aboutsummaryrefslogtreecommitdiff
path: root/target/ppc/machine.c
blob: e67394459792c08b8285e172aae90c572be64a70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "sysemu/kvm.h"
#include "sysemu/tcg.h"
#include "helper_regs.h"
#include "mmu-hash64.h"
#include "migration/cpu.h"
#include "qapi/error.h"
#include "qemu/main-loop.h"
#include "kvm_ppc.h"
#include "power8-pmu.h"

static void post_load_update_msr(CPUPPCState *env)
{
    target_ulong msr = env->msr;

    /*
     * Invalidate all supported msr bits except MSR_TGPR/MSR_HVB
     * before restoring.  Note that this recomputes hflags.
     */
    env->msr ^= env->msr_mask & ~((1ULL << MSR_TGPR) | MSR_HVB);
    ppc_store_msr(env, msr);

    if (tcg_enabled()) {
        pmu_update_summaries(env);
    }
}

static int get_avr(QEMUFile *f, void *pv, size_t size,
                   const VMStateField *field)
{
    ppc_avr_t *v = pv;

    v->u64[0] = qemu_get_be64(f);
    v->u64[1] = qemu_get_be64(f);

    return 0;
}

static int put_avr(QEMUFile *f, void *pv, size_t size,
                   const VMStateField *field, JSONWriter *vmdesc)
{
    ppc_avr_t *v = pv;

    qemu_put_be64(f, v->u64[0]);
    qemu_put_be64(f, v->u64[1]);
    return 0;
}

static const VMStateInfo vmstate_info_avr = {
    .name = "avr",
    .get  = get_avr,
    .put  = put_avr,
};

#define VMSTATE_AVR_ARRAY_V(_f, _s, _n, _v)                       \
    VMSTATE_SUB_ARRAY(_f, _s, 32, _n, _v, vmstate_info_avr, ppc_avr_t)

#define VMSTATE_AVR_ARRAY(_f, _s, _n)                             \
    VMSTATE_AVR_ARRAY_V(_f, _s, _n, 0)

static int get_fpr(QEMUFile *f, void *pv, size_t size,
                   const VMStateField *field)
{
    ppc_vsr_t *v = pv;

    v->VsrD(0) = qemu_get_be64(f);

    return 0;
}

static int put_fpr(QEMUFile *f, void *pv, size_t size,
                   const VMStateField *field, JSONWriter *vmdesc)
{
    ppc_vsr_t *v = pv;

    qemu_put_be64(f, v->VsrD(0));
    return 0;
}

static const VMStateInfo vmstate_info_fpr = {
    .name = "fpr",
    .get  = get_fpr,
    .put  = put_fpr,
};

#define VMSTATE_FPR_ARRAY_V(_f, _s, _n, _v)                       \
    VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_fpr, ppc_vsr_t)

#define VMSTATE_FPR_ARRAY(_f, _s, _n)                             \
    VMSTATE_FPR_ARRAY_V(_f, _s, _n, 0)

static int get_vsr(QEMUFile *f, void *pv, size_t size,
                   const VMStateField *field)
{
    ppc_vsr_t *v = pv;

    v->VsrD(1) = qemu_get_be64(f);

    return 0;
}

static int put_vsr(QEMUFile *f, void *pv, size_t size,
                   const VMStateField *field, JSONWriter *vmdesc)
{
    ppc_vsr_t *v = pv;

    qemu_put_be64(f, v->VsrD(1));
    return 0;
}

static const VMStateInfo vmstate_info_vsr = {
    .name = "vsr",
    .get  = get_vsr,
    .put  = put_vsr,
};

#define VMSTATE_VSR_ARRAY_V(_f, _s, _n, _v)                       \
    VMSTATE_SUB_ARRAY(_f, _s, 0, _n, _v, vmstate_info_vsr, ppc_vsr_t)

