aboutsummaryrefslogtreecommitdiff
path: root/target/i386/tcg/decode-new.c.inc
blob: 27dc1bb146b8960fbb5f8064ef0007c1f0975e95 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
/*
 * New-style decoder for i386 instructions
 *
 *  Copyright (c) 2022 Red Hat, Inc.
 *
 * Author: Paolo Bonzini <pbonzini@redhat.com>
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

/*
 * The decoder is mostly based on tables copied from the Intel SDM.  As
 * a result, most operand load and writeback is done entirely in common
 * table-driven code using the same operand type (X86_TYPE_*) and
 * size (X86_SIZE_*) codes used in the manual.  There are a few differences
 * though.
 *
 * Operand sizes
 * -------------
 *
 * The manual lists d64 ("cannot encode 32-bit size in 64-bit mode") and f64
 * ("cannot encode 16-bit or 32-bit size in 64-bit mode") as modifiers of the
 * "v" or "z" sizes.  The decoder simply makes them separate operand sizes.
 *
 * The manual lists immediate far destinations as Ap (technically an implicit
 * argument).  The decoder splits them into two immediates, using "Ip" for
 * the offset part (that comes first in the instruction stream) and "Iw" for
 * the segment/selector part.  The size of the offset is given by s->dflag
 * and the instructions are illegal in 64-bit mode, so the choice of "Ip"
 * is somewhat arbitrary; "Iv" or "Iz" would work just as well.
 *
 * Operand types
 * -------------
 *
 * For memory-only operands, if the emitter functions wants to rely on
 * generic load and writeback, the decoder needs to know the type of the
 * operand.  Therefore, M is often replaced by the more specific EM and WM
 * (respectively selecting an ALU operand, like the operand type E, or a
 * vector operand like the operand type W).
 *
 * Immediates are almost always signed or masked away in helpers.  Two
 * common exceptions are IN/OUT and absolute jumps.  For these, there is
 * an additional custom operand type "I_unsigned".  Alternatively, the
 * mask could be applied (and the original sign-extended value would be
 * optimized away by TCG) in the emitter function.
 *
 * Finally, a "nop" operand type is used for multi-byte NOPs.  It accepts
 * any value of mod including 11b (unlike M) but it does not try to
 * interpret the operand (like M).
 *
 * Vector operands
 * ---------------
 *
 * The main difference is that the V, U and W types are extended to
 * cover MMX as well; if an instruction is like
 *
 *      por   Pq, Qq
 *  66  por   Vx, Hx, Wx
 *
 * only the second row is included and the instruction is marked as a
 * valid MMX instruction.  The MMX flag directs the decoder to rewrite
 * the V/U/H/W types to P/N/P/Q if there is no prefix, as well as changing
 * "x" to "q" if there is no prefix.
 *
 * In addition, the ss/ps/sd/pd types are sometimes mushed together as "x"
 * if the difference is expressed via prefixes.  Individual instructions
 * are separated by prefix in the generator functions.
 *
 * There is a custom size "xh" used to address half of a SSE/AVX operand.
 * This points to a 64-bit operand for SSE operations, 128-bit operand
 * for 256-bit AVX operands, etc.  It is used for conversion operations
 * such as VCVTPH2PS or VCVTSS2SD.
 *
 * There are a couple cases in which instructions (e.g. MOVD) write the
 * whole XMM or MM register but are established incorrectly in the manual
 * as "d" or "q".  These have to be fixed for the decoder to work correctly.
 *
 * VEX exception classes
 * ---------------------
 *
 * Speaking about imprecisions in the manual, the decoder treats all
 * exception-class 4 instructions as having an optional VEX prefix, and
 * all exception-class 6 instructions as having a mandatory VEX prefix.
 * This is true except for a dozen instructions; these are in exception
 * class 4 but do not ignore the VEX.W bit (which does not even exist
 * without a VEX prefix).  These instructions are mostly listed in Intel's
 * table 2-16, but with a few exceptions.
 *
 * The AMD manual has more precise subclasses for exceptions, and unlike Intel
 * they list the VEX.W requirements in the exception classes as well (except
 * when they don't).  AMD describes class 6 as "AVX Mixed Memory Argument"
 * without defining what a mixed memory argument is, but still use 4 as the
 * primary exception class... except when they don't.
 *
 * The summary is:
 *                       Intel     AMD         VEX.W           note
 * -------------------------------------------------------------------
 * vpblendd              4         4J          0
 * vpblendvb             4         4E-X        0               (*)
 * vpbroadcastq          6         6D          0               (+)
 * vpermd/vpermps        4         4H          0               (§)
 * vpermq/vpermpd        4         4H-1        1               (§)
 * vpermilpd/vpermilps   4         6E          0               (^)
 * vpmaskmovd            6         4K          significant     (^)
 * vpsllv                4         4K          significant
 * vpsrav                4         4J          0
 * vpsrlv                4         4K          significant
 * vtestps/vtestpd       4         4G          0
 *
 *    (*)  AMD lists VPBLENDVB as related to SSE4.1 PBLENDVB, which may
 *         explain why it is considered exception class 4.  However,
 *         Intel says that VEX-only instructions should be in class 6...
 *
 *    (+)  Not found in Intel's table 2-16
 *
 *    (§)  4H and 4H-1 do not mention VEX.W requirements, which are
 *         however present in the description of the instruction
 *
 *    (^)  these are the two cases in which Intel and AMD disagree on the
 *         primary exception class
 */

#define X86_OP_NONE { 0 },

#define X86_OP_GROUP3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
    .decode = glue(decode_, op),                                  \
    .op0 = glue(X86_TYPE_, op0_),                                 \
    .s0 = glue(X86_SIZE_, s0_),                                   \
    .op1 = glue(X86_TYPE_, op1_),                                 \
    .s1 = glue(X86_SIZE_, s1_),                                   \
    .op2 = glue(X86_TYPE_, op2_),                                 \
    .s2 = glue(X86_SIZE_, s2_),                                   \
    .is_decode = true,                                            \
    ## __VA_ARGS__                                                \
}

#define X86_OP_GROUP1(op, op0, s0, ...)                           \
    X86_OP_GROUP3(op, op0, s0, 2op, s0, None, None, ## __VA_ARGS__)
#define X86_OP_GROUP2(op, op0, s0, op1, s1, ...)                  \
    X86_OP_GROUP3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
#define X86_OP_GROUPw(op, op0, s0, ...)                           \
    X86_OP_GROUP3(op, op0, s0, None, None, None, None, ## __VA_ARGS__)
#define X86_OP_GROUP0(op, ...)                                    \
    X86_OP_GROUP3(op, None, None, None, None, None, None, ## __VA_ARGS__)

#define X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_, ...) { \
    .gen = glue(gen_, op),                                        \
    .op0 = glue(X86_TYPE_, op0_),                                 \
    .s0 = glue(X86_SIZE_, s0_),                                   \
    .op1 = glue(X86_TYPE_, op1_),                                 \
    .s1 = glue(X86_SIZE_, s1_),                                   \
    .op2 = glue(X86_TYPE_, op2_),                                 \
    .s2 = glue(X86_SIZE_, s2_),                                   \
    ## __VA_ARGS__                                                \
}

#define X86_OP_ENTRY4(op, op0_, s0_, op1_, s1_, op2_, s2_, ...)   \
    X86_OP_ENTRY3(op, op0_, s0_, op1_, s1_, op2_, s2_,            \
        .op3 = X86_TYPE_I, .s3 = X86_SIZE_b,                      \
        ## __VA_ARGS__)

/*
 * Short forms that are mostly useful for ALU opcodes and other
 * one-byte opcodes.  For vector instructions it is usually
 * clearer to write all three operands explicitly, because the
 * corresponding gen_* function will use OP_PTRn rather than s->T0
 * and s->T1.
 */
#define X86_OP_ENTRYrr(op, op0, s0, op1, s1, ...)                 \
    X86_OP_ENTRY3(op, None, None, op0, s0, op1, s1, ## __VA_ARGS__)
#define X86_OP_ENTRYwr(op, op0, s0, op1, s1, ...)                 \
    X86_OP_ENTRY3(op, op0, s0, None, None, op1, s1, ## __VA_ARGS__)
#define X86_OP_ENTRY2(op, op0, s0, op1, s1, ...)                  \
    X86_OP_ENTRY3(op, op0, s0, 2op, s0, op1, s1, ## __VA_ARGS__)
#define X86_OP_ENTRYw(op, op0, s0, ...)                           \
    X86_OP_ENTRY3(op, op0, s0, None, None, None, None, ## __VA_ARGS__)
#define X86_OP_ENTRYr(op, op0, s0, ...)                           \
    X86_OP_ENTRY3(op, None, None, None, None, op0, s0, ## __VA_ARGS__)
#define X86_OP_ENTRY1(op, op0, s0, ...)                           \
    X86_OP_ENTRY3(op, op0, s0, 2op, s0, None, None, ## __VA_ARGS__)
#define X86_OP_ENTRY0(op, ...)                                    \
    X86_OP_ENTRY3(op, None, None, None, None, None, None, ## __VA_ARGS__)

