = node.varnames[0]
            for item in items:
                self.set_variable(varname, item)
                try:
                    self.evaluate_codeblock(node.block)
                except ContinueRequest:
                    continue
                except BreakRequest:
                    break
        elif isinstance(items, dict):
            if len(node.varnames) != 2:
                raise InvalidArguments('Foreach on dict unpacks key and value')
            for key, value in sorted(items.items()):
                self.set_variable(node.varnames[0], key)
                self.set_variable(node.varnames[1], value)
                try:
                    self.evaluate_codeblock(node.block)
                except ContinueRequest:
                    continue
                except BreakRequest:
                    break
        else:
            raise InvalidArguments('Items of foreach loop must be an array or a dict')

    def evaluate_plusassign(self, node: mparser.PlusAssignmentNode) -> None:
        assert(isinstance(node, mparser.PlusAssignmentNode))
        varname = node.var_name
        addition = self.evaluate_statement(node.value)

        # Remember that all variables are immutable. We must always create a
        # full new variable and then assign it.
        old_variable = self.get_variable(varname)
        new_value = None  # type: T.Union[str, int, float, bool, dict, list]
        if isinstance(old_variable, str):
            if not isinstance(addition, str):
                raise InvalidArguments('The += operator requires a string on the right hand side if the variable on the left is a string')
            new_value = old_variable + addition
        elif isinstance(old_variable, int):
            if not isinstance(addition, int):
                raise InvalidArguments('The += operator requires an int on the right hand side if the variable on the left is an int')
            new_value = old_variable + addition
        elif isinstance(old_variable, list):
            if isinstance(addition, list):
                new_value = old_variable + addition
            else:
                new_value = old_variable + [addition]
        elif isinstance(old_variable, dict):
            if not isinstance(addition, dict):
                raise InvalidArguments('The += operator requires a dict on the right hand side if the variable on the left is a dict')
            new_value = {**old_variable, **addition}
        # Add other data types here.
        else:
            raise InvalidArguments('The += operator currently only works with arrays, dicts, strings or ints')
        self.set_variable(varname, new_value)

    def evaluate_indexing(self, node: mparser.IndexNode) -> TYPE_var:
        assert(isinstance(node, mparser.IndexNode))
        iobject = self.evaluate_statement(node.iobject)
        if isinstance(iobject, Disabler):
            return iobject
        if not hasattr(iobject, '__getitem__'):
            raise InterpreterException(
                'Tried to index an object that doesn\'t support indexing.')
        index = self.evaluate_statement(node.index)

        if isinstance(iobject, dict):
            if not isinstance(index, str):
                raise InterpreterException('Key is not a string')
            try:
                # The cast is required because we don't have recursive types...
                return T.cast(TYPE_var, iobject[index])
            except KeyError:
                raise InterpreterException('Key %s is not in dict' % index)
        else:
            if not isinstance(index, int):
                raise InterpreterException('Index value is not an integer.')
            try:
                # Ignore the MyPy error, since we don't know all indexable types here
                # and we handle non indexable types with an exception
                # TODO maybe find a better solution
                return iobject[index]  # type: ignore
            except IndexError:
                # We are already checking for the existence of __getitem__, so this should be save
                raise InterpreterException('Index %d out of bounds of array of size %d.' % (index, len(iobject)))  # type: ignore

    def function_call(self, node: mparser.FunctionNode) -> T.Optional[TYPE_var]:
        func_name = node.func_name
        (posargs, kwargs) = self.reduce_arguments(node.args)
        if is_disabled(posargs, kwargs) and func_name not in {'get_variable', 'set_variable', 'is_disabler'}:
            return Disabler()
        if func_name in self.funcs:
            func = self.funcs[func_name]
            func_args = posargs  # type: T.Any
            if not getattr(func, 'no-args-flattening', False):
                func_args = flatten(posargs)
            return func(node, func_args, kwargs)
        else:
            self.unknown_function_called(func_name)
            return None

    def method_call(self, node: mparser.MethodNode) -> TYPE_var:
        invokable = node.source_object
        if isinstance(invokable, mparser.IdNode):
            object_name = invokable.value
            obj = self.get_variable(object_name)
        else:
            obj = self.evaluate_statement(invokable)
        method_name = node.name
        (args, kwargs) = self.reduce_arguments(node.args)
        if is_disabled(args, kwargs):
            return Disabler()
        if isinstance(obj, str):
            return self.string_method_call(obj, method_name, args, kwargs)
        if isinstance(obj, bool):
            return self.bool_method_call(obj, method_name, args, kwargs)
        if isinstance(obj, int):
            return self.int_method_call(obj, method_name, args, kwargs)
        if isinstance(obj, list):
            return self.array_method_call(obj, method_name, args, kwargs)
        if isinstance(obj, dict):
            return self.dict_method_call(obj, method_name, args, kwargs)
        if isinstance(obj, mesonlib.File):
            raise InvalidArguments('File object "%s" is not callable.' % obj)
        if not isinstance(obj, InterpreterObject):
            raise InvalidArguments('Variable "%s" is not callable.' % object_name)
        # Special case. This is the only thing you can do with a disabler
        # object. Every other use immediately returns the disabler object.
        if isinstance(obj, Disabler):
            if method_name == 'found':
                return False
            else:
                return Disabler()
        if method_name == 'extract_objects':
            if not isinstance(obj, ObjectHolder):
                raise InvalidArguments(f'Invalid operation "extract_objects" on variable "{object_name}"')
            self.validate_extraction(obj.held_object)
        obj.current_node = node
        return obj.method_call(method_name, args, kwargs)

    @builtinMethodNoKwargs
    def bool_method_call(self, obj: bool, method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> T.Union[str, int]:
        if method_name == 'to_string':
            if not posargs:
                if obj:
                    return 'true'
                else:
                    return 'false'
            elif len(posargs) == 2 and isinstance(posargs[0], str) and isinstance(posargs[1], str):
                if obj:
                    return posargs[0]
                else:
                    return posargs[1]
            else:
                raise InterpreterException('bool.to_string() must have either no arguments or exactly two string arguments that signify what values to return for true and false.')
        elif method_name == 'to_int':
            if obj:
                return 1
            else:
                return 0
        else:
            raise InterpreterException('Unknown method "%s" for a boolean.' % method_name)

    @builtinMethodNoKwargs
    def int_method_call(self, obj: int, method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> T.Union[str, bool]:
        if method_name == 'is_even':
            if not posargs:
                return obj % 2 == 0
            else:
                raise InterpreterException('int.is_even() must have no arguments.')
        elif method_name == 'is_odd':
            if not posargs:
                return obj % 2 != 0
            else:
                raise InterpreterException('int.is_odd() must have no arguments.')
        elif method_name == 'to_string':
            if not posargs:
                return str(obj)
            else:
                raise InterpreterException('int.to_string() must have no arguments.')
        else:
            raise InterpreterException('Unknown method "%s" for an integer.' % method_name)

    @staticmethod
    def _get_one_string_posarg(posargs: T.List[TYPE_nvar], method_name: str) -> str:
        if len(posargs) > 1:
            m = '{}() must have zero or one arguments'
            raise InterpreterException(m.format(method_name))
        elif len(posargs) == 1:
            s = posargs[0]
            if not isinstance(s, str):
                m = '{}() argument must be a string'
                raise InterpreterException(m.format(method_name))
            return s
        return None