#define VMSTATE_VSR_ARRAY(_f, _s, _n)                             \
    VMSTATE_VSR_ARRAY_V(_f, _s, _n, 0)

static bool cpu_pre_2_8_migration(void *opaque, int version_id)
{
    PowerPCCPU *cpu = opaque;

    return cpu->pre_2_8_migration;
}

#if defined(TARGET_PPC64)
static bool cpu_pre_3_0_migration(void *opaque, int version_id)
{
    PowerPCCPU *cpu = opaque;

    return cpu->pre_3_0_migration;
}
#endif

static int cpu_pre_save(void *opaque)
{
    PowerPCCPU *cpu = opaque;
    CPUPPCState *env = &cpu->env;
    int i;
    uint64_t insns_compat_mask =
        PPC_INSNS_BASE | PPC_ISEL | PPC_STRING | PPC_MFTB
        | PPC_FLOAT | PPC_FLOAT_FSEL | PPC_FLOAT_FRES
        | PPC_FLOAT_FSQRT | PPC_FLOAT_FRSQRTE | PPC_FLOAT_FRSQRTES
        | PPC_FLOAT_STFIWX | PPC_FLOAT_EXT
        | PPC_CACHE | PPC_CACHE_ICBI | PPC_CACHE_DCBZ
        | PPC_MEM_SYNC | PPC_MEM_EIEIO | PPC_MEM_TLBIE | PPC_MEM_TLBSYNC
        | PPC_64B | PPC_64BX | PPC_ALTIVEC
        | PPC_SEGMENT_64B | PPC_SLBI | PPC_POPCNTB | PPC_POPCNTWD;
    uint64_t insns_compat_mask2 = PPC2_VSX | PPC2_VSX207 | PPC2_DFP | PPC2_DBRX
        | PPC2_PERM_ISA206 | PPC2_DIVE_ISA206
        | PPC2_ATOMIC_ISA206 | PPC2_FP_CVT_ISA206
        | PPC2_FP_TST_ISA206 | PPC2_BCTAR_ISA207
        | PPC2_LSQ_ISA207 | PPC2_ALTIVEC_207
        | PPC2_ISA205 | PPC2_ISA207S | PPC2_FP_CVT_S64 | PPC2_TM;

    env->spr[SPR_LR] = env->lr;
    env->spr[SPR_CTR] = env->ctr;
    env->spr[SPR_XER] = cpu_read_xer(env);
#if defined(TARGET_PPC64)
    env->spr[SPR_CFAR] = env->cfar;
#endif
    env->spr[SPR_BOOKE_SPEFSCR] = env->spe_fscr;

    for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
        env->spr[SPR_DBAT0U + 2 * i] = env->DBAT[0][i];
        env->spr[SPR_DBAT0U + 2 * i + 1] = env->DBAT[1][i];
        env->spr[SPR_IBAT0U + 2 * i] = env->IBAT[0][i];
        env->spr[SPR_IBAT0U + 2 * i + 1] = env->IBAT[1][i];
    }
    for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
        env->spr[SPR_DBAT4U + 2 * i] = env->DBAT[0][i + 4];
        env->spr[SPR_DBAT4U + 2 * i + 1] = env->DBAT[1][i + 4];
        env->spr[SPR_IBAT4U + 2 * i] = env->IBAT[0][i + 4];
        env->spr[SPR_IBAT4U + 2 * i + 1] = env->IBAT[1][i + 4];
    }

    /* Hacks for migration compatibility between 2.6, 2.7 & 2.8 */
    if (cpu->pre_2_8_migration) {
        /*
         * Mask out bits that got added to msr_mask since the versions
         * which stupidly included it in the migration stream.
         */
        target_ulong metamask = 0
#if defined(TARGET_PPC64)
            | (1ULL << MSR_TS0)
            | (1ULL << MSR_TS1)
#endif
            ;
        cpu->mig_msr_mask = env->msr_mask & ~metamask;
        cpu->mig_insns_flags = env->insns_flags & insns_compat_mask;
        /*
         * CPU models supported by old machines all have
         * PPC_MEM_TLBIE, so we set it unconditionally to allow
         * backward migration from a POWER9 host to a POWER8 host.
         */
        cpu->mig_insns_flags |= PPC_MEM_TLBIE;
        cpu->mig_insns_flags2 = env->insns_flags2 & insns_compat_mask2;
        cpu->mig_nb_BATs = env->nb_BATs;
    }
    if (cpu->pre_3_0_migration) {
        if (cpu->hash64_opts) {
            cpu->mig_slb_nr = cpu->hash64_opts->slb_size;
        }
    }

    /* Used to retain migration compatibility for pre 6.0 for 601 machines. */
    env->hflags_compat_nmsr = 0;

    return 0;
}

/*
 * Determine if a given PVR is a "close enough" match to the CPU
 * object.  For TCG and KVM PR it would probably be sufficient to
 * require an exact PVR match.  However for KVM HV the user is
 * restricted to a PVR exactly matching the host CPU.  The correct way
 * to handle this is to put the guest into an architected
 * compatibility mode.  However, to allow a more forgiving transition
 * and migration from before this was widely done, we allow migration
 * between sufficiently similar PVRs, as determined by the CPU class's
 * pvr_match() hook.
 */
static bool pvr_match(PowerPCCPU *cpu, uint32_t pvr)
{
    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);

    if (pvr == pcc->pvr) {
        return true;
    }
    return pcc->pvr_match(pcc, pvr);
}

static int cpu_post_load(void *opaque, int version_id)
{
    PowerPCCPU *cpu = opaque;
    CPUPPCState *env = &cpu->env;
    int i;

    /*
     * If we're operating in compat mode, we should be ok as long as
     * the destination supports the same compatibility mode.
     *
     * Otherwise, however, we require that the destination has exactly
     * the same CPU model as the source.
     */

#if defined(TARGET_PPC64)
    if (cpu->compat_pvr) {
        uint32_t compat_pvr = cpu->compat_pvr;
        Error *local_err = NULL;
        int ret;

        cpu->compat_pvr = 0;
        ret = ppc_set_compat(cpu, compat_pvr, &local_err);
        if (ret < 0) {
            error_report_err(local_err);
            return ret;
        }
    } else
#endif
    {
        if (!pvr_match(cpu, env->spr[SPR_PVR])) {
            return -EINVAL;
        }
    }

    /*
     * If we're running with KVM HV, there is a chance that the guest
     * is running with KVM HV and its kernel does not have the
     * capability of dealing with a different PVR other than this
     * exact host PVR in KVM_SET_SREGS. If that happens, the
     * guest freezes after migration.
     *
     * The function kvmppc_pvr_workaround_required does this verification
     * by first checking if the kernel has the cap, returning true immediately
     * if that is the case. Otherwise, it checks if we're running in KVM PR.
     * If the guest kernel does not have the cap and we're not running KVM-PR
     * (so, it is running KVM-HV), we need to ensure that KVM_SET_SREGS will
     * receive the PVR it expects as a workaround.
     *
     */
    if (kvmppc_pvr_workaround_required(cpu)) {
        env->spr[SPR_PVR] = env->spr_cb[SPR_PVR].default_value;
    }

    env->lr = env->spr[SPR_LR];
    env->ctr = env->spr[SPR_CTR];
    cpu_write_xer(env, env->spr[SPR_XER]);
#if defined(TARGET_PPC64)
    env->cfar = env->spr[SPR_CFAR];
#endif
    env->spe_fscr = env->spr[SPR_BOOKE_SPEFSCR];

    for (i = 0; (i < 4) && (i < env->nb_BATs); i++) {
        env->DBAT[0][i] = env->spr[SPR_DBAT0U + 2 * i];
        env->DBAT[1][i] = env->spr[SPR_DBAT0U + 2 * i + 1];
        env->IBAT[0][i] = env->spr[SPR_IBAT0U + 2 * i];
        env->IBAT[1][i] = env->spr[SPR_IBAT0U + 2 * i + 1];
    }
    for (i = 0; (i < 4) && ((i + 4) < env->nb_BATs); i++) {
        env->DBAT[0][i + 4] = env->spr[SPR_DBAT4U + 2 * i];
        env->DBAT[1][i + 4] = env->spr[SPR_DBAT4U + 2 * i + 1];
        env->IBAT[0][i + 4] = env->spr[SPR_IBAT4U + 2 * i];
        env->IBAT[1][i + 4] = env->spr[SPR_IBAT4U + 2 * i + 1];
    }

    if (!cpu->vhyp) {
        ppc_store_sdr1(env, env->spr[SPR_SDR1]);
    }

    post_load_update_msr(env);

    return 0;
}

static bool fpu_needed(void *opaque)
{
    PowerPCCPU *cpu = opaque;

    return cpu->env.insns_flags & PPC_FLOAT;
}

static const VMStateDescription vmstate_fpu = {
    .name = "cpu/fpu",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = fpu_needed,
    .fields = (VMStateField[]) {
        VMSTATE_FPR_ARRAY(env.vsr, PowerPCCPU, 32),
        VMSTATE_UINTTL(env.fpscr, PowerPCCPU),
        VMSTATE_END_OF_LIST()
    },
};

static bool altivec_needed(void *opaque)
{
    PowerPCCPU *cpu = opaque;

    return cpu->env.insns_flags & PPC_ALTIVEC;
}

static int get_vscr(QEMUFile *f, void *opaque, size_t size,
                    const VMStateField *field)
{
    PowerPCCPU *cpu = opaque;
    ppc_store_vscr(&cpu->env, qemu_get_be32(f));
    return 0;
}

static int put_vscr(QEMUFile *f, void *opaque, size_t size,
                    const VMStateField *field, JSONWriter *vmdesc)
{
    PowerPCCPU *cpu = opaque;
    qemu_put_be32(f, ppc_get_vscr(&cpu->env));
    return 0;
}

static const VMStateInfo vmstate_vscr = {
    .name = "cpu/altivec/vscr",
    .get = get_vscr,
    .put = put_vscr,
};

static const VMStateDescription vmstate_altivec = {
    .name = "cpu/altivec",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = altivec_needed,
    .fields = (VMStateField[]) {
        VMSTATE_AVR_ARRAY(env.vsr, PowerPCCPU, 32),
        /*
         * Save the architecture value of the vscr, not the internally
         * expanded version.  Since this architecture value does not
         * exist in memory to be stored, this requires a but of hoop
         * jumping.  We want OFFSET=0 so that we effectively pass CPU
         * to the helper functions.
         */
        {
            .name = "vscr",
            .version_id = 0,
            .size = sizeof(uint32_t),
            .info = &vmstate_vscr,
            .flags = VMS_SINGLE,
            .offset = 0
        },
        VMSTATE_END_OF_LIST()
    },
};

static bool vsx_needed(void *opaque)
{
    PowerPCCPU *cpu = opaque;

    return cpu->env.insns_flags2 & PPC2_VSX;
}

static const VMStateDescription vmstate_vsx = {
    .name = "cpu/vsx",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = vsx_needed,
    .fields = (VMStateField[]) {
        VMSTATE_VSR_ARRAY(env.vsr, PowerPCCPU, 32),
        VMSTATE_END_OF_LIST()
    },
};

#ifdef TARGET_PPC64
/* Transactional memory state */
static bool tm_needed(void *opaque)
{
    PowerPCCPU *cpu = opaque;
    CPUPPCState *env = &cpu->env;
    return msr_ts;
}

static const VMStateDescription vmstate_tm = {
    .name = "cpu/tm",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = tm_needed,
    .fields      = (VMStateField []) {
        VMSTATE_UINTTL_ARRAY(env.tm_gpr, PowerPCCPU, 32),
        VMSTATE_AVR_ARRAY(env.tm_vsr, PowerPCCPU, 64),
        VMSTATE_UINT64(env.tm_cr, PowerPCCPU),
        VMSTATE_UINT64(env.tm_lr, PowerPCCPU),
        VMSTATE_UINT64(env.tm_ctr, PowerPCCPU),
        VMSTATE_UINT64(env.tm_fpscr, PowerPCCPU),
        VMSTATE_UINT64(env.tm_amr, PowerPCCPU),
        VMSTATE_UINT64(env.tm_ppr, PowerPCCPU),
        VMSTATE_UINT64(env.tm_vrsave, PowerPCCPU),
        VMSTATE_UINT32(env.tm_vscr, PowerPCCPU),
        VMSTATE_UINT64(env.tm_dscr, PowerPCCPU),
        VMSTATE_UINT64(env.tm_tar, PowerPCCPU),
        VMSTATE_END_OF_LIST()
    },
};
#endif

static bool sr_needed(void *opaque)
{
#ifdef TARGET_PPC64
    PowerPCCPU *cpu = opaque;

    return !mmu_is_64bit(cpu->env.mmu_model);
#else
    return true;
#endif
}

static const VMStateDescription vmstate_sr = {
    .name = "cpu/sr",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = sr_needed,
    .fields = (VMStateField[]) {
        VMSTATE_UINTTL_ARRAY(env.sr, PowerPCCPU, 32),
        VMSTATE_END_OF_LIST()
    },
};

