aboutsummaryrefslogtreecommitdiff
path: root/target/ppc/cpu.c
blob: e3ad8e0c27f6bf0726b2836869d5e7dbd57a70e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
/*
 *  PowerPC CPU routines for qemu.
 *
 * Copyright (c) 2017 Nikunj A Dadhania, IBM Corporation.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "cpu.h"
#include "cpu-models.h"
#include "cpu-qom.h"
#include "exec/log.h"
#include "fpu/softfloat-helpers.h"
#include "mmu-hash64.h"
#include "helper_regs.h"
#include "sysemu/tcg.h"

target_ulong cpu_read_xer(const CPUPPCState *env)
{
    if (is_isa300(env)) {
        return env->xer | (env->so << XER_SO) |
            (env->ov << XER_OV) | (env->ca << XER_CA) |
            (env->ov32 << XER_OV32) | (env->ca32 << XER_CA32);
    }

    return env->xer | (env->so << XER_SO) | (env->ov << XER_OV) |
        (env->ca << XER_CA);
}

void cpu_write_xer(CPUPPCState *env, target_ulong xer)
{
    env->so = (xer >> XER_SO) & 1;
    env->ov = (xer >> XER_OV) & 1;
    env->ca = (xer >> XER_CA) & 1;
    /* write all the flags, while reading back check of isa300 */
    env->ov32 = (xer >> XER_OV32) & 1;
    env->ca32 = (xer >> XER_CA32) & 1;
    env->xer = xer & ~((1ul << XER_SO) |
                       (1ul << XER_OV) | (1ul << XER_CA) |
                       (1ul << XER_OV32) | (1ul << XER_CA32));
}

void ppc_store_vscr(CPUPPCState *env, uint32_t vscr)
{
    env->vscr = vscr & ~(1u << VSCR_SAT);
    /* Which bit we set is completely arbitrary, but clear the rest.  */
    env->vscr_sat.u64[0] = vscr & (1u << VSCR_SAT);
    env->vscr_sat.u64[1] = 0;
    set_flush_to_zero((vscr >> VSCR_NJ) & 1, &env->vec_status);
    set_flush_inputs_to_zero((vscr >> VSCR_NJ) & 1, &env->vec_status);
}

uint32_t ppc_get_vscr(CPUPPCState *env)
{
    uint32_t sat = (env->vscr_sat.u64[0] | env->vscr_sat.u64[1]) != 0;
    return env->vscr | (sat << VSCR_SAT);
}

void ppc_set_cr(CPUPPCState *env, uint64_t cr)
{
    for (int i = 7; i >= 0; i--) {
        env->crf[i] = cr & 0xf;
        cr >>= 4;
    }
}

uint64_t ppc_get_cr(const CPUPPCState *env)
{
    uint64_t cr = 0;
    for (int i = 0; i < 8; i++) {
        cr |= (env->crf[i] & 0xf) << (4 * (7 - i));
    }
    return cr;
}

/* GDBstub can read and write MSR... */
void ppc_store_msr(CPUPPCState *env, target_ulong value)
{
    hreg_store_msr(env, value, 0);
}

#if !defined(CONFIG_USER_ONLY)
void ppc_store_lpcr(PowerPCCPU *cpu, target_ulong val)
{
    PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
    CPUPPCState *env = &cpu->env;

    env->spr[SPR_LPCR] = val & pcc->lpcr_mask;
    /* The gtse bit affects hflags */
    hreg_compute_hflags(env);

    ppc_maybe_interrupt(env);
}

#if defined(TARGET_PPC64)
void ppc_update_ciabr(CPUPPCState *env)
{
    CPUState *cs = env_cpu(env);
    target_ulong ciabr = env->spr[SPR_CIABR];
    target_ulong ciea, priv;

    ciea = ciabr & PPC_BITMASK(0, 61);
    priv = ciabr & PPC_BITMASK(62, 63);