    @builtinMethodNoKwargs
    def string_method_call(self, obj: str, method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> T.Union[str, int, bool, T.List[str]]:
        if method_name == 'strip':
            s1 = self._get_one_string_posarg(posargs, 'strip')
            if s1 is not None:
                return obj.strip(s1)
            return obj.strip()
        elif method_name == 'format':
            return self.format_string(obj, posargs)
        elif method_name == 'to_upper':
            return obj.upper()
        elif method_name == 'to_lower':
            return obj.lower()
        elif method_name == 'underscorify':
            return re.sub(r'[^a-zA-Z0-9]', '_', obj)
        elif method_name == 'split':
            s2 = self._get_one_string_posarg(posargs, 'split')
            if s2 is not None:
                return obj.split(s2)
            return obj.split()
        elif method_name == 'startswith' or method_name == 'contains' or method_name == 'endswith':
            s3 = posargs[0]
            if not isinstance(s3, str):
                raise InterpreterException('Argument must be a string.')
            if method_name == 'startswith':
                return obj.startswith(s3)
            elif method_name == 'contains':
                return obj.find(s3) >= 0
            return obj.endswith(s3)
        elif method_name == 'to_int':
            try:
                return int(obj)
            except Exception:
                raise InterpreterException(f'String {obj!r} cannot be converted to int')
        elif method_name == 'join':
            if len(posargs) != 1:
                raise InterpreterException('Join() takes exactly one argument.')
            strlist = posargs[0]
            check_stringlist(strlist)
            assert isinstance(strlist, list)  # Required for mypy
            return obj.join(strlist)
        elif method_name == 'version_compare':
            if len(posargs) != 1:
                raise InterpreterException('Version_compare() takes exactly one argument.')
            cmpr = posargs[0]
            if not isinstance(cmpr, str):
                raise InterpreterException('Version_compare() argument must be a string.')
            if isinstance(obj, MesonVersionString):
                self.tmp_meson_version = cmpr
            return mesonlib.version_compare(obj, cmpr)
        elif method_name == 'substring':
            if len(posargs) > 2:
                raise InterpreterException('substring() takes maximum two arguments.')
            start = 0
            end = len(obj)
            if len (posargs) > 0:
                if not isinstance(posargs[0], int):
                    raise InterpreterException('substring() argument must be an int')
                start = posargs[0]
            if len (posargs) > 1:
                if not isinstance(posargs[1], int):
                    raise InterpreterException('substring() argument must be an int')
                end = posargs[1]
            return obj[start:end]
        elif method_name == 'replace':
            FeatureNew.single_use('str.replace', '0.58.0', self.subproject)
            if len(posargs) != 2:
                raise InterpreterException('replace() takes exactly two arguments.')
            if not isinstance(posargs[0], str) or not isinstance(posargs[1], str):
                raise InterpreterException('replace() requires that both arguments be strings')
            return obj.replace(posargs[0], posargs[1])
        raise InterpreterException('Unknown method "%s" for a string.' % method_name)

    def format_string(self, templ: str, args: T.List[TYPE_nvar]) -> str:
        arg_strings = []
        for arg in args:
            if isinstance(arg, mparser.BaseNode):
                arg = self.evaluate_statement(arg)
            if isinstance(arg, bool): # Python boolean is upper case.
                arg = str(arg).lower()
            arg_strings.append(str(arg))

        def arg_replace(match: T.Match[str]) -> str:
            idx = int(match.group(1))
            if idx >= len(arg_strings):
                raise InterpreterException(f'Format placeholder @{idx}@ out of range.')
            return arg_strings[idx]

        return re.sub(r'@(\d+)@', arg_replace, templ)

    def unknown_function_called(self, func_name: str) -> None:
        raise InvalidCode('Unknown function "%s".' % func_name)

    @builtinMethodNoKwargs
    def array_method_call(self, obj: T.List[TYPE_var], method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> TYPE_var:
        if method_name == 'contains':
            def check_contains(el: list) -> bool:
                if len(posargs) != 1:
                    raise InterpreterException('Contains method takes exactly one argument.')
                item = posargs[0]
                for element in el:
                    if isinstance(element, list):
                        found = check_contains(element)
                        if found:
                            return True
                    if element == item:
                        return True
                return False
            return check_contains(obj)
        elif method_name == 'length':
            return len(obj)
        elif method_name == 'get':
            index = posargs[0]
            fallback = None
            if len(posargs) == 2:
                fallback = posargs[1]
            elif len(posargs) > 2:
                m = 'Array method \'get()\' only takes two arguments: the ' \
                    'index and an optional fallback value if the index is ' \
                    'out of range.'
                raise InvalidArguments(m)
            if not isinstance(index, int):
                raise InvalidArguments('Array index must be a number.')
            if index < -len(obj) or index >= len(obj):
                if fallback is None:
                    m = 'Array index {!r} is out of bounds for array of size {!r}.'
                    raise InvalidArguments(m.format(index, len(obj)))
                if isinstance(fallback, mparser.BaseNode):
                    return self.evaluate_statement(fallback)
                return fallback
            return obj[index]
        m = 'Arrays do not have a method called {!r}.'
        raise InterpreterException(m.format(method_name))

    @builtinMethodNoKwargs
    def dict_method_call(self, obj: T.Dict[str, TYPE_var], method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> TYPE_var:
        if method_name in ('has_key', 'get'):
            if method_name == 'has_key':
                if len(posargs) != 1:
                    raise InterpreterException('has_key() takes exactly one argument.')
            else:
                if len(posargs) not in (1, 2):
                    raise InterpreterException('get() takes one or two arguments.')

            key = posargs[0]
            if not isinstance(key, (str)):
                raise InvalidArguments('Dictionary key must be a string.')