#ifdef TARGET_PPC64
static int get_slbe(QEMUFile *f, void *pv, size_t size,
                    const VMStateField *field)
{
    ppc_slb_t *v = pv;

    v->esid = qemu_get_be64(f);
    v->vsid = qemu_get_be64(f);

    return 0;
}

static int put_slbe(QEMUFile *f, void *pv, size_t size,
                    const VMStateField *field, JSONWriter *vmdesc)
{
    ppc_slb_t *v = pv;

    qemu_put_be64(f, v->esid);
    qemu_put_be64(f, v->vsid);
    return 0;
}

static const VMStateInfo vmstate_info_slbe = {
    .name = "slbe",
    .get  = get_slbe,
    .put  = put_slbe,
};

#define VMSTATE_SLB_ARRAY_V(_f, _s, _n, _v)                       \
    VMSTATE_ARRAY(_f, _s, _n, _v, vmstate_info_slbe, ppc_slb_t)

#define VMSTATE_SLB_ARRAY(_f, _s, _n)                             \
    VMSTATE_SLB_ARRAY_V(_f, _s, _n, 0)

static bool slb_needed(void *opaque)
{
    PowerPCCPU *cpu = opaque;

    /* We don't support any of the old segment table based 64-bit CPUs */
    return mmu_is_64bit(cpu->env.mmu_model);
}

static int slb_post_load(void *opaque, int version_id)
{
    PowerPCCPU *cpu = opaque;
    CPUPPCState *env = &cpu->env;
    int i;

    /*
     * We've pulled in the raw esid and vsid values from the migration
     * stream, but we need to recompute the page size pointers
     */
    for (i = 0; i < cpu->hash64_opts->slb_size; i++) {
        if (ppc_store_slb(cpu, i, env->slb[i].esid, env->slb[i].vsid) < 0) {
            /* Migration source had bad values in its SLB */
            return -1;
        }
    }

    return 0;
}

static const VMStateDescription vmstate_slb = {
    .name = "cpu/slb",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = slb_needed,
    .post_load = slb_post_load,
    .fields = (VMStateField[]) {
        VMSTATE_INT32_TEST(mig_slb_nr, PowerPCCPU, cpu_pre_3_0_migration),
        VMSTATE_SLB_ARRAY(env.slb, PowerPCCPU, MAX_SLB_ENTRIES),
        VMSTATE_END_OF_LIST()
    }
};
#endif /* TARGET_PPC64 */

static const VMStateDescription vmstate_tlb6xx_entry = {
    .name = "cpu/tlb6xx_entry",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_UINTTL(pte0, ppc6xx_tlb_t),
        VMSTATE_UINTTL(pte1, ppc6xx_tlb_t),
        VMSTATE_UINTTL(EPN, ppc6xx_tlb_t),
        VMSTATE_END_OF_LIST()
    },
};

static bool tlb6xx_needed(void *opaque)
{
    PowerPCCPU *cpu = opaque;
    CPUPPCState *env = &cpu->env;

    return env->nb_tlb && (env->tlb_type == TLB_6XX);
}

static const VMStateDescription vmstate_tlb6xx = {
    .name = "cpu/tlb6xx",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = tlb6xx_needed,
    .fields = (VMStateField[]) {
        VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
        VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlb6, PowerPCCPU,
                                            env.nb_tlb,
                                            vmstate_tlb6xx_entry,
                                            ppc6xx_tlb_t),
        VMSTATE_UINTTL_ARRAY(env.tgpr, PowerPCCPU, 4),
        VMSTATE_END_OF_LIST()
    }
};

static const VMStateDescription vmstate_tlbemb_entry = {
    .name = "cpu/tlbemb_entry",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_UINT64(RPN, ppcemb_tlb_t),
        VMSTATE_UINTTL(EPN, ppcemb_tlb_t),
        VMSTATE_UINTTL(PID, ppcemb_tlb_t),
        VMSTATE_UINTTL(size, ppcemb_tlb_t),
        VMSTATE_UINT32(prot, ppcemb_tlb_t),
        VMSTATE_UINT32(attr, ppcemb_tlb_t),
        VMSTATE_END_OF_LIST()
    },
};

static bool tlbemb_needed(void *opaque)
{
    PowerPCCPU *cpu = opaque;
    CPUPPCState *env = &cpu->env;

    return env->nb_tlb && (env->tlb_type == TLB_EMB);
}

static const VMStateDescription vmstate_tlbemb = {
    .name = "cpu/tlb6xx",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = tlbemb_needed,
    .fields = (VMStateField[]) {
        VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
        VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbe, PowerPCCPU,
                                            env.nb_tlb,
                                            vmstate_tlbemb_entry,
                                            ppcemb_tlb_t),
        VMSTATE_END_OF_LIST()
    },
};

