aboutsummaryrefslogtreecommitdiff
path: root/target/ppc/power8-pmu.c
blob: 236e8e66e966951bd44800abbfa8be202754e82e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
/*
 * PMU emulation helpers for TCG IBM POWER chips
 *
 *  Copyright IBM Corp. 2021
 *
 * Authors:
 *  Daniel Henrique Barboza      <danielhb413@gmail.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "helper_regs.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "qemu/error-report.h"
#include "qemu/main-loop.h"
#include "hw/ppc/ppc.h"
#include "power8-pmu.h"

#if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)

#define PMC_COUNTER_NEGATIVE_VAL 0x80000000UL

static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn)
{
    if (sprn == SPR_POWER_PMC1) {
        return env->spr[SPR_POWER_MMCR0] & MMCR0_PMC1CE;
    }

    return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE;
}

void pmu_update_summaries(CPUPPCState *env)
{
    target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0];
    target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1];
    int ins_cnt = 0;
    int cyc_cnt = 0;

    if (mmcr0 & MMCR0_FC) {
        goto hflags_calc;
    }

    if (!(mmcr0 & MMCR0_FC14) && mmcr1 != 0) {
        target_ulong sel;

        sel = extract64(mmcr1, MMCR1_PMC1EVT_EXTR, MMCR1_EVT_SIZE);
        switch (sel) {
        case 0x02:
        case 0xfe:
            ins_cnt |= 1 << 1;
            break;
        case 0x1e:
        case 0xf0:
            cyc_cnt |= 1 << 1;
            break;
        }

        sel = extract64(mmcr1, MMCR1_PMC2EVT_EXTR, MMCR1_EVT_SIZE);
        ins_cnt |= (sel == 0x02) << 2;
        cyc_cnt |= (sel == 0x1e) << 2;

        sel = extract64(mmcr1, MMCR1_PMC3EVT_EXTR, MMCR1_EVT_SIZE);
        ins_cnt |= (sel == 0x02) << 3;
        cyc_cnt |= (sel == 0x1e) << 3;

        sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE);
        ins_cnt |= ((sel == 0xfa) || (sel == 0x2)) << 4;
        cyc_cnt |= (sel == 0x1e) << 4;
    }

    ins_cnt |= !(mmcr0 & MMCR0_FC56) << 5;
    cyc_cnt |= !(mmcr0 & MMCR0_FC56) << 6;

 hflags_calc:
    env->pmc_ins_cnt = ins_cnt;
    env->pmc_cyc_cnt = cyc_cnt;
    env->hflags = deposit32(env->hflags, HFLAGS_INSN_CNT, 1, ins_cnt != 0);
}

static bool pmu_increment_insns(CPUPPCState *env, uint32_t num_insns)
{
    target_ulong mmcr0 = env->spr[SPR_POWER_MMCR0];
    unsigned ins_cnt = env->pmc_ins_cnt;
    bool overflow_triggered = false;
    target_ulong tmp;

    if (unlikely(ins_cnt & 0x1e)) {
        if (ins_cnt & (1 << 1)) {
            tmp = env->spr[SPR_POWER_PMC1];
            tmp += num_insns;
            if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMC1CE)) {
                tmp = PMC_COUNTER_NEGATIVE_VAL;
                overflow_triggered = true;
            }
            env->spr[SPR_POWER_PMC1] = tmp;
        }

        if (ins_cnt & (1 << 2)) {
            tmp = env->spr[SPR_POWER_PMC2];
            tmp += num_insns;
            if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
                tmp = PMC_COUNTER_NEGATIVE_VAL;
                overflow_triggered = true;
            }
            env->spr[SPR_POWER_PMC2] = tmp;
        }

        if (ins_cnt & (1 << 3)) {
            tmp = env->spr[SPR_POWER_PMC3];
            tmp += num_insns;
            if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
                tmp = PMC_COUNTER_NEGATIVE_VAL;
                overflow_triggered = true;
            }
            env->spr[SPR_POWER_PMC3] = tmp;
        }

        if (ins_cnt & (1 << 4)) {
            target_ulong mmcr1 = env->spr[SPR_POWER_MMCR1];
            int sel = extract64(mmcr1, MMCR1_PMC4EVT_EXTR, MMCR1_EVT_SIZE);
            if (sel == 0x02 || (env->spr[SPR_CTRL] & CTRL_RUN)) {
                tmp = env->spr[SPR_POWER_PMC4];
                tmp += num_insns;
                if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
                    tmp = PMC_COUNTER_NEGATIVE_VAL;
                    overflow_triggered = true;
                }
                env->spr[SPR_POWER_PMC4] = tmp;
            }
        }
    }

    if (ins_cnt & (1 << 5)) {
        tmp = env->spr[SPR_POWER_PMC5];
        tmp += num_insns;
        if (tmp >= PMC_COUNTER_NEGATIVE_VAL && (mmcr0 & MMCR0_PMCjCE)) {
            tmp = PMC_COUNTER_NEGATIVE_VAL;
            overflow_triggered = true;
        }
        env->spr[SPR_POWER_PMC5] = tmp;
    }

    return overflow_triggered;
}

static void pmu_update_cycles(CPUPPCState *env)
{
    uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    uint64_t time_delta = now - env->pmu_base_time;
    int sprn, cyc_cnt = env->pmc_cyc_cnt;

    for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
        if (cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) {
            /*
             * The pseries and powernv clock runs at 1Ghz, meaning
             * that 1 nanosec equals 1 cycle.
             */
            env->spr[sprn] += time_delta;
        }
    }

