diff options
author | Daniel Mensinger <daniel@mensinger-ka.de> | 2021-06-10 12:18:06 +0200 |
---|---|---|
committer | Daniel Mensinger <daniel@mensinger-ka.de> | 2021-06-11 10:42:18 +0200 |
commit | ad584f022dbe4dae7fa60254009fe1d2701e0235 (patch) | |
tree | 437f7acbd6877a94056617b7ef8e86f2c9588ce8 /mesonbuild/interpreterbase/interpreterbase.py | |
parent | 07e6e0ca8cff704814e8424726be0c37475fdc16 (diff) | |
download | meson-ad584f022dbe4dae7fa60254009fe1d2701e0235.zip meson-ad584f022dbe4dae7fa60254009fe1d2701e0235.tar.gz meson-ad584f022dbe4dae7fa60254009fe1d2701e0235.tar.bz2 |
interpreter: Move interpreterbase.py into a new package
Diffstat (limited to 'mesonbuild/interpreterbase/interpreterbase.py')
-rw-r--r-- | mesonbuild/interpreterbase/interpreterbase.py | 1583 |
1 files changed, 1583 insertions, 0 deletions
diff --git a/mesonbuild/interpreterbase/interpreterbase.py b/mesonbuild/interpreterbase/interpreterbase.py new file mode 100644 index 0000000..4bdd7e2 --- /dev/null +++ b/mesonbuild/interpreterbase/interpreterbase.py @@ -0,0 +1,1583 @@ +# Copyright 2016-2017 The Meson development team + +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at + +# http://www.apache.org/licenses/LICENSE-2.0 + +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +# This class contains the basic functionality needed to run any interpreter +# or an interpreter-based tool. + +from .. import mparser, mesonlib, mlog +from .. import environment, dependencies + +from functools import wraps +import abc +import collections.abc +import itertools +import os, copy, re +import typing as T + +TV_fw_var = T.Union[str, int, float, bool, list, dict, 'InterpreterObject', 'ObjectHolder'] +TV_fw_args = T.List[T.Union[mparser.BaseNode, TV_fw_var]] +TV_fw_kwargs = T.Dict[str, T.Union[mparser.BaseNode, TV_fw_var]] + +TV_func = T.TypeVar('TV_func', bound=T.Callable[..., T.Any]) + +TYPE_elementary = T.Union[str, int, float, bool] +TYPE_var = T.Union[TYPE_elementary, T.List[T.Any], T.Dict[str, T.Any], 'InterpreterObject', 'ObjectHolder'] +TYPE_nvar = T.Union[TYPE_var, mparser.BaseNode] +TYPE_nkwargs = T.Dict[str, TYPE_nvar] +TYPE_key_resolver = T.Callable[[mparser.BaseNode], str] + +class InterpreterObject: + def __init__(self) -> None: + self.methods = {} # type: T.Dict[str, T.Callable[[T.List[TYPE_nvar], TYPE_nkwargs], TYPE_var]] + # Current node set during a method call. This can be used as location + # when printing a warning message during a method call. + self.current_node = None # type: mparser.BaseNode + + def method_call( + self, + method_name: str, + args: TV_fw_args, + kwargs: TV_fw_kwargs + ) -> TYPE_var: + if method_name in self.methods: + method = self.methods[method_name] + if not getattr(method, 'no-args-flattening', False): + args = flatten(args) + return method(args, kwargs) + raise InvalidCode('Unknown method "%s" in object.' % method_name) + +TV_InterpreterObject = T.TypeVar('TV_InterpreterObject') + +class ObjectHolder(T.Generic[TV_InterpreterObject]): + def __init__(self, obj: TV_InterpreterObject, subproject: str = '') -> None: + self.held_object = obj + self.subproject = subproject + + def __repr__(self) -> str: + return f'<Holder: {self.held_object!r}>' + +class MesonVersionString(str): + pass + +class RangeHolder(InterpreterObject): + def __init__(self, start: int, stop: int, step: int) -> None: + super().__init__() + self.range = range(start, stop, step) + + def __iter__(self) -> T.Iterator[int]: + return iter(self.range) + + def __getitem__(self, key: int) -> int: + return self.range[key] + + def __len__(self) -> int: + return len(self.range) + +# Decorators for method calls. + +def check_stringlist(a: T.Any, msg: str = 'Arguments must be strings.') -> None: + if not isinstance(a, list): + mlog.debug('Not a list:', str(a)) + raise InvalidArguments('Argument not a list.') + if not all(isinstance(s, str) for s in a): + mlog.debug('Element not a string:', str(a)) + raise InvalidArguments(msg) + +def _get_callee_args(wrapped_args: T.Sequence[T.Any], want_subproject: bool = False) -> T.Tuple[T.Any, mparser.BaseNode, TV_fw_args, TV_fw_kwargs, T.Optional[str]]: + s = wrapped_args[0] + n = len(wrapped_args) + # Raise an error if the codepaths are not there + subproject = None # type: T.Optional[str] + if want_subproject and n == 2: + if hasattr(s, 'subproject'): + # Interpreter base types have 2 args: self, node + node = wrapped_args[1] + # args and kwargs are inside the node + args = None + kwargs = None + subproject = s.subproject + elif hasattr(wrapped_args[1], 'subproject'): + # Module objects have 2 args: self, interpreter + node = wrapped_args[1].current_node + # args and kwargs are inside the node + args = None + kwargs = None + subproject = wrapped_args[1].subproject + else: + raise AssertionError(f'Unknown args: {wrapped_args!r}') + elif n == 3: + # Methods on objects (*Holder, MesonMain, etc) have 3 args: self, args, kwargs + node = s.current_node + args = wrapped_args[1] + kwargs = wrapped_args[2] + if want_subproject: + if hasattr(s, 'subproject'): + subproject = s.subproject + elif hasattr(s, 'interpreter'): + subproject = s.interpreter.subproject + elif n == 4: + # Meson functions have 4 args: self, node, args, kwargs + # Module functions have 4 args: self, state, args, kwargs + if isinstance(s, InterpreterBase): + node = wrapped_args[1] + else: + node = wrapped_args[1].current_node + args = wrapped_args[2] + kwargs = wrapped_args[3] + if want_subproject: + if isinstance(s, InterpreterBase): + subproject = s.subproject + else: + subproject = wrapped_args[1].subproject + else: + raise AssertionError(f'Unknown args: {wrapped_args!r}') + # Sometimes interpreter methods are called internally with None instead of + # empty list/dict + args = args if args is not None else [] + kwargs = kwargs if kwargs is not None else {} + return s, node, args, kwargs, subproject + +def flatten(args: T.Union[TYPE_nvar, T.List[TYPE_nvar]]) -> T.List[TYPE_nvar]: + if isinstance(args, mparser.StringNode): + assert isinstance(args.value, str) + return [args.value] + if not isinstance(args, collections.abc.Sequence): + return [args] + result = [] # type: T.List[TYPE_nvar] + for a in args: + if isinstance(a, list): + rest = flatten(a) + result = result + rest + elif isinstance(a, mparser.StringNode): + result.append(a.value) + else: + result.append(a) + return result + +def noPosargs(f: TV_func) -> TV_func: + @wraps(f) + def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: + args = _get_callee_args(wrapped_args)[2] + if args: + raise InvalidArguments('Function does not take positional arguments.') + return f(*wrapped_args, **wrapped_kwargs) + return T.cast(TV_func, wrapped) + +def builtinMethodNoKwargs(f: TV_func) -> TV_func: + @wraps(f) + def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: + node = wrapped_args[0].current_node + method_name = wrapped_args[2] + kwargs = wrapped_args[4] + if kwargs: + mlog.warning(f'Method {method_name!r} does not take keyword arguments.', + 'This will become a hard error in the future', + location=node) + return f(*wrapped_args, **wrapped_kwargs) + return T.cast(TV_func, wrapped) + +def noKwargs(f: TV_func) -> TV_func: + @wraps(f) + def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: + kwargs = _get_callee_args(wrapped_args)[3] + if kwargs: + raise InvalidArguments('Function does not take keyword arguments.') + return f(*wrapped_args, **wrapped_kwargs) + return T.cast(TV_func, wrapped) + +def stringArgs(f: TV_func) -> TV_func: + @wraps(f) + def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: + args = _get_callee_args(wrapped_args)[2] + assert(isinstance(args, list)) + check_stringlist(args) + return f(*wrapped_args, **wrapped_kwargs) + return T.cast(TV_func, wrapped) + +def noArgsFlattening(f: TV_func) -> TV_func: + setattr(f, 'no-args-flattening', True) # noqa: B010 + return f + +def disablerIfNotFound(f: TV_func) -> TV_func: + @wraps(f) + def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: + kwargs = _get_callee_args(wrapped_args)[3] + disabler = kwargs.pop('disabler', False) + ret = f(*wrapped_args, **wrapped_kwargs) + if disabler and not ret.held_object.found(): + return Disabler() + return ret + return T.cast(TV_func, wrapped) + +class permittedKwargs: + + def __init__(self, permitted: T.Set[str]): + self.permitted = permitted # type: T.Set[str] + + def __call__(self, f: TV_func) -> TV_func: + @wraps(f) + def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: + s, node, args, kwargs, _ = _get_callee_args(wrapped_args) + for k in kwargs: + if k not in self.permitted: + mlog.warning(f'''Passed invalid keyword argument "{k}".''', location=node) + mlog.warning('This will become a hard error in the future.') + return f(*wrapped_args, **wrapped_kwargs) + return T.cast(TV_func, wrapped) + + +def typed_pos_args(name: str, *types: T.Union[T.Type, T.Tuple[T.Type, ...]], + varargs: T.Optional[T.Union[T.Type, T.Tuple[T.Type, ...]]] = None, + optargs: T.Optional[T.List[T.Union[T.Type, T.Tuple[T.Type, ...]]]] = None, + min_varargs: int = 0, max_varargs: int = 0) -> T.Callable[..., T.Any]: + """Decorator that types type checking of positional arguments. + + This supports two different models of optional aguments, the first is the + variadic argument model. Variadic arguments are a possibly bounded, + possibly unbounded number of arguments of the same type (unions are + supported). The second is the standard default value model, in this case + a number of optional arguments may be provided, but they are still + ordered, and they may have different types. + + This function does not support mixing variadic and default arguments. + + :name: The name of the decorated function (as displayed in error messages) + :varargs: They type(s) of any variadic arguments the function takes. If + None the function takes no variadic args + :min_varargs: the minimum number of variadic arguments taken + :max_varargs: the maximum number of variadic arguments taken. 0 means unlimited + :optargs: The types of any optional arguments parameters taken. If None + then no optional paramters are taken. + + Some examples of usage blow: + >>> @typed_pos_args('mod.func', str, (str, int)) + ... def func(self, state: ModuleState, args: T.Tuple[str, T.Union[str, int]], kwargs: T.Dict[str, T.Any]) -> T.Any: + ... pass + + >>> @typed_pos_args('method', str, varargs=str) + ... def method(self, node: BaseNode, args: T.Tuple[str, T.List[str]], kwargs: T.Dict[str, T.Any]) -> T.Any: + ... pass + + >>> @typed_pos_args('method', varargs=str, min_varargs=1) + ... def method(self, node: BaseNode, args: T.Tuple[T.List[str]], kwargs: T.Dict[str, T.Any]) -> T.Any: + ... pass + + >>> @typed_pos_args('method', str, optargs=[(str, int), str]) + ... def method(self, node: BaseNode, args: T.Tuple[str, T.Optional[T.Union[str, int]], T.Optional[str]], kwargs: T.Dict[str, T.Any]) -> T.Any: + ... pass + + When should you chose `typed_pos_args('name', varargs=str, + min_varargs=1)` vs `typed_pos_args('name', str, varargs=str)`? + + The answer has to do with the semantics of the function, if all of the + inputs are the same type (such as with `files()`) then the former is + correct, all of the arguments are string names of files. If the first + argument is something else the it should be separated. + """ + def inner(f: TV_func) -> TV_func: + + @wraps(f) + def wrapper(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: + args = _get_callee_args(wrapped_args)[2] + + # These are implementation programming errors, end users should never see them. + assert isinstance(args, list), args + assert max_varargs >= 0, 'max_varags cannot be negative' + assert min_varargs >= 0, 'min_varags cannot be negative' + assert optargs is None or varargs is None, \ + 'varargs and optargs not supported together as this would be ambiguous' + + num_args = len(args) + num_types = len(types) + a_types = types + + if varargs: + min_args = num_types + min_varargs + max_args = num_types + max_varargs + if max_varargs == 0 and num_args < min_args: + raise InvalidArguments(f'{name} takes at least {min_args} arguments, but got {num_args}.') + elif max_varargs != 0 and (num_args < min_args or num_args > max_args): + raise InvalidArguments(f'{name} takes between {min_args} and {max_args} arguments, but got {num_args}.') + elif optargs: + if num_args < num_types: + raise InvalidArguments(f'{name} takes at least {num_types} arguments, but got {num_args}.') + elif num_args > num_types + len(optargs): + raise InvalidArguments(f'{name} takes at most {num_types + len(optargs)} arguments, but got {num_args}.') + # Add the number of positional arguments required + if num_args > num_types: + diff = num_args - num_types + a_types = tuple(list(types) + list(optargs[:diff])) + elif num_args != num_types: + raise InvalidArguments(f'{name} takes exactly {num_types} arguments, but got {num_args}.') + + for i, (arg, type_) in enumerate(itertools.zip_longest(args, a_types, fillvalue=varargs), start=1): + if not isinstance(arg, type_): + if isinstance(type_, tuple): + shouldbe = 'one of: {}'.format(", ".join(f'"{t.__name__}"' for t in type_)) + else: + shouldbe = f'"{type_.__name__}"' + raise InvalidArguments(f'{name} argument {i} was of type "{type(arg).__name__}" but should have been {shouldbe}') + + # Ensure that we're actually passing a tuple. + # Depending on what kind of function we're calling the length of + # wrapped_args can vary. + nargs = list(wrapped_args) + i = nargs.index(args) + if varargs: + # if we have varargs we need to split them into a separate + # tuple, as python's typing doesn't understand tuples with + # fixed elements and variadic elements, only one or the other. + # so in that case we need T.Tuple[int, str, float, T.Tuple[str, ...]] + pos = args[:len(types)] + var = list(args[len(types):]) + pos.append(var) + nargs[i] = tuple(pos) + elif optargs: + if num_args < num_types + len(optargs): + diff = num_types + len(optargs) - num_args + nargs[i] = tuple(list(args) + [None] * diff) + else: + nargs[i] = args + else: + nargs[i] = tuple(args) + return f(*nargs, **wrapped_kwargs) + + return T.cast(TV_func, wrapper) + return inner + + +class ContainerTypeInfo: + + """Container information for keyword arguments. + + For keyword arguments that are containers (list or dict), this class encodes + that information. + + :param container: the type of container + :param contains: the types the container holds + :param pairs: if the container is supposed to be of even length. + This is mainly used for interfaces that predate the addition of dictionaries, and use + `[key, value, key2, value2]` format. + :param allow_empty: Whether this container is allowed to be empty + There are some cases where containers not only must be passed, but must + not be empty, and other cases where an empty container is allowed. + """ + + def __init__(self, container: T.Type, contains: T.Union[T.Type, T.Tuple[T.Type, ...]], *, + pairs: bool = False, allow_empty: bool = True) : + self.container = container + self.contains = contains + self.pairs = pairs + self.allow_empty = allow_empty + + def check(self, value: T.Any) -> T.Optional[str]: + """Check that a value is valid. + + :param value: A value to check + :return: If there is an error then a string message, otherwise None + """ + if not isinstance(value, self.container): + return f'container type was "{type(value).