#define cpuid(feat) .cpuid = X86_FEAT_##feat,
#define noseg .special = X86_SPECIAL_NoSeg,
#define xchg .special = X86_SPECIAL_Locked,
#define lock .special = X86_SPECIAL_HasLock,
#define mmx .special = X86_SPECIAL_MMX,
#define op0_Rd .special = X86_SPECIAL_Op0_Rd,
#define op2_Ry .special = X86_SPECIAL_Op2_Ry,
#define avx_movx .special = X86_SPECIAL_AVXExtMov,
#define sextT0 .special = X86_SPECIAL_SExtT0,
#define zextT0 .special = X86_SPECIAL_ZExtT0,

#define vex1 .vex_class = 1,
#define vex1_rep3 .vex_class = 1, .vex_special = X86_VEX_REPScalar,
#define vex2 .vex_class = 2,
#define vex2_rep3 .vex_class = 2, .vex_special = X86_VEX_REPScalar,
#define vex3 .vex_class = 3,
#define vex4 .vex_class = 4,
#define vex4_unal .vex_class = 4, .vex_special = X86_VEX_SSEUnaligned,
#define vex4_rep5 .vex_class = 4, .vex_special = X86_VEX_REPScalar,
#define vex5 .vex_class = 5,
#define vex6 .vex_class = 6,
#define vex7 .vex_class = 7,
#define vex8 .vex_class = 8,
#define vex11 .vex_class = 11,
#define vex12 .vex_class = 12,
#define vex13 .vex_class = 13,

#define chk(a) .check = X86_CHECK_##a,
#define svm(a) .intercept = SVM_EXIT_##a,

#define avx2_256 .vex_special = X86_VEX_AVX2_256,

#define P_00          1
#define P_66          (1 << PREFIX_DATA)
#define P_F3          (1 << PREFIX_REPZ)
#define P_F2          (1 << PREFIX_REPNZ)

#define p_00          .valid_prefix = P_00,
#define p_66          .valid_prefix = P_66,
#define p_f3          .valid_prefix = P_F3,
#define p_f2          .valid_prefix = P_F2,
#define p_00_66       .valid_prefix = P_00 | P_66,
#define p_00_f3       .valid_prefix = P_00 | P_F3,
#define p_66_f2       .valid_prefix = P_66 | P_F2,
#define p_00_66_f3    .valid_prefix = P_00 | P_66 | P_F3,
#define p_66_f3_f2    .valid_prefix = P_66 | P_F3 | P_F2,
#define p_00_66_f3_f2 .valid_prefix = P_00 | P_66 | P_F3 | P_F2,

#define UNKNOWN_OPCODE ((X86OpEntry) {})

static uint8_t get_modrm(DisasContext *s, CPUX86State *env)
{
    if (!s->has_modrm) {
        s->modrm = x86_ldub_code(env, s);
        s->has_modrm = true;
    }
    return s->modrm;
}

static inline const X86OpEntry *decode_by_prefix(DisasContext *s, const X86OpEntry entries[4])
{
    if (s->prefix & PREFIX_REPNZ) {
        return &entries[3];
    } else if (s->prefix & PREFIX_REPZ) {
        return &entries[2];
    } else if (s->prefix & PREFIX_DATA) {
        return &entries[1];
    } else {
        return &entries[0];
    }
}

static void decode_group15(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    /* only includes ldmxcsr and stmxcsr, because they have AVX variants.  */
    static const X86OpEntry group15_reg[8] = {
    };

    static const X86OpEntry group15_mem[8] = {
        [2] = X86_OP_ENTRYr(LDMXCSR,    E,d, vex5 chk(VEX128)),
        [3] = X86_OP_ENTRYw(STMXCSR,    E,d, vex5 chk(VEX128)),
    };

    uint8_t modrm = get_modrm(s, env);
    if ((modrm >> 6) == 3) {
        *entry = group15_reg[(modrm >> 3) & 7];
    } else {
        *entry = group15_mem[(modrm >> 3) & 7];
    }
}

static void decode_group17(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86GenFunc group17_gen[8] = {
        NULL, gen_BLSR, gen_BLSMSK, gen_BLSI,
    };
    int op = (get_modrm(s, env) >> 3) & 7;
    entry->gen = group17_gen[op];
}

static void decode_group12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_group12[8] = {
        {},
        {},
        X86_OP_ENTRY3(PSRLW_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
        {},
        X86_OP_ENTRY3(PSRAW_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
        {},
        X86_OP_ENTRY3(PSLLW_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
        {},
    };

    int op = (get_modrm(s, env) >> 3) & 7;
    *entry = opcodes_group12[op];
}

static void decode_group13(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_group13[8] = {
        {},
        {},
        X86_OP_ENTRY3(PSRLD_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
        {},
        X86_OP_ENTRY3(PSRAD_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
        {},
        X86_OP_ENTRY3(PSLLD_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
        {},
    };

    int op = (get_modrm(s, env) >> 3) & 7;
    *entry = opcodes_group13[op];
}

static void decode_group14(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_group14[8] = {
        /* grp14 */
        {},
        {},
        X86_OP_ENTRY3(PSRLQ_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
        X86_OP_ENTRY3(PSRLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66),
        {},
        {},
        X86_OP_ENTRY3(PSLLQ_i,  H,x, U,x, I,b, vex7 mmx avx2_256 p_00_66),
        X86_OP_ENTRY3(PSLLDQ_i, H,x, U,x, I,b, vex7 avx2_256 p_66),
    };

    int op = (get_modrm(s, env) >> 3) & 7;
    *entry = opcodes_group14[op];
}

static void decode_0F6F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_0F6F[4] = {
        X86_OP_ENTRY3(MOVDQ,       P,q, None,None, Q,q, vex5 mmx),  /* movq */
        X86_OP_ENTRY3(MOVDQ,       V,x, None,None, W,x, vex1),      /* movdqa */
        X86_OP_ENTRY3(MOVDQ,       V,x, None,None, W,x, vex4_unal), /* movdqu */
        {},
    };
    *entry = *decode_by_prefix(s, opcodes_0F6F);
}

static void decode_0F70(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry pshufw[4] = {
        X86_OP_ENTRY3(PSHUFW,  P,q, Q,q, I,b, vex4 mmx),
        X86_OP_ENTRY3(PSHUFD,  V,x, W,x, I,b, vex4 avx2_256),
        X86_OP_ENTRY3(PSHUFHW, V,x, W,x, I,b, vex4 avx2_256),
        X86_OP_ENTRY3(PSHUFLW, V,x, W,x, I,b, vex4 avx2_256),
    };

    *entry = *decode_by_prefix(s, pshufw);
}

static void decode_0F77(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    if (!(s->prefix & PREFIX_VEX)) {
        entry->gen = gen_EMMS;
    } else if (!s->vex_l) {
        entry->gen = gen_VZEROUPPER;
        entry->vex_class = 8;
    } else {
        entry->gen = gen_VZEROALL;
        entry->vex_class = 8;
    }
}

static void decode_0F78(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_0F78[4] = {
        {},
        X86_OP_ENTRY3(EXTRQ_i,       V,x, None,None, I,w,  cpuid(SSE4A)), /* AMD extension */
        {},
        X86_OP_ENTRY3(INSERTQ_i,     V,x, U,x, I,w,        cpuid(SSE4A)), /* AMD extension */
    };
    *entry = *decode_by_prefix(s, opcodes_0F78);
}

static void decode_0F79(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    if (s->prefix & PREFIX_REPNZ) {
        entry->gen = gen_INSERTQ_r; /* AMD extension */
    } else if (s->prefix & PREFIX_DATA) {
        entry->gen = gen_EXTRQ_r; /* AMD extension */
    } else {
        entry->gen = NULL;
    };
}

static void decode_0F7E(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_0F7E[4] = {
        X86_OP_ENTRY3(MOVD_from,  E,y, None,None, P,y, vex5 mmx),
        X86_OP_ENTRY3(MOVD_from,  E,y, None,None, V,y, vex5),
        X86_OP_ENTRY3(MOVQ,       V,x, None,None, W,q, vex5),  /* wrong dest Vy on SDM! */
        {},
    };
    *entry = *decode_by_prefix(s, opcodes_0F7E);
}

static void decode_0F7F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_0F7F[4] = {
        X86_OP_ENTRY3(MOVDQ,       W,x, None,None, V,x, vex5 mmx), /* movq */
        X86_OP_ENTRY3(MOVDQ,       W,x, None,None, V,x, vex1), /* movdqa */
        X86_OP_ENTRY3(MOVDQ,       W,x, None,None, V,x, vex4_unal), /* movdqu */
        {},
    };
    *entry = *decode_by_prefix(s, opcodes_0F7F);
}

static void decode_0FD6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry movq[4] = {
        {},
        X86_OP_ENTRY3(MOVQ,    W,x,  None, None, V,q, vex5),
        X86_OP_ENTRY3(MOVq_dq, V,dq, None, None, N,q),
        X86_OP_ENTRY3(MOVq_dq, P,q,  None, None, U,q),
    };