static const VMStateDescription vmstate_tlbmas_entry = {
    .name = "cpu/tlbmas_entry",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32(mas8, ppcmas_tlb_t),
        VMSTATE_UINT32(mas1, ppcmas_tlb_t),
        VMSTATE_UINT64(mas2, ppcmas_tlb_t),
        VMSTATE_UINT64(mas7_3, ppcmas_tlb_t),
        VMSTATE_END_OF_LIST()
    },
};

static bool tlbmas_needed(void *opaque)
{
    PowerPCCPU *cpu = opaque;
    CPUPPCState *env = &cpu->env;

    return env->nb_tlb && (env->tlb_type == TLB_MAS);
}

static const VMStateDescription vmstate_tlbmas = {
    .name = "cpu/tlbmas",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = tlbmas_needed,
    .fields = (VMStateField[]) {
        VMSTATE_INT32_EQUAL(env.nb_tlb, PowerPCCPU, NULL),
        VMSTATE_STRUCT_VARRAY_POINTER_INT32(env.tlb.tlbm, PowerPCCPU,
                                            env.nb_tlb,
                                            vmstate_tlbmas_entry,
                                            ppcmas_tlb_t),
        VMSTATE_END_OF_LIST()
    }
};

static bool compat_needed(void *opaque)
{
    PowerPCCPU *cpu = opaque;

    assert(!(cpu->compat_pvr && !cpu->vhyp));
    return !cpu->pre_2_10_migration && cpu->compat_pvr != 0;
}

static const VMStateDescription vmstate_compat = {
    .name = "cpu/compat",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = compat_needed,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32(compat_pvr, PowerPCCPU),
        VMSTATE_END_OF_LIST()
    }
};

const VMStateDescription vmstate_ppc_cpu = {
    .name = "cpu",
    .version_id = 5,
    .minimum_version_id = 5,
    .pre_save = cpu_pre_save,
    .post_load = cpu_post_load,
    .fields = (VMStateField[]) {
        VMSTATE_UNUSED(sizeof(target_ulong)), /* was _EQUAL(env.spr[SPR_PVR]) */

        /* User mode architected state */
        VMSTATE_UINTTL_ARRAY(env.gpr, PowerPCCPU, 32),
#if !defined(TARGET_PPC64)
        VMSTATE_UINTTL_ARRAY(env.gprh, PowerPCCPU, 32),
#endif
        VMSTATE_UINT32_ARRAY(env.crf, PowerPCCPU, 8),
        VMSTATE_UINTTL(env.nip, PowerPCCPU),

        /* SPRs */
        VMSTATE_UINTTL_ARRAY(env.spr, PowerPCCPU, 1024),
        VMSTATE_UINT64(env.spe_acc, PowerPCCPU),

        /* Reservation */
        VMSTATE_UINTTL(env.reserve_addr, PowerPCCPU),

        /* Supervisor mode architected state */
        VMSTATE_UINTTL(env.msr, PowerPCCPU),

        /* Backward compatible internal state */
        VMSTATE_UINTTL(env.hflags_compat_nmsr, PowerPCCPU),

        /* Sanity checking */
        VMSTATE_UINTTL_TEST(mig_msr_mask, PowerPCCPU, cpu_pre_2_8_migration),
        VMSTATE_UINT64_TEST(mig_insns_flags, PowerPCCPU, cpu_pre_2_8_migration),
        VMSTATE_UINT64_TEST(mig_insns_flags2, PowerPCCPU,
                            cpu_pre_2_8_migration),
        VMSTATE_UINT32_TEST(mig_nb_BATs, PowerPCCPU, cpu_pre_2_8_migration),
        VMSTATE_END_OF_LIST()
    },
    .subsections = (const VMStateDescription*[]) {
        &vmstate_fpu,
        &vmstate_altivec,
        &vmstate_vsx,
        &vmstate_sr,
#ifdef TARGET_PPC64
        &vmstate_tm,
        &vmstate_slb,
#endif /* TARGET_PPC64 */
        &vmstate_tlb6xx,
        &vmstate_tlbemb,
        &vmstate_tlbmas,
        &vmstate_compat,
        NULL
    }
};