__name__}", but should have been "{self.container.__name__}"' + iter_ = iter(value.values()) if isinstance(value, dict) else iter(value) + for each in iter_: + if not isinstance(each, self.contains): + if isinstance(self.contains, tuple): + shouldbe = 'one of: {}'.format(", ".join(f'"{t.__name__}"' for t in self.contains)) + else: + shouldbe = f'"{self.contains.__name__}"' + return f'contained a value of type "{type(each).__name__}" but should have been {shouldbe}' + if self.pairs and len(value) % 2 != 0: + return 'container should be of even length, but is not' + if not value and not self.allow_empty: + return 'container is empty, but not allowed to be' + return None + + +_T = T.TypeVar('_T') + + +class KwargInfo(T.Generic[_T]): + + """A description of a keyword argument to a meson function + + This is used to describe a value to the :func:typed_kwargs function. + + :param name: the name of the parameter + :param types: A type or tuple of types that are allowed, or a :class:ContainerType + :param required: Whether this is a required keyword argument. defaults to False + :param listify: If true, then the argument will be listified before being + checked. This is useful for cases where the Meson DSL allows a scalar or + a container, but internally we only want to work with containers + :param default: A default value to use if this isn't set. defaults to None, + this may be safely set to a mutable type, as long as that type does not + itself contain mutable types, typed_kwargs will copy the default + :param since: Meson version in which this argument has been added. defaults to None + :param deprecated: Meson version in which this argument has been deprecated. defaults to None + :param validator: A callable that does additional validation. This is mainly + intended for cases where a string is expected, but only a few specific + values are accepted. Must return None if the input is valid, or a + message if the input is invalid + :param convertor: A callable that converts the raw input value into a + different type. This is intended for cases such as the meson DSL using a + string, but the implementation using an Enum. This should not do + validation, just converstion. + """ + + def __init__(self, name: str, types: T.Union[T.Type[_T], T.Tuple[T.Type[_T], ...], ContainerTypeInfo], + *, required: bool = False, listify: bool = False, + default: T.Optional[_T] = None, + since: T.Optional[str] = None, + deprecated: T.Optional[str] = None, + validator: T.Optional[T.Callable[[_T], T.Optional[str]]] = None, + convertor: T.Optional[T.Callable[[_T], TYPE_nvar]] = None): + self.name = name + self.types = types + self.required = required + self.listify = listify + self.default = default + self.since = since + self.deprecated = deprecated + self.validator = validator + self.convertor = convertor + + +def typed_kwargs(name: str, *types: KwargInfo) -> T.Callable[..., T.Any]: + """Decorator for type checking keyword arguments. + + Used to wrap a meson DSL implementation function, where it checks various + things about keyword arguments, including the type, and various other + information. For non-required values it sets the value to a default, which + means the value will always be provided. + + If type tyhpe is a :class:ContainerTypeInfo, then the default value will be + passed as an argument to the container initializer, making a shallow copy + + :param name: the name of the function, including the object it's attached ot + (if applicable) + :param *types: KwargInfo entries for each keyword argument. + """ + def inner(f: TV_func) -> TV_func: + + @wraps(f) + def wrapper(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: + kwargs, subproject = _get_callee_args(wrapped_args, want_subproject=True)[3:5] + + all_names = {t.name for t in types} + unknowns = set(kwargs).difference(all_names) + if unknowns: + # Warn about unknown argumnts, delete them and continue. This + # keeps current behavior + ustr = ', '.join([f'"{u}"' for u in sorted(unknowns)]) + mlog.warning(f'{name} got unknown keyword arguments {ustr}') + for u in unknowns: + del kwargs[u] + + for info in types: + value = kwargs.get(info.name) + if value is not None: + if info.since: + feature_name = info.name + ' arg in ' + name + FeatureNew.single_use(feature_name, info.since, subproject) + if info.deprecated: + feature_name = info.name + ' arg in ' + name + FeatureDeprecated.single_use(feature_name, info.deprecated, subproject) + if info.listify: + kwargs[info.name] = value = mesonlib.listify(value) + if isinstance(info.types, ContainerTypeInfo): + msg = info.types.check(value) + if msg is not None: + raise InvalidArguments(f'{name} keyword argument "{info.name}" {msg}') + else: + if not isinstance(value, info.types): + if isinstance(info.types, tuple): + shouldbe = 'one of: {}'.format(", ".join(f'"{t.__name__}"' for t in info.types)) + else: + shouldbe = f'"{info.types.__name__}"' + raise InvalidArguments(f'{name} keyword argument "{info.name}"" was of type "{type(value).__name__}" but should have been {shouldbe}') + + if info.validator is not None: + msg = info.validator(value) + if msg is not None: + raise InvalidArguments(f'{name} keyword argument "{info.name}" {msg}') + elif info.required: + raise InvalidArguments(f'{name} is missing required keyword argument "{info.name}"') + else: + # set the value to the default, this ensuring all kwargs are present + # This both simplifies the typing checking and the usage + # Create a shallow copy of the container (and do a type + # conversion if necessary). This allows mutable types to + # be used safely as default values + if isinstance(info.types, ContainerTypeInfo): + kwargs[info.name] = info.types.container(info.default) + else: + kwargs[info.name] = info.default + + if info.convertor: + kwargs[info.name] = info.convertor(kwargs[info.name]) + + return f(*wrapped_args, **wrapped_kwargs) + return T.cast(TV_func, wrapper) + return inner + + +class FeatureCheckBase(metaclass=abc.ABCMeta): + "Base class for feature version checks" + + # In python 3.6 we can just forward declare this, but in 3.5 we can't + # This will be overwritten by the subclasses by necessity + feature_registry = {} # type: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[str]]]] + + def __init__(self, feature_name: str, version: str, extra_message: T.Optional[str] = None): + self.feature_name = feature_name # type: str + self.feature_version = version # type: str + self.extra_message = extra_message or '' # type: str + + @staticmethod + def get_target_version(subproject: str) -> str: + # Don't do any checks if project() has not been parsed yet + if subproject not in mesonlib.project_meson_versions: + return '' + return mesonlib.project_meson_versions[subproject] + + @staticmethod + @abc.abstractmethod + def check_version(target_version: str, feature_Version: str) -> bool: + pass + + def use(self, subproject: str) -> None: + tv = self.get_target_version(subproject) + # No target version + if tv == '': + return + # Target version is new enough + if self.check_version(tv, self.feature_version): + return + # Feature is too new for target version, register it + if subproject not in self.feature_registry: + self.feature_registry[subproject] = {self.feature_version: set()} + register = self.feature_registry[subproject] + if self.feature_version not in register: + register[self.feature_version] = set() + if self.feature_name in register[self.feature_version]: + # Don't warn about the same feature multiple times + # FIXME: This is needed to prevent duplicate warnings, but also + # means we won't warn about a feature used in multiple places. + return + register[self.feature_version].add(self.feature_name) + self.log_usage_warning(tv) + + @classmethod + def report(cls, subproject: str) -> None: + if subproject not in cls.feature_registry: + return + warning_str = cls.get_warning_str_prefix(cls.get_target_version(subproject)) + fv = cls.feature_registry[subproject] + for version in sorted(fv.keys()): + warning_str += '\n * {}: {}'.format(version, fv[version]) + mlog.warning(warning_str) + + def log_usage_warning(self, tv: str) -> None: + raise InterpreterException('log_usage_warning not implemented') + + @staticmethod + def get_warning_str_prefix(tv: str) -> str: + raise InterpreterException('get_warning_str_prefix not implemented') + + def __call__(self, f: TV_func) -> TV_func: + @wraps(f) + def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: + subproject = _get_callee_args(wrapped_args, want_subproject=True)[4] + if subproject is None: + raise AssertionError(f'{wrapped_args!r}') + self.use(subproject) + return f(*wrapped_args, **wrapped_kwargs) + return T.cast(TV_func, wrapped) + + @classmethod + def single_use(cls, feature_name: str, version: str, subproject: str, + extra_message: T.Optional[str] = None) -> None: + """Oneline version that instantiates and calls use().""" + cls(feature_name, version, extra_message).use(subproject) + + +class FeatureNew(FeatureCheckBase): + """Checks for new features""" + + # Class variable, shared across all instances + # + # Format: {subproject: {feature_version: set(feature_names)}} + feature_registry = {} # type: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[str]]]] + + @staticmethod + def check_version(target_version: str, feature_version: str) -> bool: + return mesonlib.version_compare_condition_with_min(target_version, feature_version) + + @staticmethod + def get_warning_str_prefix(tv: str) -> str: + return f'Project specifies a minimum meson_version \'{tv}\' but uses features which were added in newer versions:' + + def log_usage_warning(self, tv: str) -> None: + args = [ + 'Project targeting', f"'{tv}'", + 'but tried to use feature introduced in', + f"'{self.feature_version}':", + f'{self.feature_name}.', + ] + if self.extra_message: + args.append(self.extra_message) + mlog.warning(*args) + +class FeatureDeprecated(FeatureCheckBase): + """Checks for deprecated features""" + + # Class variable, shared across all instances + # + # Format: {subproject: {feature_version: set(feature_names)}} + feature_registry = {} # type: T.ClassVar[T.Dict[str, T.Dict[str, T.Set[str]]]] + + @staticmethod + def check_version(target_version: str, feature_version: str) -> bool: + # For deprecation checks we need to return the inverse of FeatureNew checks + return not mesonlib.version_compare_condition_with_min(target_version, feature_version) + + @staticmethod + def get_warning_str_prefix(tv: str) -> str: + return 'Deprecated features used:' + + def log_usage_warning(self, tv: str) -> None: + args = [ + 'Project targeting', f"'{tv}'", + 'but tried to use feature deprecated since', + f"'{self.feature_version}':", + f'{self.feature_name}.', + ] + if self.extra_message: + args.append(self.extra_message) + mlog.warning(*args) + + +class FeatureCheckKwargsBase(metaclass=abc.ABCMeta): + + @property + @abc.abstractmethod + def feature_check_class(self) -> T.Type[FeatureCheckBase]: + pass + + def __init__(self, feature_name: str, feature_version: str, + kwargs: T.List[str], extra_message: T.Optional[str] = None): + self.feature_name = feature_name + self.feature_version = feature_version + self.kwargs = kwargs + self.extra_message = extra_message + + def __call__(self, f: TV_func) -> TV_func: + @wraps(f) + def wrapped(*wrapped_args: T.Any, **wrapped_kwargs: T.Any) -> T.Any: + kwargs, subproject = _get_callee_args(wrapped_args, want_subproject=True)[3:5] + if subproject is None: + raise AssertionError(f'{wrapped_args!r}') + for arg in self.kwargs: + if arg not in kwargs: + continue + name = arg + ' arg in ' + self.feature_name + self.feature_check_class.single_use( + name, self.feature_version, subproject, self.extra_message) + return f(*wrapped_args, **wrapped_kwargs) + return T.cast(TV_func, wrapped) + +class FeatureNewKwargs(FeatureCheckKwargsBase): + feature_check_class = FeatureNew + +class FeatureDeprecatedKwargs(FeatureCheckKwargsBase): + feature_check_class = FeatureDeprecated + + +class InterpreterException(mesonlib.MesonException): + pass + +class InvalidCode(InterpreterException): + pass + +class InvalidArguments(InterpreterException): + pass + +class SubdirDoneRequest(BaseException): + pass + +class ContinueRequest(BaseException): + pass + +class BreakRequest(BaseException): + pass + +class MutableInterpreterObject(InterpreterObject): + def __init__(self) -> None: + super().__init__() + +class Disabler(InterpreterObject): + def __init__(self) -> None: + super().__init__() + self.methods.update({'found': self.found_method}) + + def found_method(self, args: T.Sequence[T.Any], kwargs: T.Dict[str, T.Any]) -> bool: + return False + +def is_disabler(i: T.Any) -> bool: + return isinstance(i, Disabler) + +def is_arg_disabled(arg: T.Any) -> bool: + if is_disabler(arg): + return True + if isinstance(arg, list): + for i in arg: + if is_arg_disabled(i): + return True + return False + +def is_disabled(args: T.Sequence[T.Any], kwargs: T.Dict[str, T.Any]) -> bool: + for i in args: + if is_arg_disabled(i): + return True + for i in kwargs.values(): + if is_arg_disabled(i): + return True + return False + +def default_resolve_key(key: mparser.BaseNode) -> str: + if not isinstance(key, mparser.IdNode): + raise InterpreterException('Invalid kwargs format.') + return key.value + +class InterpreterBase: + elementary_types = (int, float, str, bool, list) + + def __init__(self, source_root: str, subdir: str, subproject: str): + self.source_root = source_root + self.funcs = {} # type: T.Dict[str, T.Callable[[mparser.BaseNode, T.List[TYPE_nvar], T.Dict[str, TYPE_nvar]], TYPE_var]] + self.builtin = {} # type: T.Dict[str, InterpreterObject] + self.subdir = subdir + self.root_subdir = subdir + self.subproject = subproject + self.variables = {} # type: T.Dict[str, TYPE_var] + self.argument_depth = 0 + self.current_lineno = -1 + # Current node set during a function call. This can be used as location + # when printing a warning message during a method call. + self.current_node = None # type: mparser.BaseNode + # This is set to `version_string` when this statement is evaluated: + # meson.version().compare_version(version_string) + # If it was part of a if-clause, it is used to temporally override the + # current meson version target within that if-block. + self.tmp_meson_version = None # type: T.Optional[str] + + def load_root_meson_file(self) -> None: + mesonfile = os.path.join(self.source_root, self.subdir, environment.build_filename) + if not os.path.isfile(mesonfile): + raise InvalidArguments('Missing Meson file in %s' % mesonfile) + with open(mesonfile, encoding='utf8') as mf: + code = mf.read() + if code.isspace(): + raise InvalidCode('Builder file is empty.') + assert(isinstance(code, str)) + try: + self.ast = mparser.Parser(code, mesonfile).parse() + except mesonlib.MesonException