    *entry = *decode_by_prefix(s, movq);
}

static const X86OpEntry opcodes_0F38_00toEF[240] = {
    [0x00] = X86_OP_ENTRY3(PSHUFB,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
    [0x01] = X86_OP_ENTRY3(PHADDW,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
    [0x02] = X86_OP_ENTRY3(PHADDD,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
    [0x03] = X86_OP_ENTRY3(PHADDSW,   V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
    [0x04] = X86_OP_ENTRY3(PMADDUBSW, V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
    [0x05] = X86_OP_ENTRY3(PHSUBW,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
    [0x06] = X86_OP_ENTRY3(PHSUBD,    V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
    [0x07] = X86_OP_ENTRY3(PHSUBSW,   V,x,  H,x,   W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),

    [0x10] = X86_OP_ENTRY2(PBLENDVB,  V,x,         W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
    [0x13] = X86_OP_ENTRY2(VCVTPH2PS, V,x,         W,xh, vex11 chk(W0) cpuid(F16C) p_66),
    [0x14] = X86_OP_ENTRY2(BLENDVPS,  V,x,         W,x,  vex4 cpuid(SSE41) p_66),
    [0x15] = X86_OP_ENTRY2(BLENDVPD,  V,x,         W,x,  vex4 cpuid(SSE41) p_66),
    /* Listed incorrectly as type 4 */
    [0x16] = X86_OP_ENTRY3(VPERMD,    V,qq, H,qq,      W,qq,  vex6 chk(W0) cpuid(AVX2) p_66), /* vpermps */
    [0x17] = X86_OP_ENTRY3(VPTEST,    None,None, V,x,  W,x,   vex4 cpuid(SSE41) p_66),

    /*
     * Source operand listed as Mq/Ux and similar in the manual; incorrectly listed
     * as 128-bit only in 2-17.
     */
    [0x20] = X86_OP_ENTRY3(VPMOVSXBW, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
    [0x21] = X86_OP_ENTRY3(VPMOVSXBD, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
    [0x22] = X86_OP_ENTRY3(VPMOVSXBQ, V,x,  None,None, W,w,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
    [0x23] = X86_OP_ENTRY3(VPMOVSXWD, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
    [0x24] = X86_OP_ENTRY3(VPMOVSXWQ, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
    [0x25] = X86_OP_ENTRY3(VPMOVSXDQ, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),

    /* Same as PMOVSX.  */
    [0x30] = X86_OP_ENTRY3(VPMOVZXBW, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
    [0x31] = X86_OP_ENTRY3(VPMOVZXBD, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
    [0x32] = X86_OP_ENTRY3(VPMOVZXBQ, V,x,  None,None, W,w,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
    [0x33] = X86_OP_ENTRY3(VPMOVZXWD, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
    [0x34] = X86_OP_ENTRY3(VPMOVZXWQ, V,x,  None,None, W,d,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
    [0x35] = X86_OP_ENTRY3(VPMOVZXDQ, V,x,  None,None, W,q,   vex5 cpuid(SSE41) avx_movx avx2_256 p_66),
    [0x36] = X86_OP_ENTRY3(VPERMD,    V,qq, H,qq,      W,qq,  vex6 chk(W0) cpuid(AVX2) p_66),
    [0x37] = X86_OP_ENTRY3(PCMPGTQ,   V,x,  H,x,       W,x,   vex4 cpuid(SSE42) avx2_256 p_66),

    [0x40] = X86_OP_ENTRY3(PMULLD,      V,x,  H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
    [0x41] = X86_OP_ENTRY3(VPHMINPOSUW, V,dq, None,None, W,dq, vex4 cpuid(SSE41) p_66),
    /* Listed incorrectly as type 4 */
    [0x45] = X86_OP_ENTRY3(VPSRLV,      V,x,  H,x,       W,x,  vex6 cpuid(AVX2) p_66),
    [0x46] = X86_OP_ENTRY3(VPSRAV,      V,x,  H,x,       W,x,  vex6 chk(W0) cpuid(AVX2) p_66),
    [0x47] = X86_OP_ENTRY3(VPSLLV,      V,x,  H,x,       W,x,  vex6 cpuid(AVX2) p_66),

    [0x90] = X86_OP_ENTRY3(VPGATHERD, V,x,  H,x,  M,d,  vex12 cpuid(AVX2) p_66), /* vpgatherdd/q */
    [0x91] = X86_OP_ENTRY3(VPGATHERQ, V,x,  H,x,  M,q,  vex12 cpuid(AVX2) p_66), /* vpgatherqd/q */
    [0x92] = X86_OP_ENTRY3(VPGATHERD, V,x,  H,x,  M,d,  vex12 cpuid(AVX2) p_66), /* vgatherdps/d */
    [0x93] = X86_OP_ENTRY3(VPGATHERQ, V,x,  H,x,  M,q,  vex12 cpuid(AVX2) p_66), /* vgatherqps/d */

    /* Should be exception type 2 but they do not have legacy SSE equivalents? */
    [0x96] = X86_OP_ENTRY3(VFMADDSUB132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0x97] = X86_OP_ENTRY3(VFMSUBADD132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),

    [0xa6] = X86_OP_ENTRY3(VFMADDSUB213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xa7] = X86_OP_ENTRY3(VFMSUBADD213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),

    [0xb6] = X86_OP_ENTRY3(VFMADDSUB231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xb7] = X86_OP_ENTRY3(VFMSUBADD231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),

    [0x08] = X86_OP_ENTRY3(PSIGNB,    V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
    [0x09] = X86_OP_ENTRY3(PSIGNW,    V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
    [0x0a] = X86_OP_ENTRY3(PSIGND,    V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
    [0x0b] = X86_OP_ENTRY3(PMULHRSW,  V,x,        H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
    /* Listed incorrectly as type 4 */
    [0x0c] = X86_OP_ENTRY3(VPERMILPS, V,x,        H,x,  W,x,  vex6 chk(W0) cpuid(AVX) p_00_66),
    [0x0d] = X86_OP_ENTRY3(VPERMILPD, V,x,        H,x,  W,x,  vex6 chk(W0) cpuid(AVX) p_66),
    [0x0e] = X86_OP_ENTRY3(VTESTPS,   None,None,  V,x,  W,x,  vex6 chk(W0) cpuid(AVX) p_66),
    [0x0f] = X86_OP_ENTRY3(VTESTPD,   None,None,  V,x,  W,x,  vex6 chk(W0) cpuid(AVX) p_66),

    [0x18] = X86_OP_ENTRY3(VPBROADCASTD,   V,x,  None,None, W,d,  vex6 chk(W0) cpuid(AVX) p_66), /* vbroadcastss */
    [0x19] = X86_OP_ENTRY3(VPBROADCASTQ,   V,qq, None,None, W,q,  vex6 chk(W0) cpuid(AVX) p_66), /* vbroadcastsd */
    [0x1a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 chk(W0) cpuid(AVX) p_66),
    [0x1c] = X86_OP_ENTRY3(PABSB,          V,x,  None,None, W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
    [0x1d] = X86_OP_ENTRY3(PABSW,          V,x,  None,None, W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),
    [0x1e] = X86_OP_ENTRY3(PABSD,          V,x,  None,None, W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),

    [0x28] = X86_OP_ENTRY3(PMULDQ,        V,x, H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
    [0x29] = X86_OP_ENTRY3(PCMPEQQ,       V,x, H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
    [0x2a] = X86_OP_ENTRY3(MOVDQ,         V,x, None,None, WM,x, vex1 cpuid(SSE41) avx2_256 p_66), /* movntdqa */
    [0x2b] = X86_OP_ENTRY3(VPACKUSDW,     V,x, H,x,       W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
    [0x2c] = X86_OP_ENTRY3(VMASKMOVPS,    V,x, H,x,       WM,x, vex6 chk(W0) cpuid(AVX) p_66),
    [0x2d] = X86_OP_ENTRY3(VMASKMOVPD,    V,x, H,x,       WM,x, vex6 chk(W0) cpuid(AVX) p_66),
    /* Incorrectly listed as Mx,Hx,Vx in the manual */
    [0x2e] = X86_OP_ENTRY3(VMASKMOVPS_st, M,x, V,x,       H,x,  vex6 chk(W0) cpuid(AVX) p_66),
    [0x2f] = X86_OP_ENTRY3(VMASKMOVPD_st, M,x, V,x,       H,x,  vex6 chk(W0) cpuid(AVX) p_66),

    [0x38] = X86_OP_ENTRY3(PMINSB,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
    [0x39] = X86_OP_ENTRY3(PMINSD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
    [0x3a] = X86_OP_ENTRY3(PMINUW,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
    [0x3b] = X86_OP_ENTRY3(PMINUD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
    [0x3c] = X86_OP_ENTRY3(PMAXSB,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
    [0x3d] = X86_OP_ENTRY3(PMAXSD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
    [0x3e] = X86_OP_ENTRY3(PMAXUW,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
    [0x3f] = X86_OP_ENTRY3(PMAXUD,        V,x,  H,x, W,x,  vex4 cpuid(SSE41) avx2_256 p_66),

