aboutsummaryrefslogtreecommitdiff
path: root/target/s390x/tcg/int_helper.c
blob: 2af970f2c8b242aa6649a4a648f47987b4d28954 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
/*
 *  S/390 integer helper routines
 *
 *  Copyright (c) 2009 Ulrich Hecht
 *  Copyright (c) 2009 Alexander Graf
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "s390x-internal.h"
#include "tcg_s390x.h"
#include "exec/exec-all.h"
#include "qemu/host-utils.h"
#include "exec/helper-proto.h"
#include "exec/cpu_ldst.h"

/* #define DEBUG_HELPER */
#ifdef DEBUG_HELPER
#define HELPER_LOG(x...) qemu_log(x)
#else
#define HELPER_LOG(x...)
#endif

/* 64/32 -> 32 signed division */
uint64_t HELPER(divs32)(CPUS390XState *env, int64_t a, int64_t b64)
{
    int32_t b = b64;
    int64_t q, r;

    if (b == 0) {
        tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
    }

    q = a / b;
    r = a % b;

    /* Catch non-representable quotient.  */
    if (q != (int32_t)q) {
        tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
    }

    return deposit64(q, 32, 32, r);
}

/* 64/32 -> 32 unsigned division */
uint64_t HELPER(divu32)(CPUS390XState *env, uint64_t a, uint64_t b64)
{
    uint32_t b = b64;
    uint64_t q, r;

    if (b == 0) {
        tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
    }

    q = a / b;
    r = a % b;

    /* Catch non-representable quotient.  */
    if (q != (uint32_t)q) {
        tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
    }

    return deposit64(q, 32, 32, r);
}

/* 64/64 -> 64 signed division */
Int128 HELPER(divs64)(CPUS390XState *env, int64_t a, int64_t b)
{
    /* Catch divide by zero, and non-representable quotient (MIN / -1).  */
    if (b == 0 || (b == -1 && a == (1ll << 63))) {
        tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
    }
    return int128_make128(a / b, a % b);
}

/* 128 -> 64/64 unsigned division */
Int128 HELPER(divu64)(CPUS390XState *env, uint64_t ah, uint64_t al, uint64_t b)
{
    if (b != 0) {
        uint64_t r = divu128(&al, &ah, b);
        if (ah == 0) {
            return int128_make128(al, r);
        }
    }
    /* divide by zero or overflow */
    tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
}

void HELPER(cvb)(CPUS390XState *env, uint32_t r1, uint64_t dec)
{
    int64_t pow10 = 1, bin = 0;
    int digit, sign;

    sign = dec & 0xf;
    if (sign < 0xa) {
        tcg_s390_data_exception(env, 0, GETPC());
    }
    dec >>= 4;

    while (dec) {
        digit = dec & 0xf;
        if (digit > 0x9) {
            tcg_s390_data_exception(env, 0, GETPC());
        }
        dec >>= 4;
        bin += digit * pow10;
        pow10 *= 10;
    }

    if (sign == 0xb || sign == 0xd) {
        bin = -bin;
    }

    /* R1 is updated even on fixed-point-divide exception. */
    env->regs[r1] = (env->regs[r1] & 0xffffffff00000000ULL) | (uint32_t)bin;
    if (bin != (int32_t)bin) {
        tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
    }
}

uint64_t HELPER(cvbg)(CPUS390XState *env, Int128 dec)
{
    uint64_t dec64[] = {int128_getlo(dec), int128_gethi(dec)};
    int64_t bin = 0, pow10, tmp;
    int digit, i, sign;

    sign = dec64[0] & 0xf;
    if (sign < 0xa) {
        tcg_s390_data_exception(env, 0, GETPC());
    }
    dec64[0] >>= 4;
    pow10 = (sign == 0xb || sign == 0xd) ? -1 : 1;

    for (i = 1; i < 20; i++) {
        digit = dec64[i >> 4] & 0xf;
        if (digit > 0x9) {
            tcg_s390_data_exception(env, 0, GETPC());
        }
        dec64[i >> 4] >>= 4;
        /*
         * Prepend the next digit and check for overflow. The multiplication
         * cannot overflow, since, conveniently, the int64_t limits are
         * approximately +-9.2E+18. If bin is zero, the addition cannot
         * overflow. Otherwise bin is known to have the same sign as the rhs
         * addend, in which case overflow happens if and only if the result
         * has a different sign.
         */
        tmp = bin + pow10 * digit;
        if (bin && ((tmp ^ bin) < 0)) {
            tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
        }
        bin = tmp;
        pow10 *= 10;
    }

    g_assert(!dec64[0]);
    if (dec64[1]) {
        tcg_s390_program_interrupt(env, PGM_FIXPT_DIVIDE, GETPC());
    }

    return bin;
}

uint64_t HELPER(cvd)(int32_t reg)
{
    /* positive 0 */
    uint64_t dec = 0x0c;
    int64_t bin = reg;
    int shift;

    if (bin < 0) {
        bin = -bin;
        dec = 0x0d;
    }

    for (shift = 4; (shift < 64) && bin; shift += 4) {
        dec |= (bin % 10) << shift;
        bin /= 10;
    }

    return dec;
}

Int128 HELPER(cvdg)(int64_t reg)
{
    /* positive 0 */
    Int128 dec = int128_make64(0x0c);
    Int128 bin = int128_makes64(reg);
    Int128 base = int128_make64(10);
    int shift;

    if (!int128_nonneg(bin)) {
        bin = int128_neg(bin);
        dec = int128_make64(0x0d);
    }

    for (shift = 4; (shift < 128) && int128_nz(bin); shift += 4) {
        dec = int128_or(dec, int128_lshift(int128_remu(bin, base), shift));
        bin = int128_divu(bin, base);
    }

    return dec;
}

uint64_t HELPER(popcnt)(uint64_t val)
{
    /* Note that we don't fold past bytes. */
    val = (val & 0x5555555555555555ULL) + ((val >> 1) & 0x5555555555555555ULL);
    val = (val & 0x3333333333333333ULL) + ((val >> 2) & 0x3333333333333333ULL);
    val = (val + (val >> 4)) & 0x0f0f0f0f0f0f0f0fULL;
    return val;
}