            has_key = key in obj

            if method_name == 'has_key':
                return has_key

            if has_key:
                return obj[key]

            if len(posargs) == 2:
                fallback = posargs[1]
                if isinstance(fallback, mparser.BaseNode):
                    return self.evaluate_statement(fallback)
                return fallback

            raise InterpreterException(f'Key {key!r} is not in the dictionary.')

        if method_name == 'keys':
            if len(posargs) != 0:
                raise InterpreterException('keys() takes no arguments.')
            return sorted(obj.keys())

        raise InterpreterException('Dictionaries do not have a method called "%s".' % method_name)

    def reduce_arguments(
                self,
                args: mparser.ArgumentNode,
                key_resolver: T.Callable[[mparser.BaseNode], str] = default_resolve_key,
                duplicate_key_error: T.Optional[str] = None,
            ) -> T.Tuple[T.List[TYPE_nvar], TYPE_nkwargs]:
        assert(isinstance(args, mparser.ArgumentNode))
        if args.incorrect_order():
            raise InvalidArguments('All keyword arguments must be after positional arguments.')
        self.argument_depth += 1
        reduced_pos = [self.evaluate_statement(arg) for arg in args.arguments]  # type: T.List[TYPE_nvar]
        reduced_kw = {}  # type: TYPE_nkwargs
        for key, val in args.kwargs.items():
            reduced_key = key_resolver(key)
            reduced_val = val  # type: TYPE_nvar
            if isinstance(reduced_val, mparser.BaseNode):
                reduced_val = self.evaluate_statement(reduced_val)
            if duplicate_key_error and reduced_key in reduced_kw:
                raise InvalidArguments(duplicate_key_error.format(reduced_key))
            reduced_kw[reduced_key] = reduced_val
        self.argument_depth -= 1
        final_kw = self.expand_default_kwargs(reduced_kw)
        return reduced_pos, final_kw

    def expand_default_kwargs(self, kwargs: TYPE_nkwargs) -> TYPE_nkwargs:
        if 'kwargs' not in kwargs:
            return kwargs
        to_expand = kwargs.pop('kwargs')
        if not isinstance(to_expand, dict):
            raise InterpreterException('Value of "kwargs" must be dictionary.')
        if 'kwargs' in to_expand:
            raise InterpreterException('Kwargs argument must not contain a "kwargs" entry. Points for thinking meta, though. :P')
        for k, v in to_expand.items():
            if k in kwargs:
                raise InterpreterException(f'Entry "{k}" defined both as a keyword argument and in a "kwarg" entry.')
            kwargs[k] = v
        return kwargs

    def assignment(self, node: mparser.AssignmentNode) -> None:
        assert(isinstance(node, mparser.AssignmentNode))
        if self.argument_depth != 0:
            raise InvalidArguments('''Tried to assign values inside an argument list.
To specify a keyword argument, use : instead of =.''')
        var_name = node.var_name
        if not isinstance(var_name, str):
            raise InvalidArguments('Tried to assign value to a non-variable.')
        value = self.evaluate_statement(node.value)
        if not self.is_assignable(value):
            raise InvalidCode('Tried to assign an invalid value to variable.')
        # For mutable objects we need to make a copy on assignment
        if isinstance(value, MutableInterpreterObject):
            value = copy.deepcopy(value)
        self.set_variable(var_name, value)
        return None

    def set_variable(self, varname: str, variable: TYPE_var) -> None:
        if variable is None:
            raise InvalidCode('Can not assign None to variable.')
        if not isinstance(varname, str):
            raise InvalidCode('First argument to set_variable must be a string.')
        if not self.is_assignable(variable):
            raise InvalidCode('Assigned value not of assignable type.')
        if re.match('[_a-zA-Z][_0-9a-zA-Z]*$', varname) is None:
            raise InvalidCode('Invalid variable name: ' + varname)
        if varname in self.builtin:
            raise InvalidCode('Tried to overwrite internal variable "%s"' % varname)
        self.variables[varname] = variable

    def get_variable(self, varname: str) -> TYPE_var:
        if varname in self.builtin:
            return self.builtin[varname]
        if varname in self.variables:
            return self.variables[varname]
        raise InvalidCode('Unknown variable "%s".' % varname)

    def is_assignable(self, value: T.Any) -> bool:
        return isinstance(value, (InterpreterObject, dependencies.Dependency,
                                  str, int, list, dict, mesonlib.File))

    def validate_extraction(self, buildtarget: InterpreterObject) -> None:
        raise InterpreterException('validate_extraction is not implemented in this context (please file a bug)')