    /* VPBROADCASTQ not listed as W0 in table 2-16 */
    [0x58] = X86_OP_ENTRY3(VPBROADCASTD,   V,x,  None,None, W,d,  vex6 chk(W0) cpuid(AVX2) p_66),
    [0x59] = X86_OP_ENTRY3(VPBROADCASTQ,   V,x,  None,None, W,q,  vex6 chk(W0) cpuid(AVX2) p_66),
    [0x5a] = X86_OP_ENTRY3(VBROADCASTx128, V,qq, None,None, WM,dq,vex6 chk(W0) cpuid(AVX2) p_66),

    [0x78] = X86_OP_ENTRY3(VPBROADCASTB,   V,x,  None,None, W,b,  vex6 chk(W0) cpuid(AVX2) p_66),
    [0x79] = X86_OP_ENTRY3(VPBROADCASTW,   V,x,  None,None, W,w,  vex6 chk(W0) cpuid(AVX2) p_66),

    [0x8c] = X86_OP_ENTRY3(VPMASKMOV,    V,x,  H,x, WM,x, vex6 cpuid(AVX2) p_66),
    [0x8e] = X86_OP_ENTRY3(VPMASKMOV_st, M,x,  V,x, H,x,  vex6 cpuid(AVX2) p_66),

    /* Should be exception type 2 or 3 but they do not have legacy SSE equivalents? */
    [0x98] = X86_OP_ENTRY3(VFMADD132Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0x99] = X86_OP_ENTRY3(VFMADD132Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0x9a] = X86_OP_ENTRY3(VFMSUB132Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0x9b] = X86_OP_ENTRY3(VFMSUB132Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0x9c] = X86_OP_ENTRY3(VFNMADD132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0x9d] = X86_OP_ENTRY3(VFNMADD132Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0x9e] = X86_OP_ENTRY3(VFNMSUB132Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0x9f] = X86_OP_ENTRY3(VFNMSUB132Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),

    [0xa8] = X86_OP_ENTRY3(VFMADD213Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xa9] = X86_OP_ENTRY3(VFMADD213Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xaa] = X86_OP_ENTRY3(VFMSUB213Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xab] = X86_OP_ENTRY3(VFMSUB213Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xac] = X86_OP_ENTRY3(VFNMADD213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xad] = X86_OP_ENTRY3(VFNMADD213Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xae] = X86_OP_ENTRY3(VFNMSUB213Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xaf] = X86_OP_ENTRY3(VFNMSUB213Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),

    [0xb8] = X86_OP_ENTRY3(VFMADD231Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xb9] = X86_OP_ENTRY3(VFMADD231Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xba] = X86_OP_ENTRY3(VFMSUB231Px,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xbb] = X86_OP_ENTRY3(VFMSUB231Sx,  V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xbc] = X86_OP_ENTRY3(VFNMADD231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xbd] = X86_OP_ENTRY3(VFNMADD231Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xbe] = X86_OP_ENTRY3(VFNMSUB231Px, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),
    [0xbf] = X86_OP_ENTRY3(VFNMSUB231Sx, V,x,  H,x, W,x,  vex6 cpuid(FMA) p_66),

    [0xc8] = X86_OP_ENTRY2(SHA1NEXTE,   V,dq, W,dq, cpuid(SHA_NI)),
    [0xc9] = X86_OP_ENTRY2(SHA1MSG1,    V,dq, W,dq, cpuid(SHA_NI)),
    [0xca] = X86_OP_ENTRY2(SHA1MSG2,    V,dq, W,dq, cpuid(SHA_NI)),
    [0xcb] = X86_OP_ENTRY2(SHA256RNDS2, V,dq, W,dq, cpuid(SHA_NI)),
    [0xcc] = X86_OP_ENTRY2(SHA256MSG1,  V,dq, W,dq, cpuid(SHA_NI)),
    [0xcd] = X86_OP_ENTRY2(SHA256MSG2,  V,dq, W,dq, cpuid(SHA_NI)),

    [0xdb] = X86_OP_ENTRY3(VAESIMC,     V,dq, None,None, W,dq, vex4 cpuid(AES) p_66),
    [0xdc] = X86_OP_ENTRY3(VAESENC,     V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),
    [0xdd] = X86_OP_ENTRY3(VAESENCLAST, V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),
    [0xde] = X86_OP_ENTRY3(VAESDEC,     V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),
    [0xdf] = X86_OP_ENTRY3(VAESDECLAST, V,x,  H,x,       W,x,  vex4 cpuid(AES) p_66),

    /*
     * REG selects srcdest2 operand, VEX.vvvv selects src3.  VEX class not found
     * in manual, assumed to be 13 from the VEX.L0 constraint.
     */
    [0xe0] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
    [0xe1] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
    [0xe2] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
    [0xe3] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
    [0xe4] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
    [0xe5] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
    [0xe6] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
    [0xe7] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),

    [0xe8] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
    [0xe9] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
    [0xea] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
    [0xeb] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
    [0xec] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
    [0xed] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
    [0xee] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
    [0xef] = X86_OP_ENTRY3(CMPccXADD,   M,y, G,y, B,y,  vex13 xchg chk(o64) cpuid(CMPCCXADD) p_66),
};

/* five rows for no prefix, 66, F3, F2, 66+F2  */
static const X86OpEntry opcodes_0F38_F0toFF[16][5] = {
    [0] = {
        X86_OP_ENTRY3(MOVBE, G,y, M,y, None,None, cpuid(MOVBE)),
        X86_OP_ENTRY3(MOVBE, G,w, M,w, None,None, cpuid(MOVBE)),
        {},
        X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)),
        X86_OP_ENTRY2(CRC32, G,d, E,b, cpuid(SSE42)),
    },
    [1] = {
        X86_OP_ENTRY3(MOVBE, M,y, G,y, None,None, cpuid(MOVBE)),
        X86_OP_ENTRY3(MOVBE, M,w, G,w, None,None, cpuid(MOVBE)),
        {},
        X86_OP_ENTRY2(CRC32, G,d, E,y, cpuid(SSE42)),
        X86_OP_ENTRY2(CRC32, G,d, E,w, cpuid(SSE42)),
    },
    [2] = {
        X86_OP_ENTRY3(ANDN, G,y, B,y, E,y, vex13 cpuid(BMI1)),
        {},
        {},
        {},
        {},
    },
    [3] = {
        X86_OP_GROUP3(group17, B,y, E,y, None,None, vex13 cpuid(BMI1)),
        {},
        {},
        {},
        {},
    },
    [5] = {
        X86_OP_ENTRY3(BZHI, G,y, E,y, B,y, vex13 cpuid(BMI1)),
        {},
        X86_OP_ENTRY3(PEXT, G,y, B,y, E,y, vex13 zextT0 cpuid(BMI2)),
        X86_OP_ENTRY3(PDEP, G,y, B,y, E,y, vex13 zextT0 cpuid(BMI2)),
        {},
    },
    [6] = {
        {},
        X86_OP_ENTRY2(ADCX, G,y, E,y, cpuid(ADX)),
        X86_OP_ENTRY2(ADOX, G,y, E,y, cpuid(ADX)),
        X86_OP_ENTRY3(MULX, /* B,y, */ G,y, E,y, 2,y, vex13 cpuid(BMI2)),
        {},
    },
    [7] = {
        X86_OP_ENTRY3(BEXTR, G,y, E,y, B,y, vex13 zextT0 cpuid(BMI1)),
        X86_OP_ENTRY3(SHLX, G,y, E,y, B,y, vex13 cpuid(BMI1)),
        X86_OP_ENTRY3(SARX, G,y, E,y, B,y, vex13 sextT0 cpuid(BMI1)),
        X86_OP_ENTRY3(SHRX, G,y, E,y, B,y, vex13 zextT0 cpuid(BMI1)),
        {},
    },
};

static void decode_0F38(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    *b = x86_ldub_code(env, s);
    if (*b < 0xf0) {
        *entry = opcodes_0F38_00toEF[*b];
    } else {
        int row = 0;
        if (s->prefix & PREFIX_REPZ) {
            /* The REPZ (F3) prefix has priority over 66 */
            row = 2;
        } else {
            row += s->prefix & PREFIX_REPNZ ? 3 : 0;
            row += s->prefix & PREFIX_DATA ? 1 : 0;
        }
        *entry = opcodes_0F38_F0toFF[*b & 15][row];
    }
}

static void decode_VINSERTPS(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry
        vinsertps_reg = X86_OP_ENTRY4(VINSERTPS_r, V,dq, H,dq, U,dq, vex5 cpuid(SSE41) p_66),
        vinsertps_mem = X86_OP_ENTRY4(VINSERTPS_m, V,dq, H,dq, M,d,  vex5 cpuid(SSE41) p_66);

    int modrm = get_modrm(s, env);
    *entry = (modrm >> 6) == 3 ? vinsertps_reg : vinsertps_mem;
}

static const X86OpEntry opcodes_0F3A[256] = {
    /*
     * These are VEX-only, but incorrectly listed in the manual as exception type 4.
     * Also the "qq" instructions are sometimes omitted by Table 2-17, but are VEX256
     * only.
     */
    [0x00] = X86_OP_ENTRY3(VPERMQ,      V,qq, W,qq, I,b,  vex6 chk(W1) cpuid(AVX2) p_66),
    [0x01] = X86_OP_ENTRY3(VPERMQ,      V,qq, W,qq, I,b,  vex6 chk(W1) cpuid(AVX2) p_66), /* VPERMPD */
    [0x02] = X86_OP_ENTRY4(VBLENDPS,    V,x,  H,x,  W,x,  vex6 chk(W0) cpuid(AVX2) p_66), /* VPBLENDD */
    [0x04] = X86_OP_ENTRY3(VPERMILPS_i, V,x,  W,x,  I,b,  vex6 chk(W0) cpuid(AVX) p_66),
    [0x05] = X86_OP_ENTRY3(VPERMILPD_i, V,x,  W,x,  I,b,  vex6 chk(W0) cpuid(AVX) p_66),
    [0x06] = X86_OP_ENTRY4(VPERM2x128,  V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX) p_66),