    if (env->ciabr_breakpoint) {
        cpu_breakpoint_remove_by_ref(cs, env->ciabr_breakpoint);
        env->ciabr_breakpoint = NULL;
    }

    if (priv) {
        cpu_breakpoint_insert(cs, ciea, BP_CPU, &env->ciabr_breakpoint);
    }
}

void ppc_store_ciabr(CPUPPCState *env, target_ulong val)
{
    env->spr[SPR_CIABR] = val;
    ppc_update_ciabr(env);
}

void ppc_update_daw0(CPUPPCState *env)
{
    CPUState *cs = env_cpu(env);
    target_ulong deaw = env->spr[SPR_DAWR0] & PPC_BITMASK(0, 60);
    uint32_t dawrx = env->spr[SPR_DAWRX0];
    int mrd = extract32(dawrx, PPC_BIT_NR(48), 54 - 48);
    bool dw = extract32(dawrx, PPC_BIT_NR(57), 1);
    bool dr = extract32(dawrx, PPC_BIT_NR(58), 1);
    bool hv = extract32(dawrx, PPC_BIT_NR(61), 1);
    bool sv = extract32(dawrx, PPC_BIT_NR(62), 1);
    bool pr = extract32(dawrx, PPC_BIT_NR(62), 1);
    vaddr len;
    int flags;

    if (env->dawr0_watchpoint) {
        cpu_watchpoint_remove_by_ref(cs, env->dawr0_watchpoint);
        env->dawr0_watchpoint = NULL;
    }

    if (!dr && !dw) {
        return;
    }

    if (!hv && !sv && !pr) {
        return;
    }

    len = (mrd + 1) * 8;
    flags = BP_CPU | BP_STOP_BEFORE_ACCESS;
    if (dr) {
        flags |= BP_MEM_READ;
    }
    if (dw) {
        flags |= BP_MEM_WRITE;
    }

    cpu_watchpoint_insert(cs, deaw, len, flags, &env->dawr0_watchpoint);
}

void ppc_store_dawr0(CPUPPCState *env, target_ulong val)
{
    env->spr[SPR_DAWR0] = val;
    ppc_update_daw0(env);
}

void ppc_store_dawrx0(CPUPPCState *env, uint32_t val)
{
    int hrammc = extract32(val, PPC_BIT_NR(56), 1);

    if (hrammc) {
        /* This might be done with a second watchpoint at the xor of DEAW[0] */
        qemu_log_mask(LOG_UNIMP, "%s: DAWRX0[HRAMMC] is unimplemented\n",
                      __func__);
    }

    env->spr[SPR_DAWRX0] = val;
    ppc_update_daw0(env);
}
#endif
#endif

static inline void fpscr_set_rounding_mode(CPUPPCState *env)
{
    int rnd_type;

    /* Set rounding mode */
    switch (env->fpscr & FP_RN) {
    case 0:
        /* Best approximation (round to nearest) */
        rnd_type = float_round_nearest_even;
        break;
    case 1:
        /* Smaller magnitude (round toward zero) */
        rnd_type = float_round_to_zero;
        break;
    case 2:
        /* Round toward +infinite */
        rnd_type = float_round_up;
        break;
    default:
    case 3:
        /* Round toward -infinite */
        rnd_type = float_round_down;
        break;
    }
    set_float_rounding_mode(rnd_type, &env->fp_status);
}

void ppc_store_fpscr(CPUPPCState *env, target_ulong val)
{
    val &= FPSCR_MTFS_MASK;
    if (val & FPSCR_IX) {
        val |= FP_VX;
    }
    if ((val >> FPSCR_XX) & (val >> FPSCR_XE) & 0x1f) {
        val |= FP_FEX;
    }
    env->fpscr = val;
    env->fp_status.rebias_overflow  = (FP_OE & env->fpscr) ? true : false;
    env->fp_status.rebias_underflow = (FP_UE & env->fpscr) ? true : false;
    if (tcg_enabled()) {
        fpscr_set_rounding_mode(env);
    }
}