as me: + me.file = mesonfile + raise me + + def join_path_strings(self, args: T.Sequence[str]) -> str: + return os.path.join(*args).replace('\\', '/') + + def parse_project(self) -> None: + """ + Parses project() and initializes languages, compilers etc. Do this + early because we need this before we parse the rest of the AST. + """ + self.evaluate_codeblock(self.ast, end=1) + + def sanity_check_ast(self) -> None: + if not isinstance(self.ast, mparser.CodeBlockNode): + raise InvalidCode('AST is of invalid type. Possibly a bug in the parser.') + if not self.ast.lines: + raise InvalidCode('No statements in code.') + first = self.ast.lines[0] + if not isinstance(first, mparser.FunctionNode) or first.func_name != 'project': + raise InvalidCode('First statement must be a call to project') + + def run(self) -> None: + # Evaluate everything after the first line, which is project() because + # we already parsed that in self.parse_project() + try: + self.evaluate_codeblock(self.ast, start=1) + except SubdirDoneRequest: + pass + + def evaluate_codeblock(self, node: mparser.CodeBlockNode, start: int = 0, end: T.Optional[int] = None) -> None: + if node is None: + return + if not isinstance(node, mparser.CodeBlockNode): + e = InvalidCode('Tried to execute a non-codeblock. Possibly a bug in the parser.') + e.lineno = node.lineno + e.colno = node.colno + raise e + statements = node.lines[start:end] + i = 0 + while i < len(statements): + cur = statements[i] + try: + self.current_lineno = cur.lineno + self.evaluate_statement(cur) + except Exception as e: + if getattr(e, 'lineno', None) is None: + # We are doing the equivalent to setattr here and mypy does not like it + e.lineno = cur.lineno # type: ignore + e.colno = cur.colno # type: ignore + e.file = os.path.join(self.source_root, self.subdir, environment.build_filename) # type: ignore + raise e + i += 1 # In THE FUTURE jump over blocks and stuff. + + def evaluate_statement(self, cur: mparser.BaseNode) -> T.Optional[TYPE_var]: + self.current_node = cur + if isinstance(cur, mparser.FunctionNode): + return self.function_call(cur) + elif isinstance(cur, mparser.AssignmentNode): + self.assignment(cur) + elif isinstance(cur, mparser.MethodNode): + return self.method_call(cur) + elif isinstance(cur, mparser.StringNode): + return cur.value + elif isinstance(cur, mparser.BooleanNode): + return cur.value + elif isinstance(cur, mparser.IfClauseNode): + return self.evaluate_if(cur) + elif isinstance(cur, mparser.IdNode): + return self.get_variable(cur.value) + elif isinstance(cur, mparser.ComparisonNode): + return self.evaluate_comparison(cur) + elif isinstance(cur, mparser.ArrayNode): + return self.evaluate_arraystatement(cur) + elif isinstance(cur, mparser.DictNode): + return self.evaluate_dictstatement(cur) + elif isinstance(cur, mparser.NumberNode): + return cur.value + elif isinstance(cur, mparser.AndNode): + return self.evaluate_andstatement(cur) + elif isinstance(cur, mparser.OrNode): + return self.evaluate_orstatement(cur) + elif isinstance(cur, mparser.NotNode): + return self.evaluate_notstatement(cur) + elif isinstance(cur, mparser.UMinusNode): + return self.evaluate_uminusstatement(cur) + elif isinstance(cur, mparser.ArithmeticNode): + return self.evaluate_arithmeticstatement(cur) + elif isinstance(cur, mparser.ForeachClauseNode): + self.evaluate_foreach(cur) + elif isinstance(cur, mparser.PlusAssignmentNode): + self.evaluate_plusassign(cur) + elif isinstance(cur, mparser.IndexNode): + return self.evaluate_indexing(cur) + elif isinstance(cur, mparser.TernaryNode): + return self.evaluate_ternary(cur) + elif isinstance(cur, mparser.FormatStringNode): + return self.evaluate_fstring(cur) + elif isinstance(cur, mparser.ContinueNode): + raise ContinueRequest() + elif isinstance(cur, mparser.BreakNode): + raise BreakRequest() + elif isinstance(cur, self.elementary_types): + return cur + else: + raise InvalidCode("Unknown statement.") + return None + + def evaluate_arraystatement(self, cur: mparser.ArrayNode) -> list: + (arguments, kwargs) = self.reduce_arguments(cur.args) + if len(kwargs) > 0: + raise InvalidCode('Keyword arguments are invalid in array construction.') + return arguments + + @FeatureNew('dict', '0.47.0') + def evaluate_dictstatement(self, cur: mparser.DictNode) -> TYPE_nkwargs: + def resolve_key(key: mparser.BaseNode) -> str: + if not isinstance(key, mparser.StringNode): + FeatureNew.single_use('Dictionary entry using non literal key', '0.53.0', self.subproject) + str_key = self.evaluate_statement(key) + if not isinstance(str_key, str): + raise InvalidArguments('Key must be a string') + return str_key + arguments, kwargs = self.reduce_arguments(cur.args, key_resolver=resolve_key, duplicate_key_error='Duplicate dictionary key: {}') + assert not arguments + return kwargs + + def evaluate_notstatement(self, cur: mparser.NotNode) -> T.Union[bool, Disabler]: + v = self.evaluate_statement(cur.value) + if isinstance(v, Disabler): + return v + if not isinstance(v, bool): + raise InterpreterException('Argument to "not" is not a boolean.') + return not v + + def evaluate_if(self, node: mparser.IfClauseNode) -> T.Optional[Disabler]: + assert(isinstance(node, mparser.IfClauseNode)) + for i in node.ifs: + # Reset self.tmp_meson_version to know if it gets set during this + # statement evaluation. + self.tmp_meson_version = None + result = self.evaluate_statement(i.condition) + if isinstance(result, Disabler): + return result + if not(isinstance(result, bool)): + raise InvalidCode(f'If clause {result!r} does not evaluate to true or false.') + if result: + prev_meson_version = mesonlib.project_meson_versions[self.subproject] + if self.tmp_meson_version: + mesonlib.project_meson_versions[self.subproject] = self.tmp_meson_version + try: + self.evaluate_codeblock(i.block) + finally: + mesonlib.project_meson_versions[self.subproject] = prev_meson_version + return None + if not isinstance(node.elseblock, mparser.EmptyNode): + self.evaluate_codeblock(node.elseblock) + return None + + def validate_comparison_types(self, val1: T.Any, val2: T.Any) -> bool: + if type(val1) != type(val2): + return False + return True + + def evaluate_in(self, val1: T.Any, val2: T.Any) -> bool: + if not isinstance(val1, (str, int, float, ObjectHolder)): + raise InvalidArguments('lvalue of "in" operator must be a string, integer, float, or object') + if not isinstance(val2, (list, dict)): + raise InvalidArguments('rvalue of "in" operator must be an array or a dict') + return val1 in val2 + + def evaluate_comparison(self, node: mparser.ComparisonNode) -> T.Union[bool, Disabler]: + val1 = self.evaluate_statement(node.left) + if isinstance(val1, Disabler): + return val1 + val2 = self.evaluate_statement(node.right) + if isinstance(val2, Disabler): + return val2 + if node.ctype == 'in': + return self.evaluate_in(val1, val2) + elif node.ctype == 'notin': + return not self.evaluate_in(val1, val2) + valid = self.validate_comparison_types(val1, val2) + # Ordering comparisons of different types isn't allowed since PR #1810 + # (0.41.0). Since PR #2884 we also warn about equality comparisons of + # different types, which will one day become an error. + if not valid and (node.ctype == '==' or node.ctype == '!='): + mlog.warning('''Trying to compare values of different types ({}, {}) using {}. +The result of this is undefined and will become a hard error in a future Meson release.''' + .format(type(val1).__name__, type(val2).__name__, node.ctype), location=node) + if node.ctype == '==': + return val1 == val2 + elif node.ctype == '!