    /* Update base_time for future calculations */
    env->pmu_base_time = now;
}

/*
 * Helper function to retrieve the cycle overflow timer of the
 * 'sprn' counter.
 */
static QEMUTimer *get_cyc_overflow_timer(CPUPPCState *env, int sprn)
{
    return env->pmu_cyc_overflow_timers[sprn - SPR_POWER_PMC1];
}

static void pmc_update_overflow_timer(CPUPPCState *env, int sprn)
{
    QEMUTimer *pmc_overflow_timer = get_cyc_overflow_timer(env, sprn);
    int64_t timeout;

    /*
     * PMC5 does not have an overflow timer and this pointer
     * will be NULL.
     */
    if (!pmc_overflow_timer) {
        return;
    }

    if (!(env->pmc_cyc_cnt & (1 << (sprn - SPR_POWER_PMC1 + 1))) ||
        !pmc_has_overflow_enabled(env, sprn)) {
        /* Overflow timer is not needed for this counter */
        timer_del(pmc_overflow_timer);
        return;
    }

    if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) {
        timeout = 0;
    } else {
        timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn];
    }

    /*
     * Use timer_mod_anticipate() because an overflow timer might
     * be already running for this PMC.
     */
    timer_mod_anticipate(pmc_overflow_timer, env->pmu_base_time + timeout);
}

static void pmu_update_overflow_timers(CPUPPCState *env)
{
    int sprn;

    /*
     * Scroll through all PMCs and start counter overflow timers for
     * PM_CYC events, if needed.
     */
    for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
        pmc_update_overflow_timer(env, sprn);
    }
}

void helper_store_mmcr0(CPUPPCState *env, target_ulong value)
{
    bool hflags_pmcc0 = (value & MMCR0_PMCC0) != 0;
    bool hflags_pmcc1 = (value & MMCR0_PMCC1) != 0;

    pmu_update_cycles(env);

    env->spr[SPR_POWER_MMCR0] = value;

    /* MMCR0 writes can change HFLAGS_PMCC[01] and HFLAGS_INSN_CNT */
    env->hflags = deposit32(env->hflags, HFLAGS_PMCC0, 1, hflags_pmcc0);
    env->hflags = deposit32(env->hflags, HFLAGS_PMCC1, 1, hflags_pmcc1);

    pmu_update_summaries(env);

    /* Update cycle overflow timers with the current MMCR0 state */
    pmu_update_overflow_timers(env);
}

void helper_store_mmcr1(CPUPPCState *env, uint64_t value)
{
    pmu_update_cycles(env);

    env->spr[SPR_POWER_MMCR1] = value;

    /* MMCR1 writes can change HFLAGS_INSN_CNT */
    pmu_update_summaries(env);
}

target_ulong helper_read_pmc(CPUPPCState *env, uint32_t sprn)
{
    pmu_update_cycles(env);

    return env->spr[sprn];
}

void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value)
{
    pmu_update_cycles(env);

    env->spr[sprn] = value;

    pmc_update_overflow_timer(env, sprn);
}

static void fire_PMC_interrupt(PowerPCCPU *cpu)
{
    CPUPPCState *env = &cpu->env;

    if (!(env->spr[SPR_POWER_MMCR0] & MMCR0_EBE)) {
        return;
    }

    /* PMC interrupt not implemented yet */
    return;
}

/* This helper assumes that the PMC is running. */
void helper_insns_inc(CPUPPCState *env, uint32_t num_insns)
{
    bool overflow_triggered;
    PowerPCCPU *cpu;

    overflow_triggered = pmu_increment_insns(env, num_insns);

    if (overflow_triggered) {
        cpu = env_archcpu(env);
        fire_PMC_interrupt(cpu);
    }
}

static void cpu_ppc_pmu_timer_cb(void *opaque)
{
    PowerPCCPU *cpu = opaque;

    fire_PMC_interrupt(cpu);
}

void cpu_ppc_pmu_init(CPUPPCState *env)
{
    PowerPCCPU *cpu = env_archcpu(env);
    int i, sprn;

    for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
        if (sprn == SPR_POWER_PMC5) {
            continue;
        }

        i = sprn - SPR_POWER_PMC1;

        env->pmu_cyc_overflow_timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL,
                                                       &cpu_ppc_pmu_timer_cb,
                                                       cpu);
    }
}
#endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */