aboutsummaryrefslogtreecommitdiff
path: root/target/i386/tcg/sysemu/seg_helper.c
blob: e6f42282bb6a8fa080c6eef1982435997804c3fd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
/*
 *  x86 segmentation related helpers: (sysemu-only code)
 *  TSS, interrupts, system calls, jumps and call/task gates, descriptors
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "exec/cpu_ldst.h"
#include "tcg/helper-tcg.h"
#include "../seg_helper.h"

void helper_syscall(CPUX86State *env, int next_eip_addend)
{
    int selector;

    if (!(env->efer & MSR_EFER_SCE)) {
        raise_exception_err_ra(env, EXCP06_ILLOP, 0, GETPC());
    }
    selector = (env->star >> 32) & 0xffff;
#ifdef TARGET_X86_64
    if (env->hflags & HF_LMA_MASK) {
        int code64;

        env->regs[R_ECX] = env->eip + next_eip_addend;
        env->regs[11] = cpu_compute_eflags(env) & ~RF_MASK;

        code64 = env->hflags & HF_CS64_MASK;

        env->eflags &= ~(env->fmask | RF_MASK);
        cpu_load_eflags(env, env->eflags, 0);
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                           0, 0xffffffff,
                               DESC_G_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK |
                               DESC_L_MASK);
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        if (code64) {
            env->eip = env->lstar;
        } else {
            env->eip = env->cstar;
        }
    } else
#endif
    {
        env->regs[R_ECX] = (uint32_t)(env->eip + next_eip_addend);

        env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
                           0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
                               0, 0xffffffff,
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
                               DESC_S_MASK |
                               DESC_W_MASK | DESC_A_MASK);
        env->eip = (uint32_t)env->star;
    }
}

void handle_even_inj(CPUX86State *env, int intno, int is_int,
                     int error_code, int is_hw, int rm)
{
    CPUState *cs = env_cpu(env);
    uint32_t event_inj = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
                                                          control.event_inj));

    if (!(event_inj & SVM_EVTINJ_VALID)) {
        int type;

        if (is_int) {
            type = SVM_EVTINJ_TYPE_SOFT;
        } else {
            type = SVM_EVTINJ_TYPE_EXEPT;
        }
        event_inj = intno | type | SVM_EVTINJ_VALID;
        if (!rm && exception_has_error_code(intno)) {
            event_inj |= SVM_EVTINJ_VALID_ERR;
            x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb,
                                             control.event_inj_err),
                     error_code);
        }
        x86_stl_phys(cs,
                 env->vm_vmcb + offsetof(struct vmcb, control.event_inj),
                 event_inj);
    }
}

void x86_cpu_do_interrupt(CPUState *cs)
{
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *env = &cpu->env;

    if (cs->exception_index == EXCP_VMEXIT) {
        assert(env->old_exception == -1);
        do_vmexit(env);
    } else {
        do_interrupt_all(cpu, cs->exception_index,
                         env->exception_is_int,
                         env->error_code,
                         env->exception_next_eip, 0);
        /* successfully delivered */
        env->old_exception = -1;
    }
}

bool x86_need_replay_interrupt(int interrupt_request)
{
    /*
     * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
     * "real" interrupt event later. It does not need to be recorded for
     * replay purposes.
     */
    return !(interrupt_request & CPU_INTERRUPT_POLL);
}

bool x86_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
    X86CPU *cpu = X86_CPU(cs);
    CPUX86State *env = &cpu->env;
    int intno;

    interrupt_request = x86_cpu_pending_interrupt(cs, interrupt_request);
    if (!interrupt_request) {
        return false;
    }

    /* Don't process multiple interrupt requests in a single call.
     * This is required to make icount-driven execution deterministic.
     */
    switch (interrupt_request) {
    case CPU_INTERRUPT_POLL:
        cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
        apic_poll_irq(cpu->apic_state);
        break;
    case CPU_INTERRUPT_SIPI:
        do_cpu_sipi(cpu);
        break;
    case CPU_INTERRUPT_SMI:
        cpu_svm_check_intercept_param(env, SVM_EXIT_SMI, 0, 0);
        cs->interrupt_request &= ~CPU_INTERRUPT_SMI;
        do_smm_enter(cpu);
        break;
    case CPU_INTERRUPT_NMI:
        cpu_svm_check_intercept_param(env, SVM_EXIT_NMI, 0, 0);
        cs->interrupt_request &= ~CPU_INTERRUPT_NMI;
        env->hflags2 |= HF2_NMI_MASK;
        do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
        break;
    case CPU_INTERRUPT_MCE:
        cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
        do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
        break;
    case CPU_INTERRUPT_HARD:
        cpu_svm_check_intercept_param(env, SVM_EXIT_INTR, 0, 0);
        cs->interrupt_request &= ~(CPU_INTERRUPT_HARD |
                                   CPU_INTERRUPT_VIRQ);
        intno = cpu_get_pic_interrupt(env);
        qemu_log_mask(CPU_LOG_INT,
                      "Servicing hardware INT=0x%02x\n", intno);
        do_interrupt_x86_hardirq(env, intno, 1);
        break;
    case CPU_INTERRUPT_VIRQ:
        cpu_svm_check_intercept_param(env, SVM_EXIT_VINTR, 0, 0);
        intno = x86_ldl_phys(cs, env->vm_vmcb
                             + offsetof(struct vmcb, control.int_vector));
        qemu_log_mask(CPU_LOG_INT,
                      "Servicing virtual hardware INT=0x%02x\n", intno);
        do_interrupt_x86_hardirq(env, intno, 1);
        cs->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
        env->int_ctl &= ~V_IRQ_MASK;
        break;
    }

    /* Ensure that no TB jump will be modified as the program flow was changed.  */
    return true;
}

/* check if Port I/O is allowed in TSS */
void helper_check_io(CPUX86State *env, uint32_t addr, uint32_t size)
{
    uintptr_t retaddr = GETPC();
    uint32_t io_offset, val, mask;

    /* TSS must be a valid 32 bit one */
    if (!(env->tr.flags & DESC_P_MASK) ||
        ((env->tr.flags >> DESC_TYPE_SHIFT) & 0xf) != 9 ||
        env->tr.limit < 103) {
        goto fail;
    }
    io_offset = cpu_lduw_kernel_ra(env, env->tr.base + 0x66, retaddr);
    io_offset += (addr >> 3);
    /* Note: the check needs two bytes */
    if ((io_offset + 1) > env->tr.limit) {
        goto fail;
    }
    val = cpu_lduw_kernel_ra(env, env->tr.base + io_offset, retaddr);
    val >>= (addr & 7);
    mask = (1 << size) - 1;
    /* all bits must be zero to allow the I/O */
    if ((val & mask) != 0) {
    fail:
        raise_exception_err_ra(env, EXCP0D_GPF, 0, retaddr);
    }
}