=': + return val1 != val2 + elif not valid: + raise InterpreterException( + 'Values of different types ({}, {}) cannot be compared using {}.'.format(type(val1).__name__, + type(val2).__name__, + node.ctype)) + elif not isinstance(val1, self.elementary_types): + raise InterpreterException('{} can only be compared for equality.'.format(getattr(node.left, 'value', '<ERROR>'))) + elif not isinstance(val2, self.elementary_types): + raise InterpreterException('{} can only be compared for equality.'.format(getattr(node.right, 'value', '<ERROR>'))) + # Use type: ignore because mypy will complain that we are comparing two Unions, + # but we actually guarantee earlier that both types are the same + elif node.ctype == '<': + return val1 < val2 # type: ignore + elif node.ctype == '<=': + return val1 <= val2 # type: ignore + elif node.ctype == '>': + return val1 > val2 # type: ignore + elif node.ctype == '>=': + return val1 >= val2 # type: ignore + else: + raise InvalidCode('You broke my compare eval.') + + def evaluate_andstatement(self, cur: mparser.AndNode) -> T.Union[bool, Disabler]: + l = self.evaluate_statement(cur.left) + if isinstance(l, Disabler): + return l + if not isinstance(l, bool): + raise InterpreterException('First argument to "and" is not a boolean.') + if not l: + return False + r = self.evaluate_statement(cur.right) + if isinstance(r, Disabler): + return r + if not isinstance(r, bool): + raise InterpreterException('Second argument to "and" is not a boolean.') + return r + + def evaluate_orstatement(self, cur: mparser.OrNode) -> T.Union[bool, Disabler]: + l = self.evaluate_statement(cur.left) + if isinstance(l, Disabler): + return l + if not isinstance(l, bool): + raise InterpreterException('First argument to "or" is not a boolean.') + if l: + return True + r = self.evaluate_statement(cur.right) + if isinstance(r, Disabler): + return r + if not isinstance(r, bool): + raise InterpreterException('Second argument to "or" is not a boolean.') + return r + + def evaluate_uminusstatement(self, cur: mparser.UMinusNode) -> T.Union[int, Disabler]: + v = self.evaluate_statement(cur.value) + if isinstance(v, Disabler): + return v + if not isinstance(v, int): + raise InterpreterException('Argument to negation is not an integer.') + return -v + + @FeatureNew('/ with string arguments', '0.49.0') + def evaluate_path_join(self, l: str, r: str) -> str: + if not isinstance(l, str): + raise InvalidCode('The division operator can only append to a string.') + if not isinstance(r, str): + raise InvalidCode('The division operator can only append a string.') + return self.join_path_strings((l, r)) + + def evaluate_division(self, l: T.Any, r: T.Any) -> T.Union[int, str]: + if isinstance(l, str) or isinstance(r, str): + return self.evaluate_path_join(l, r) + if isinstance(l, int) and isinstance(r, int): + if r == 0: + raise InvalidCode('Division by zero.') + return l // r + raise InvalidCode('Division works only with strings or integers.') + + def evaluate_arithmeticstatement(self, cur: mparser.ArithmeticNode) -> T.Union[int, str, dict, list, Disabler]: + l = self.evaluate_statement(cur.left) + if isinstance(l, Disabler): + return l + r = self.evaluate_statement(cur.right) + if isinstance(r, Disabler): + return r + + if cur.operation == 'add': + if isinstance(l, dict) and isinstance(r, dict): + return {**l, **r} + try: + # MyPy error due to handling two Unions (we are catching all exceptions anyway) + return l + r # type: ignore + except Exception as e: + raise InvalidCode('Invalid use of addition: ' + str(e)) + elif cur.operation == 'sub': + if not isinstance(l, int) or not isinstance(r, int): + raise InvalidCode('Subtraction works only with integers.') + return l - r + elif cur.operation == 'mul': + if not isinstance(l, int) or not isinstance(r, int): + raise InvalidCode('Multiplication works only with integers.') + return l * r + elif cur.operation == 'div': + return self.evaluate_division(l, r) + elif cur.operation == 'mod': + if not isinstance(l, int) or not isinstance(r, int): + raise InvalidCode('Modulo works only with integers.') + return l % r + else: + raise InvalidCode('You broke me.') + + def evaluate_ternary(self, node: mparser.TernaryNode) -> TYPE_var: + assert(isinstance(node, mparser.TernaryNode)) + result = self.evaluate_statement(node.condition) + if isinstance(result, Disabler): + return result + if not isinstance(result, bool): + raise InterpreterException('Ternary condition is not boolean.') + if result: + return self.evaluate_statement(node.trueblock) + else: + return self.evaluate_statement(node.falseblock) + + @FeatureNew('format strings', '0.58.0') + def evaluate_fstring(self, node: mparser.FormatStringNode) -> TYPE_var: + assert(isinstance(node, mparser.FormatStringNode)) + + def replace(match: T.Match[str]) -> str: + var = str(match.group(1)) + try: + val = self.variables[var] + if not isinstance(val, (str, int, float, bool)): + raise InvalidCode(f'Identifier "{var}" does not name a formattable variable ' + + '(has to be an integer, a string, a floating point number or a boolean).') + + return str(val) + except KeyError: + raise InvalidCode(f'Identifier "{var}" does not name a variable.') + + return re.sub(r'@([_a-zA-Z][_0-9a-zA-Z]*)@', replace, node.value) + + def evaluate_foreach(self, node: mparser.ForeachClauseNode) -> None: + assert(isinstance(node, mparser.ForeachClauseNode)) + items = self.evaluate_statement(node.items) + + if isinstance(items, (list, RangeHolder)): + if len(node.varnames) != 1: + raise InvalidArguments('Foreach on array does not unpack') + varname = node.varnames[0] + for item in items: + self.set_variable(varname, item) + try: + self.evaluate_codeblock(node.block) + except ContinueRequest: + continue + except BreakRequest: + break + elif isinstance(items, dict): + if len(node.varnames) != 2: + raise InvalidArguments('Foreach on dict unpacks key and value') + for key, value in sorted(items.items()): + self.set_variable(node.varnames[0], key) + self.set_variable(node.varnames[1], value) + try: + self.evaluate_codeblock(node.block) + except ContinueRequest: + continue + except BreakRequest: + break + else: + raise InvalidArguments('Items of foreach loop must be an array or a dict') + + def evaluate_plusassign(self, node: mparser.PlusAssignmentNode) -> None: + assert(isinstance(node, mparser.PlusAssignmentNode)) + varname = node.var_name + addition = self.evaluate_statement(node.value) + + # Remember that all variables are immutable. We must always create a + # full new variable and then assign it. + old_variable = self.get_variable(varname) + new_value = None # type: T.Union[str, int, float, bool, dict, list] + if isinstance(old_variable, str): + if not isinstance(addition, str): + raise InvalidArguments('The += operator requires a string on the right hand side if the variable on the left is a string') + new_value = old_variable + addition + elif isinstance(old_variable, int): + if not isinstance(addition, int): + raise InvalidArguments('The += operator requires an int on the right hand side if the variable on the left is an int') + new_value = old_variable + addition + elif isinstance(old_variable, list): + if isinstance(addition, list): + new_value = old_variable + addition + else: + new_value = old_variable + [addition] + elif isinstance(old_variable, dict): + if not isinstance(addition, dict): + raise InvalidArguments('The += operator requires a dict on the right hand side if the variable on the left is a dict') + new_value = {**old_variable, **addition} + # Add