    [0x14] = X86_OP_ENTRY3(PEXTRB,     E,b,  V,dq, I,b,  vex5 cpuid(SSE41) op0_Rd p_66),
    [0x15] = X86_OP_ENTRY3(PEXTRW,     E,w,  V,dq, I,b,  vex5 cpuid(SSE41) op0_Rd p_66),
    [0x16] = X86_OP_ENTRY3(PEXTR,      E,y,  V,dq, I,b,  vex5 cpuid(SSE41) p_66),
    [0x17] = X86_OP_ENTRY3(VEXTRACTPS, E,d,  V,dq, I,b,  vex5 cpuid(SSE41) p_66),
    [0x1d] = X86_OP_ENTRY3(VCVTPS2PH,  W,xh, V,x,  I,b,  vex11 chk(W0) cpuid(F16C) p_66),

    [0x20] = X86_OP_ENTRY4(PINSRB,     V,dq, H,dq, E,b,  vex5 cpuid(SSE41) op2_Ry p_66),
    [0x21] = X86_OP_GROUP0(VINSERTPS),
    [0x22] = X86_OP_ENTRY4(PINSR,      V,dq, H,dq, E,y,  vex5 cpuid(SSE41) p_66),

    [0x40] = X86_OP_ENTRY4(VDDPS,      V,x,  H,x,  W,x,  vex2 cpuid(SSE41) p_66),
    [0x41] = X86_OP_ENTRY4(VDDPD,      V,dq, H,dq, W,dq, vex2 cpuid(SSE41) p_66),
    [0x42] = X86_OP_ENTRY4(VMPSADBW,   V,x,  H,x,  W,x,  vex2 cpuid(SSE41) avx2_256 p_66),
    [0x44] = X86_OP_ENTRY4(PCLMULQDQ,  V,dq, H,dq, W,dq, vex4 cpuid(PCLMULQDQ) p_66),
    [0x46] = X86_OP_ENTRY4(VPERM2x128, V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66),

    [0x60] = X86_OP_ENTRY4(PCMPESTRM,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
    [0x61] = X86_OP_ENTRY4(PCMPESTRI,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
    [0x62] = X86_OP_ENTRY4(PCMPISTRM,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),
    [0x63] = X86_OP_ENTRY4(PCMPISTRI,  None,None, V,dq, W,dq, vex4_unal cpuid(SSE42) p_66),

    [0x08] = X86_OP_ENTRY3(VROUNDPS,   V,x,  W,x,  I,b,  vex2 cpuid(SSE41) p_66),
    [0x09] = X86_OP_ENTRY3(VROUNDPD,   V,x,  W,x,  I,b,  vex2 cpuid(SSE41) p_66),
    /*
     * Not listed as four operand in the manual.  Also writes and reads 128-bits
     * from the first two operands due to the V operand picking higher entries of
     * the H operand; the "Vss,Hss,Wss" description from the manual is incorrect.
     * For other unary operations such as VSQRTSx this is hidden by the "REPScalar"
     * value of vex_special, because the table lists the operand types of VSQRTPx.
     */
    [0x0a] = X86_OP_ENTRY4(VROUNDSS,   V,x,  H,x, W,ss, vex3 cpuid(SSE41) p_66),
    [0x0b] = X86_OP_ENTRY4(VROUNDSD,   V,x,  H,x, W,sd, vex3 cpuid(SSE41) p_66),
    [0x0c] = X86_OP_ENTRY4(VBLENDPS,   V,x,  H,x,  W,x,  vex4 cpuid(SSE41) p_66),
    [0x0d] = X86_OP_ENTRY4(VBLENDPD,   V,x,  H,x,  W,x,  vex4 cpuid(SSE41) p_66),
    [0x0e] = X86_OP_ENTRY4(VPBLENDW,   V,x,  H,x,  W,x,  vex4 cpuid(SSE41) avx2_256 p_66),
    [0x0f] = X86_OP_ENTRY4(PALIGNR,    V,x,  H,x,  W,x,  vex4 cpuid(SSSE3) mmx avx2_256 p_00_66),

    [0x18] = X86_OP_ENTRY4(VINSERTx128,  V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX) p_66),
    [0x19] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b,  vex6 chk(W0) cpuid(AVX) p_66),

    [0x38] = X86_OP_ENTRY4(VINSERTx128,  V,qq, H,qq, W,qq, vex6 chk(W0) cpuid(AVX2) p_66),
    [0x39] = X86_OP_ENTRY3(VEXTRACTx128, W,dq, V,qq, I,b,  vex6 chk(W0) cpuid(AVX2) p_66),

    /* Listed incorrectly as type 4 */
    [0x4a] = X86_OP_ENTRY4(VBLENDVPS, V,x,  H,x,  W,x,   vex6 chk(W0) cpuid(AVX) p_66),
    [0x4b] = X86_OP_ENTRY4(VBLENDVPD, V,x,  H,x,  W,x,   vex6 chk(W0) cpuid(AVX) p_66),
    [0x4c] = X86_OP_ENTRY4(VPBLENDVB, V,x,  H,x,  W,x,   vex6 chk(W0) cpuid(AVX) p_66 avx2_256),

    [0xcc] = X86_OP_ENTRY3(SHA1RNDS4,  V,dq, W,dq, I,b,  cpuid(SHA_NI)),

    [0xdf] = X86_OP_ENTRY3(VAESKEYGEN, V,dq, W,dq, I,b,  vex4 cpuid(AES) p_66),

    [0xF0] = X86_OP_ENTRY3(RORX, G,y, E,y, I,b, vex13 cpuid(BMI2) p_f2),
};

static void decode_0F3A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    *b = x86_ldub_code(env, s);
    *entry = opcodes_0F3A[*b];
}

/*
 * There are some mistakes in the operands in the manual, and the load/store/register
 * cases are easiest to keep separate, so the entries for 10-17 follow simplicity and
 * efficiency of implementation rather than copying what the manual says.
 *
 * In particular:
 *
 * 1) "VMOVSS m32, xmm1" and "VMOVSD m64, xmm1" do not support VEX.vvvv != 1111b,
 * but this is not mentioned in the tables.
 *
 * 2) MOVHLPS, MOVHPS, MOVHPD, MOVLPD, MOVLPS read the high quadword of one of their
 * operands, which must therefore be dq; MOVLPD and MOVLPS also write the high
 * quadword of the V operand.
 */
static void decode_0F10(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_0F10_reg[4] = {
        X86_OP_ENTRY3(MOVDQ,   V,x,  None,None, W,x, vex4_unal), /* MOVUPS */
        X86_OP_ENTRY3(MOVDQ,   V,x,  None,None, W,x, vex4_unal), /* MOVUPD */
        X86_OP_ENTRY3(VMOVSS,  V,x,  H,x,       W,x, vex5),
        X86_OP_ENTRY3(VMOVLPx, V,x,  H,x,       W,x, vex5), /* MOVSD */
    };

    static const X86OpEntry opcodes_0F10_mem[4] = {
        X86_OP_ENTRY3(MOVDQ,      V,x,  None,None, W,x,  vex4_unal), /* MOVUPS */
        X86_OP_ENTRY3(MOVDQ,      V,x,  None,None, W,x,  vex4_unal), /* MOVUPD */
        X86_OP_ENTRY3(VMOVSS_ld,  V,x,  H,x,       M,ss, vex5),
        X86_OP_ENTRY3(VMOVSD_ld,  V,x,  H,x,       M,sd, vex5),
    };

    if ((get_modrm(s, env) >> 6) == 3) {
        *entry = *decode_by_prefix(s, opcodes_0F10_reg);
    } else {
        *entry = *decode_by_prefix(s, opcodes_0F10_mem);
    }
}

static void decode_0F11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_0F11_reg[4] = {
        X86_OP_ENTRY3(MOVDQ,   W,x,  None,None, V,x, vex4), /* MOVUPS */
        X86_OP_ENTRY3(MOVDQ,   W,x,  None,None, V,x, vex4), /* MOVUPD */
        X86_OP_ENTRY3(VMOVSS,  W,x,  H,x,       V,x, vex5),
        X86_OP_ENTRY3(VMOVLPx, W,x,  H,x,       V,q, vex5), /* MOVSD */
    };

    static const X86OpEntry opcodes_0F11_mem[4] = {
        X86_OP_ENTRY3(MOVDQ,      W,x,  None,None, V,x, vex4), /* MOVUPS */
        X86_OP_ENTRY3(MOVDQ,      W,x,  None,None, V,x, vex4), /* MOVUPD */
        X86_OP_ENTRY3(VMOVSS_st,  M,ss, None,None, V,x, vex5),
        X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex5), /* MOVSD */
    };

    if ((get_modrm(s, env) >> 6) == 3) {
        *entry = *decode_by_prefix(s, opcodes_0F11_reg);
    } else {
        *entry = *decode_by_prefix(s, opcodes_0F11_mem);
    }
}

static void decode_0F12(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_0F12_mem[4] = {
        /*
         * Use dq for operand for compatibility with gen_MOVSD and
         * to allow VEX128 only.
         */
        X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVLPS */
        X86_OP_ENTRY3(VMOVLPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVLPD */
        X86_OP_ENTRY3(VMOVSLDUP,  V,x,  None,None, W,x, vex4 cpuid(SSE3)),
        X86_OP_ENTRY3(VMOVDDUP,   V,x,  None,None, WM,q, vex5 cpuid(SSE3)), /* qq if VEX.256 */
    };
    static const X86OpEntry opcodes_0F12_reg[4] = {
        X86_OP_ENTRY3(VMOVHLPS,  V,dq, H,dq,       U,dq, vex7),
        X86_OP_ENTRY3(VMOVLPx,   W,x,  H,x,        U,q,  vex5), /* MOVLPD */
        X86_OP_ENTRY3(VMOVSLDUP, V,x,  None,None,  U,x,  vex4 cpuid(SSE3)),
        X86_OP_ENTRY3(VMOVDDUP,  V,x,  None,None,  U,x,  vex5 cpuid(SSE3)),
    };

    if ((get_modrm(s, env) >> 6) == 3) {
        *entry = *decode_by_prefix(s, opcodes_0F12_reg);
    } else {
        *entry = *decode_by_prefix(s, opcodes_0F12_mem);
        if ((s->prefix & PREFIX_REPNZ) && s->vex_l) {
            entry->s2 = X86_SIZE_qq;
        }
    }
}

static void decode_0F16(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_0F16_mem[4] = {
        /*
         * Operand 1 technically only reads the low 64 bits, but uses dq so that
         * it is easier to check for op0 == op1 in an endianness-neutral manner.
         */
        X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVHPS */
        X86_OP_ENTRY3(VMOVHPx_ld, V,dq, H,dq,      M,q, vex5), /* MOVHPD */
        X86_OP_ENTRY3(VMOVSHDUP,  V,x,  None,None, W,x, vex4 cpuid(SSE3)),
        {},
    };
    static const X86OpEntry opcodes_0F16_reg[4] = {
        /* Same as above, operand 1 could be Hq if it wasn't for big-endian.  */
        X86_OP_ENTRY3(VMOVLHPS,  V,dq, H,dq,      U,q, vex7),
        X86_OP_ENTRY3(VMOVHPx,   V,x,  H,x,       U,x, vex5), /* MOVHPD */
        X86_OP_ENTRY3(VMOVSHDUP, V,x,  None,None, U,x, vex4 cpuid(SSE3)),
        {},
    };

    if ((get_modrm(s, env) >> 6) == 3) {
        *entry = *decode_by_prefix(s, opcodes_0F16_reg);
    } else {
        *entry = *decode_by_prefix(s, opcodes_0F16_mem);
    }
}

static void decode_0F2A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_0F2A[4] = {
        X86_OP_ENTRY3(CVTPI2Px,  V,x,  None,None, Q,q),
        X86_OP_ENTRY3(CVTPI2Px,  V,x,  None,None, Q,q),
        X86_OP_ENTRY3(VCVTSI2Sx, V,x,  H,x, E,y,        vex3),
        X86_OP_ENTRY3(VCVTSI2Sx, V,x,  H,x, E,y,        vex3),
    };
    *entry = *decode_by_prefix(s, opcodes_0F2A);
}

static void decode_0F2B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_0F2B[4] = {
        X86_OP_ENTRY3(MOVDQ,      M,x,  None,None, V,x, vex1), /* MOVNTPS */
        X86_OP_ENTRY3(MOVDQ,      M,x,  None,None, V,x, vex1), /* MOVNTPD */
        /* AMD extensions */
        X86_OP_ENTRY3(VMOVSS_st,  M,ss, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSS */
        X86_OP_ENTRY3(VMOVLPx_st, M,sd, None,None, V,x, vex4 cpuid(SSE4A)), /* MOVNTSD */
    };

    *entry = *decode_by_prefix(s, opcodes_0F2B);
}

static void decode_0F2C(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_0F2C[4] = {
        /* Listed as ps/pd in the manual, but CVTTPS2PI only reads 64-bit.  */
        X86_OP_ENTRY3(CVTTPx2PI,  P,q,  None,None, W,q),
        X86_OP_ENTRY3(CVTTPx2PI,  P,q,  None,None, W,dq),
        X86_OP_ENTRY3(VCVTTSx2SI, G,y,  None,None, W,ss, vex3),
        X86_OP_ENTRY3(VCVTTSx2SI, G,y,  None,None, W,sd, vex3),
    };
    *entry = *decode_by_prefix(s, opcodes_0F2C);
}

static void decode_0F2D(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_0F2D[4] = {
        /* Listed as ps/pd in the manual, but CVTPS2PI only reads 64-bit.  */
        X86_OP_ENTRY3(CVTPx2PI,  P,q,  None,None, W,q),
        X86_OP_ENTRY3(CVTPx2PI,  P,q,  None,None, W,dq),
        X86_OP_ENTRY3(VCVTSx2SI, G,y,  None,None, W,ss, vex3),
        X86_OP_ENTRY3(VCVTSx2SI, G,y,  None,None, W,sd, vex3),
    };
    *entry = *decode_by_prefix(s, opcodes_0F2D);
}

static void decode_VxCOMISx(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    /*
     * VUCOMISx and VCOMISx are different and use no-prefix and 0x66 for SS and SD
     * respectively.  Scalar values usually are associated with 0xF2 and 0xF3, for
     * which X86_VEX_REPScalar exists, but here it has to be decoded by hand.
     */
    entry->s1 = entry->s2 = (s->prefix & PREFIX_DATA ? X86_SIZE_sd : X86_SIZE_ss);
    entry->gen = (*b == 0x2E ? gen_VUCOMI : gen_VCOMI);
}

static void decode_sse_unary(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    if (!(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ))) {
        entry->op1 = X86_TYPE_None;
        entry->s1 = X86_SIZE_None;
    }
    switch (*b) {
    case 0x51: entry->gen = gen_VSQRT; break;
    case 0x52: entry->gen = gen_VRSQRT; break;
    case 0x53: entry->gen = gen_VRCP; break;
    }
}

static void decode_0F5A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_0F5A[4] = {
        X86_OP_ENTRY2(VCVTPS2PD,  V,x,       W,xh, vex2),      /* VCVTPS2PD */
        X86_OP_ENTRY2(VCVTPD2PS,  V,x,       W,x,  vex2),      /* VCVTPD2PS */
        X86_OP_ENTRY3(VCVTSS2SD,  V,x,  H,x, W,x,  vex2_rep3), /* VCVTSS2SD */
        X86_OP_ENTRY3(VCVTSD2SS,  V,x,  H,x, W,x,  vex2_rep3), /* VCVTSD2SS */
    };
    *entry = *decode_by_prefix(s, opcodes_0F5A);
}

static void decode_0F5B(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_0F5B[4] = {
        X86_OP_ENTRY2(VCVTDQ2PS,   V,x, W,x,      vex2),
        X86_OP_ENTRY2(VCVTPS2DQ,   V,x, W,x,      vex2),
        X86_OP_ENTRY2(VCVTTPS2DQ,  V,x, W,x,      vex2),
        {},
    };
    *entry = *decode_by_prefix(s, opcodes_0F5B);
}

static void decode_0FE6(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_0FE6[4] = {
        {},
        X86_OP_ENTRY2(VCVTTPD2DQ,  V,x, W,x,      vex2),
        X86_OP_ENTRY2(VCVTDQ2PD,   V,x, W,x,      vex5),
        X86_OP_ENTRY2(VCVTPD2DQ,   V,x, W,x,      vex2),
    };
    *entry = *decode_by_prefix(s, opcodes_0FE6);
}

static const X86OpEntry opcodes_0F[256] = {
    [0x0E] = X86_OP_ENTRY0(EMMS,                              cpuid(3DNOW)), /* femms */
    /*
     * 3DNow!'s opcode byte comes *after* modrm and displacements, making it
     * more like an Ib operand.  Dispatch to the right helper in a single gen_*
     * function.
     */
    [0x0F] = X86_OP_ENTRY3(3dnow,       P,q, Q,q, I,b,        cpuid(3DNOW)),