other data types here. + else: + raise InvalidArguments('The += operator currently only works with arrays, dicts, strings or ints') + self.set_variable(varname, new_value) + + def evaluate_indexing(self, node: mparser.IndexNode) -> TYPE_var: + assert(isinstance(node, mparser.IndexNode)) + iobject = self.evaluate_statement(node.iobject) + if isinstance(iobject, Disabler): + return iobject + if not hasattr(iobject, '__getitem__'): + raise InterpreterException( + 'Tried to index an object that doesn\'t support indexing.') + index = self.evaluate_statement(node.index) + + if isinstance(iobject, dict): + if not isinstance(index, str): + raise InterpreterException('Key is not a string') + try: + # The cast is required because we don't have recursive types... + return T.cast(TYPE_var, iobject[index]) + except KeyError: + raise InterpreterException('Key %s is not in dict' % index) + else: + if not isinstance(index, int): + raise InterpreterException('Index value is not an integer.') + try: + # Ignore the MyPy error, since we don't know all indexable types here + # and we handle non indexable types with an exception + # TODO maybe find a better solution + return iobject[index] # type: ignore + except IndexError: + # We are already checking for the existence of __getitem__, so this should be save + raise InterpreterException('Index %d out of bounds of array of size %d.' % (index, len(iobject))) # type: ignore + + def function_call(self, node: mparser.FunctionNode) -> T.Optional[TYPE_var]: + func_name = node.func_name + (posargs, kwargs) = self.reduce_arguments(node.args) + if is_disabled(posargs, kwargs) and func_name not in {'get_variable', 'set_variable', 'is_disabler'}: + return Disabler() + if func_name in self.funcs: + func = self.funcs[func_name] + func_args = posargs # type: T.Any + if not getattr(func, 'no-args-flattening', False): + func_args = flatten(posargs) + return func(node, func_args, kwargs) + else: + self.unknown_function_called(func_name) + return None + + def method_call(self, node: mparser.MethodNode) -> TYPE_var: + invokable = node.source_object + if isinstance(invokable, mparser.IdNode): + object_name = invokable.value + obj = self.get_variable(object_name) + else: + obj = self.evaluate_statement(invokable) + method_name = node.name + (args, kwargs) = self.reduce_arguments(node.args) + if is_disabled(args, kwargs): + return Disabler() + if isinstance(obj, str): + return self.string_method_call(obj, method_name, args, kwargs) + if isinstance(obj, bool): + return self.bool_method_call(obj, method_name, args, kwargs) + if isinstance(obj, int): + return self.int_method_call(obj, method_name, args, kwargs) + if isinstance(obj, list): + return self.array_method_call(obj, method_name, args, kwargs) + if isinstance(obj, dict): + return self.dict_method_call(obj, method_name, args, kwargs) + if isinstance(obj, mesonlib.File): + raise InvalidArguments('File object "%s" is not callable.' % obj) + if not isinstance(obj, InterpreterObject): + raise InvalidArguments('Variable "%s" is not callable.' % object_name) + # Special case. This is the only thing you can do with a disabler + # object. Every other use immediately returns the disabler object. + if isinstance(obj, Disabler): + if method_name == 'found': + return False + else: + return Disabler() + if method_name == 'extract_objects': + if not isinstance(obj, ObjectHolder): + raise InvalidArguments(f'Invalid operation "extract_objects" on variable "{object_name}"') + self.validate_extraction(obj.held_object) + obj.current_node = node + return obj.method_call(method_name, args, kwargs) + + @builtinMethodNoKwargs + def bool_method_call(self, obj: bool, method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> T.Union[str, int]: + if method_name == 'to_string': + if not posargs: + if obj: + return 'true' + else: + return 'false' + elif len(posargs) == 2 and isinstance(posargs[0], str) and isinstance(posargs[1], str): + if obj: + return posargs[0] + else: + return posargs[1] + else: + raise InterpreterException('bool.to_string() must have either no arguments or exactly two string arguments that signify what values to return for true and false.') + elif method_name == 'to_int': + if obj: + return 1 + else: + return 0 + else: + raise InterpreterException('Unknown method "%s" for a boolean.' % method_name) + + @builtinMethodNoKwargs + def int_method_call(self, obj: int, method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> T.Union[str, bool]: + if method_name == 'is_even': + if not posargs: + return obj % 2 == 0 + else: + raise InterpreterException('int.is_even() must have no arguments.') + elif method_name == 'is_odd': + if not posargs: + return obj % 2 != 0 + else: + raise InterpreterException('int.is_odd() must have no arguments.') + elif method_name == 'to_string': + if not posargs: + return str(obj) + else: + raise InterpreterException('int.to_string() must have no arguments.') + else: + raise InterpreterException('Unknown method "%s" for an integer.' % method_name) + + @staticmethod + def _get_one_string_posarg(posargs: T.List[TYPE_nvar], method_name: str) -> str: + if len(posargs) > 1: + m = '{}() must have zero or one arguments' + raise InterpreterException(m.format(method_name)) + elif len(posargs) == 1: + s = posargs[0] + if not isinstance(s, str): + m = '{}() argument must be a string' + raise InterpreterException(m.format(method_name)) + return s + return None + + @builtinMethodNoKwargs + def string_method_call(self, obj: str, method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> T.Union[str, int, bool, T.List[str]]: + if method_name == 'strip': + s1 = self._get_one_string_posarg(posargs, 'strip') + if s1 is not None: + return obj.strip(s1) + return obj.strip() + elif method_name == 'format': + return self.format_string(obj, posargs) + elif method_name == 'to_upper': + return obj.upper() + elif method_name == 'to_lower': + return obj.lower() + elif method_name == 'underscorify': + return re.sub(r'[^a-zA-Z0-9]', '_', obj) + elif method_name == 'split': + s2 = self._get_one_string_posarg(posargs, 'split') + if s2 is not None: + return obj.split(s2) + return obj.split() + elif method_name == 'startswith' or method_name == 'contains' or method_name == 'endswith': + s3 = posargs[0] + if not isinstance(s3, str): + raise InterpreterException('Argument must be a string.') + if method_name == 'startswith': + return obj.startswith(s3) + elif method_name == 'contains': + return obj.find(s3) >= 0 + return obj.endswith(s3) + elif method_name == 'to_int': + try: + return int(obj) + except Exception: + raise InterpreterException(f'String {obj!r} cannot be converted to int') + elif method_name == 'join': + if len(posargs) != 1: + raise InterpreterException('Join() takes exactly one argument.') + strlist = posargs[0] + check_stringlist(strlist) + assert isinstance(strlist, list) # Required for mypy + return obj.join(strlist) + elif method_name == 'version_compare': + if len(posargs) != 1: + raise InterpreterException('Version_compare() takes exactly one argument.') + cmpr = posargs[0] + if not isinstance(cmpr, str): + raise InterpreterException('Version_compare() argument must be a string.') + if isinstance(obj, MesonVersionString): + self.tmp_meson_version = cmpr + return mesonlib.version_compare(obj, cmpr) + elif method_name == 'substring': + if len(posargs) > 2: + raise InterpreterException('substring() takes maximum two arguments.') + start = 0 + end = len(obj) + if len (posargs) > 0: + if not isinstance(posargs[0], int): + raise