    [0x10] = X86_OP_GROUP0(0F10),
    [0x11] = X86_OP_GROUP0(0F11),
    [0x12] = X86_OP_GROUP0(0F12),
    [0x13] = X86_OP_ENTRY3(VMOVLPx_st,  M,q, None,None, V,q,  vex5 p_00_66),
    [0x14] = X86_OP_ENTRY3(VUNPCKLPx,   V,x, H,x, W,x,        vex4 p_00_66),
    [0x15] = X86_OP_ENTRY3(VUNPCKHPx,   V,x, H,x, W,x,        vex4 p_00_66),
    [0x16] = X86_OP_GROUP0(0F16),
    /* Incorrectly listed as Mq,Vq in the manual */
    [0x17] = X86_OP_ENTRY3(VMOVHPx_st,  M,q, None,None, V,dq, vex5 p_00_66),

    [0x40] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
    [0x41] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
    [0x42] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
    [0x43] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
    [0x44] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
    [0x45] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
    [0x46] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
    [0x47] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),

    [0x50] = X86_OP_ENTRY3(MOVMSK,     G,y, None,None, U,x, vex7 p_00_66),
    [0x51] = X86_OP_GROUP3(sse_unary,  V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2), /* sqrtps */
    [0x52] = X86_OP_GROUP3(sse_unary,  V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rsqrtps */
    [0x53] = X86_OP_GROUP3(sse_unary,  V,x, H,x, W,x, vex4_rep5 p_00_f3), /* rcpps */
    [0x54] = X86_OP_ENTRY3(PAND,       V,x, H,x, W,x,  vex4 p_00_66), /* vand */
    [0x55] = X86_OP_ENTRY3(PANDN,      V,x, H,x, W,x,  vex4 p_00_66), /* vandn */
    [0x56] = X86_OP_ENTRY3(POR,        V,x, H,x, W,x,  vex4 p_00_66), /* vor */
    [0x57] = X86_OP_ENTRY3(PXOR,       V,x, H,x, W,x,  vex4 p_00_66), /* vxor */

    [0x60] = X86_OP_ENTRY3(PUNPCKLBW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0x61] = X86_OP_ENTRY3(PUNPCKLWD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0x62] = X86_OP_ENTRY3(PUNPCKLDQ,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0x63] = X86_OP_ENTRY3(PACKSSWB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0x64] = X86_OP_ENTRY3(PCMPGTB,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0x65] = X86_OP_ENTRY3(PCMPGTW,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0x66] = X86_OP_ENTRY3(PCMPGTD,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0x67] = X86_OP_ENTRY3(PACKUSWB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),

    [0x70] = X86_OP_GROUP0(0F70),
    [0x71] = X86_OP_GROUP0(group12),
    [0x72] = X86_OP_GROUP0(group13),
    [0x73] = X86_OP_GROUP0(group14),
    [0x74] = X86_OP_ENTRY3(PCMPEQB,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0x75] = X86_OP_ENTRY3(PCMPEQW,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0x76] = X86_OP_ENTRY3(PCMPEQD,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0x77] = X86_OP_GROUP0(0F77),

    [0x80] = X86_OP_ENTRYr(Jcc, J,z_f64),
    [0x81] = X86_OP_ENTRYr(Jcc, J,z_f64),
    [0x82] = X86_OP_ENTRYr(Jcc, J,z_f64),
    [0x83] = X86_OP_ENTRYr(Jcc, J,z_f64),
    [0x84] = X86_OP_ENTRYr(Jcc, J,z_f64),
    [0x85] = X86_OP_ENTRYr(Jcc, J,z_f64),
    [0x86] = X86_OP_ENTRYr(Jcc, J,z_f64),
    [0x87] = X86_OP_ENTRYr(Jcc, J,z_f64),

    [0x90] = X86_OP_ENTRYw(SETcc, E,b),
    [0x91] = X86_OP_ENTRYw(SETcc, E,b),
    [0x92] = X86_OP_ENTRYw(SETcc, E,b),
    [0x93] = X86_OP_ENTRYw(SETcc, E,b),
    [0x94] = X86_OP_ENTRYw(SETcc, E,b),
    [0x95] = X86_OP_ENTRYw(SETcc, E,b),
    [0x96] = X86_OP_ENTRYw(SETcc, E,b),
    [0x97] = X86_OP_ENTRYw(SETcc, E,b),

    [0xa0] = X86_OP_ENTRYr(PUSH, FS, w),
    [0xa1] = X86_OP_ENTRYw(POP, FS, w),

    [0x0b] = X86_OP_ENTRY0(UD),           /* UD2 */
    [0x0d] = X86_OP_ENTRY1(NOP,  M,v),    /* 3DNow! prefetch */

    [0x18] = X86_OP_ENTRY1(NOP,  nop,v),  /* prefetch/reserved NOP */
    [0x19] = X86_OP_ENTRY1(NOP,  nop,v),  /* reserved NOP */
    [0x1c] = X86_OP_ENTRY1(NOP,  nop,v),  /* reserved NOP */
    [0x1d] = X86_OP_ENTRY1(NOP,  nop,v),  /* reserved NOP */
    [0x1e] = X86_OP_ENTRY1(NOP,  nop,v),  /* reserved NOP */
    [0x1f] = X86_OP_ENTRY1(NOP,  nop,v),  /* NOP/reserved NOP */

    [0x28] = X86_OP_ENTRY3(MOVDQ,      V,x,  None,None, W,x, vex1 p_00_66), /* MOVAPS */
    [0x29] = X86_OP_ENTRY3(MOVDQ,      W,x,  None,None, V,x, vex1 p_00_66), /* MOVAPS */
    [0x2A] = X86_OP_GROUP0(0F2A),
    [0x2B] = X86_OP_GROUP0(0F2B),
    [0x2C] = X86_OP_GROUP0(0F2C),
    [0x2D] = X86_OP_GROUP0(0F2D),
    [0x2E] = X86_OP_GROUP3(VxCOMISx,   None,None, V,x, W,x,  vex3 p_00_66), /* VUCOMISS/SD */
    [0x2F] = X86_OP_GROUP3(VxCOMISx,   None,None, V,x, W,x,  vex3 p_00_66), /* VCOMISS/SD */

    [0x38] = X86_OP_GROUP0(0F38),
    [0x3a] = X86_OP_GROUP0(0F3A),

    [0x48] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
    [0x49] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
    [0x4a] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
    [0x4b] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
    [0x4c] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
    [0x4d] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
    [0x4e] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),
    [0x4f] = X86_OP_ENTRY2(CMOVcc,     G,v, E,v, cpuid(CMOV)),

    [0x58] = X86_OP_ENTRY3(VADD,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
    [0x59] = X86_OP_ENTRY3(VMUL,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
    [0x5a] = X86_OP_GROUP0(0F5A),
    [0x5b] = X86_OP_GROUP0(0F5B),
    [0x5c] = X86_OP_ENTRY3(VSUB,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
    [0x5d] = X86_OP_ENTRY3(VMIN,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
    [0x5e] = X86_OP_ENTRY3(VDIV,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),
    [0x5f] = X86_OP_ENTRY3(VMAX,       V,x, H,x, W,x, vex2_rep3 p_00_66_f3_f2),

    [0x68] = X86_OP_ENTRY3(PUNPCKHBW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0x69] = X86_OP_ENTRY3(PUNPCKHWD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0x6a] = X86_OP_ENTRY3(PUNPCKHDQ,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0x6b] = X86_OP_ENTRY3(PACKSSDW,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0x6c] = X86_OP_ENTRY3(PUNPCKLQDQ, V,x, H,x, W,x,  vex4 p_66 avx2_256),
    [0x6d] = X86_OP_ENTRY3(PUNPCKHQDQ, V,x, H,x, W,x,  vex4 p_66 avx2_256),
    [0x6e] = X86_OP_ENTRY3(MOVD_to,    V,x, None,None, E,y, vex5 mmx p_00_66),  /* wrong dest Vy on SDM! */
    [0x6f] = X86_OP_GROUP0(0F6F),

    [0x78] = X86_OP_GROUP0(0F78),
    [0x79] = X86_OP_GROUP2(0F79,       V,x, U,x,       cpuid(SSE4A)),
    [0x7c] = X86_OP_ENTRY3(VHADD,      V,x, H,x, W,x,  vex2 cpuid(SSE3) p_66_f2),
    [0x7d] = X86_OP_ENTRY3(VHSUB,      V,x, H,x, W,x,  vex2 cpuid(SSE3) p_66_f2),
    [0x7e] = X86_OP_GROUP0(0F7E),
    [0x7f] = X86_OP_GROUP0(0F7F),