InterpreterException('substring() argument must be an int') + start = posargs[0] + if len (posargs) > 1: + if not isinstance(posargs[1], int): + raise InterpreterException('substring() argument must be an int') + end = posargs[1] + return obj[start:end] + elif method_name == 'replace': + FeatureNew.single_use('str.replace', '0.58.0', self.subproject) + if len(posargs) != 2: + raise InterpreterException('replace() takes exactly two arguments.') + if not isinstance(posargs[0], str) or not isinstance(posargs[1], str): + raise InterpreterException('replace() requires that both arguments be strings') + return obj.replace(posargs[0], posargs[1]) + raise InterpreterException('Unknown method "%s" for a string.' % method_name) + + def format_string(self, templ: str, args: T.List[TYPE_nvar]) -> str: + arg_strings = [] + for arg in args: + if isinstance(arg, mparser.BaseNode): + arg = self.evaluate_statement(arg) + if isinstance(arg, bool): # Python boolean is upper case. + arg = str(arg).lower() + arg_strings.append(str(arg)) + + def arg_replace(match: T.Match[str]) -> str: + idx = int(match.group(1)) + if idx >= len(arg_strings): + raise InterpreterException(f'Format placeholder @{idx}@ out of range.') + return arg_strings[idx] + + return re.sub(r'@(\d+)@', arg_replace, templ) + + def unknown_function_called(self, func_name: str) -> None: + raise InvalidCode('Unknown function "%s".' % func_name) + + @builtinMethodNoKwargs + def array_method_call(self, obj: T.List[TYPE_var], method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> TYPE_var: + if method_name == 'contains': + def check_contains(el: list) -> bool: + if len(posargs) != 1: + raise InterpreterException('Contains method takes exactly one argument.') + item = posargs[0] + for element in el: + if isinstance(element, list): + found = check_contains(element) + if found: + return True + if element == item: + return True + return False + return check_contains(obj) + elif method_name == 'length': + return len(obj) + elif method_name == 'get': + index = posargs[0] + fallback = None + if len(posargs) == 2: + fallback = posargs[1] + elif len(posargs) > 2: + m = 'Array method \'get()\' only takes two arguments: the ' \ + 'index and an optional fallback value if the index is ' \ + 'out of range.' + raise InvalidArguments(m) + if not isinstance(index, int): + raise InvalidArguments('Array index must be a number.') + if index < -len(obj) or index >= len(obj): + if fallback is None: + m = 'Array index {!r} is out of bounds for array of size {!r}.' + raise InvalidArguments(m.format(index, len(obj))) + if isinstance(fallback, mparser.BaseNode): + return self.evaluate_statement(fallback) + return fallback + return obj[index] + m = 'Arrays do not have a method called {!r}.' + raise InterpreterException(m.format(method_name)) + + @builtinMethodNoKwargs + def dict_method_call(self, obj: T.Dict[str, TYPE_var], method_name: str, posargs: T.List[TYPE_nvar], kwargs: T.Dict[str, T.Any]) -> TYPE_var: + if method_name in ('has_key', 'get'): + if method_name == 'has_key': + if len(posargs) != 1: + raise InterpreterException('has_key() takes exactly one argument.') + else: + if len(posargs) not in (1, 2): + raise InterpreterException('get() takes one or two arguments.') + + key = posargs[0] + if not isinstance(key, (str)): + raise InvalidArguments('Dictionary key must be a string.') + + has_key = key in obj + + if method_name == 'has_key': + return has_key + + if has_key: + return obj[key] + + if len(posargs) == 2: + fallback = posargs[1] + if isinstance(fallback, mparser.BaseNode): + return self.evaluate_statement(fallback) + return fallback + + raise InterpreterException(f'Key {key!r} is not in the dictionary.') + + if method_name == 'keys': + if len(posargs) != 0: + raise InterpreterException('keys() takes no arguments.') + return sorted(obj.keys()) + + raise InterpreterException('Dictionaries do not have a method called "%s".' % method_name) + + def reduce_arguments( + self, + args: mparser.ArgumentNode, + key_resolver: T.Callable[[mparser.BaseNode], str] = default_resolve_key, + duplicate_key_error: T.Optional[str] = None, + ) -> T.Tuple[T.List[TYPE_nvar], TYPE_nkwargs]: + assert(isinstance(args, mparser.ArgumentNode)) + if args.incorrect_order(): + raise InvalidArguments('All keyword arguments must be after positional arguments.') + self.argument_depth += 1 + reduced_pos = [self.evaluate_statement(arg) for arg in args.arguments] # type: T.List[TYPE_nvar] + reduced_kw = {} # type: TYPE_nkwargs + for key, val in args.kwargs.items(): + reduced_key = key_resolver(key) + reduced_val = val # type: TYPE_nvar + if isinstance(reduced_val, mparser.BaseNode): + reduced_val = self.evaluate_statement(reduced_val) + if duplicate_key_error and reduced_key in reduced_kw: + raise InvalidArguments(duplicate_key_error.format(reduced_key)) + reduced_kw[reduced_key] = reduced_val + self.argument_depth -= 1 + final_kw = self.expand_default_kwargs(reduced_kw) + return reduced_pos, final_kw + + def expand_default_kwargs(self, kwargs: TYPE_nkwargs) -> TYPE_nkwargs: + if 'kwargs' not in kwargs: + return kwargs + to_expand = kwargs.pop('kwargs') + if not isinstance(to_expand, dict): + raise InterpreterException('Value of "kwargs" must be dictionary.') + if 'kwargs' in to_expand: + raise InterpreterException('Kwargs argument must not contain a "kwargs" entry. Points for thinking meta, though. :P') + for k, v in to_expand.items(): + if k in kwargs: + raise InterpreterException(f'Entry "{k}" defined both as a keyword argument and in a "kwarg" entry.') + kwargs[k] = v + return kwargs + + def assignment(self, node: mparser.AssignmentNode) -> None: + assert(isinstance(node, mparser.AssignmentNode)) + if self.argument_depth != 0: + raise InvalidArguments('''Tried to assign values inside an argument list. +To specify a keyword argument, use : instead of =.''') + var_name = node.var_name + if not isinstance(var_name, str): + raise InvalidArguments('Tried to assign value to a non-variable.') + value = self.evaluate_statement(node.value) + if not self.is_assignable(value): + raise InvalidCode('Tried to assign an invalid value to variable.') + # For mutable objects we need to make a copy on assignment + if isinstance(value, MutableInterpreterObject): + value = copy.deepcopy(value) + self.set_variable(var_name, value) + return None + + def set_variable(self, varname: str, variable: TYPE_var) -> None: + if variable is None: + raise InvalidCode('Can not assign None to variable.') + if not isinstance(varname, str): + raise InvalidCode('First argument to set_variable must be a string.') + if not self.is_assignable(variable): + raise InvalidCode('Assigned value not of assignable type.') + if re.match('[_a-zA-Z][_0-9a-zA-Z]*$', varname) is None: + raise InvalidCode('Invalid variable name: ' + varname) + if varname in self.builtin: + raise InvalidCode('Tried to overwrite internal variable "%s"' % varname) + self.variables[varname] = variable + + def get_variable(self, varname: str) -> TYPE_var: + if varname in self.builtin: + return self.builtin[varname] + if varname in self.variables: + return self.variables[varname] + raise InvalidCode('Unknown variable "%s".' % varname) + + def is_assignable(self, value: T.Any) -> bool: + return isinstance(value, (InterpreterObject, dependencies.Dependency, + str, int, list, dict, mesonlib.File)) + + def validate_extraction(self, buildtarget: InterpreterObject) -> None: + raise InterpreterException('validate_extraction is not implemented in this context (please file a bug)') |