    [0x88] = X86_OP_ENTRYr(Jcc, J,z_f64),
    [0x89] = X86_OP_ENTRYr(Jcc, J,z_f64),
    [0x8a] = X86_OP_ENTRYr(Jcc, J,z_f64),
    [0x8b] = X86_OP_ENTRYr(Jcc, J,z_f64),
    [0x8c] = X86_OP_ENTRYr(Jcc, J,z_f64),
    [0x8d] = X86_OP_ENTRYr(Jcc, J,z_f64),
    [0x8e] = X86_OP_ENTRYr(Jcc, J,z_f64),
    [0x8f] = X86_OP_ENTRYr(Jcc, J,z_f64),

    [0x98] = X86_OP_ENTRYw(SETcc, E,b),
    [0x99] = X86_OP_ENTRYw(SETcc, E,b),
    [0x9a] = X86_OP_ENTRYw(SETcc, E,b),
    [0x9b] = X86_OP_ENTRYw(SETcc, E,b),
    [0x9c] = X86_OP_ENTRYw(SETcc, E,b),
    [0x9d] = X86_OP_ENTRYw(SETcc, E,b),
    [0x9e] = X86_OP_ENTRYw(SETcc, E,b),
    [0x9f] = X86_OP_ENTRYw(SETcc, E,b),

    [0xa8] = X86_OP_ENTRYr(PUSH,   GS, w),
    [0xa9] = X86_OP_ENTRYw(POP,    GS, w),
    [0xae] = X86_OP_GROUP0(group15),
    /*
     * It's slightly more efficient to put Ev operand in T0 and allow gen_IMUL3
     * to assume sextT0.  Multiplication is commutative anyway.
     */
    [0xaf] = X86_OP_ENTRY3(IMUL3,  G,v, E,v, 2op,v, sextT0),

    [0xb2] = X86_OP_ENTRY3(LSS,    G,v, EM,p, None, None),
    [0xb4] = X86_OP_ENTRY3(LFS,    G,v, EM,p, None, None),
    [0xb5] = X86_OP_ENTRY3(LGS,    G,v, EM,p, None, None),
    [0xb6] = X86_OP_ENTRY3(MOV,    G,v, E,b, None, None, zextT0), /* MOVZX */
    [0xb7] = X86_OP_ENTRY3(MOV,    G,v, E,w, None, None, zextT0), /* MOVZX */

    /* decoded as modrm, which is visible as a difference between page fault and #UD */
    [0xb9] = X86_OP_ENTRYr(UD,     nop,v),                        /* UD1 */
    [0xbe] = X86_OP_ENTRY3(MOV,    G,v, E,b, None, None, sextT0), /* MOVSX */
    [0xbf] = X86_OP_ENTRY3(MOV,    G,v, E,w, None, None, sextT0), /* MOVSX */

    [0xc2] = X86_OP_ENTRY4(VCMP,       V,x, H,x, W,x,       vex2_rep3 p_00_66_f3_f2),
    [0xc3] = X86_OP_ENTRY3(MOV,        EM,y,G,y, None,None, cpuid(SSE2)), /* MOVNTI */
    [0xc4] = X86_OP_ENTRY4(PINSRW,     V,dq,H,dq,E,w,       vex5 mmx p_00_66),
    [0xc5] = X86_OP_ENTRY3(PEXTRW,     G,d, U,dq,I,b,       vex5 mmx p_00_66),
    [0xc6] = X86_OP_ENTRY4(VSHUF,      V,x, H,x, W,x,       vex4 p_00_66),

    [0xc8] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
    [0xc9] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
    [0xca] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
    [0xcb] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
    [0xcc] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
    [0xcd] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
    [0xce] = X86_OP_ENTRY1(BSWAP,     LoBits,y),
    [0xcf] = X86_OP_ENTRY1(BSWAP,     LoBits,y),

    [0xd0] = X86_OP_ENTRY3(VADDSUB,   V,x, H,x, W,x,        vex2 cpuid(SSE3) p_66_f2),
    [0xd1] = X86_OP_ENTRY3(PSRLW_r,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
    [0xd2] = X86_OP_ENTRY3(PSRLD_r,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
    [0xd3] = X86_OP_ENTRY3(PSRLQ_r,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
    [0xd4] = X86_OP_ENTRY3(PADDQ,     V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
    [0xd5] = X86_OP_ENTRY3(PMULLW,    V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
    [0xd6] = X86_OP_GROUP0(0FD6),
    [0xd7] = X86_OP_ENTRY3(PMOVMSKB,  G,d, None,None, U,x,  vex7 mmx avx2_256 p_00_66),

    [0xe0] = X86_OP_ENTRY3(PAVGB,     V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
    [0xe1] = X86_OP_ENTRY3(PSRAW_r,   V,x, H,x, W,x,        vex7 mmx avx2_256 p_00_66),
    [0xe2] = X86_OP_ENTRY3(PSRAD_r,   V,x, H,x, W,x,        vex7 mmx avx2_256 p_00_66),
    [0xe3] = X86_OP_ENTRY3(PAVGW,     V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
    [0xe4] = X86_OP_ENTRY3(PMULHUW,   V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
    [0xe5] = X86_OP_ENTRY3(PMULHW,    V,x, H,x, W,x,        vex4 mmx avx2_256 p_00_66),
    [0xe6] = X86_OP_GROUP0(0FE6),
    [0xe7] = X86_OP_ENTRY3(MOVDQ,     W,x, None,None, V,x,  vex1 mmx p_00_66), /* MOVNTQ/MOVNTDQ */

    [0xf0] = X86_OP_ENTRY3(MOVDQ,    V,x, None,None, WM,x,  vex4_unal cpuid(SSE3) p_f2), /* LDDQU */
    [0xf1] = X86_OP_ENTRY3(PSLLW_r,  V,x, H,x, W,x,         vex7 mmx avx2_256 p_00_66),
    [0xf2] = X86_OP_ENTRY3(PSLLD_r,  V,x, H,x, W,x,         vex7 mmx avx2_256 p_00_66),
    [0xf3] = X86_OP_ENTRY3(PSLLQ_r,  V,x, H,x, W,x,         vex7 mmx avx2_256 p_00_66),
    [0xf4] = X86_OP_ENTRY3(PMULUDQ,  V,x, H,x, W,x,         vex4 mmx avx2_256 p_00_66),
    [0xf5] = X86_OP_ENTRY3(PMADDWD,  V,x, H,x, W,x,         vex4 mmx avx2_256 p_00_66),
    [0xf6] = X86_OP_ENTRY3(PSADBW,   V,x, H,x, W,x,         vex4 mmx avx2_256 p_00_66),
    [0xf7] = X86_OP_ENTRY3(MASKMOV,  None,None, V,dq, U,dq, vex4_unal avx2_256 mmx p_00_66),

    /* Incorrectly missing from 2-17 */
    [0xd8] = X86_OP_ENTRY3(PSUBUSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xd9] = X86_OP_ENTRY3(PSUBUSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xda] = X86_OP_ENTRY3(PMINUB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xdb] = X86_OP_ENTRY3(PAND,     V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xdc] = X86_OP_ENTRY3(PADDUSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xdd] = X86_OP_ENTRY3(PADDUSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xde] = X86_OP_ENTRY3(PMAXUB,   V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xdf] = X86_OP_ENTRY3(PANDN,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),

    [0xe8] = X86_OP_ENTRY3(PSUBSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xe9] = X86_OP_ENTRY3(PSUBSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xea] = X86_OP_ENTRY3(PMINSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xeb] = X86_OP_ENTRY3(POR,     V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xec] = X86_OP_ENTRY3(PADDSB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xed] = X86_OP_ENTRY3(PADDSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xee] = X86_OP_ENTRY3(PMAXSW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xef] = X86_OP_ENTRY3(PXOR,    V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),

    [0xf8] = X86_OP_ENTRY3(PSUBB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xf9] = X86_OP_ENTRY3(PSUBW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xfa] = X86_OP_ENTRY3(PSUBD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xfb] = X86_OP_ENTRY3(PSUBQ,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xfc] = X86_OP_ENTRY3(PADDB,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xfd] = X86_OP_ENTRY3(PADDW,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xfe] = X86_OP_ENTRY3(PADDD,  V,x, H,x, W,x,  vex4 mmx avx2_256 p_00_66),
    [0xff] = X86_OP_ENTRYr(UD,     nop,v),                        /* UD0 */
};

static void do_decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    *entry = opcodes_0F[*b];
}

static void decode_0F(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    *b = x86_ldub_code(env, s);
    do_decode_0F(s, env, entry, b);
}

static void decode_63(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry arpl = X86_OP_ENTRY2(ARPL, E,w, G,w, chk(prot));
    static const X86OpEntry mov = X86_OP_ENTRY3(MOV, G,v, E,v, None, None);
    static const X86OpEntry movsxd = X86_OP_ENTRY3(MOV, G,v, E,d, None, None, sextT0);
    if (!CODE64(s)) {
        *entry = arpl;
    } else if (REX_W(s)) {
        *entry = movsxd;
    } else {
        *entry = mov;
    }
}

static void decode_group1(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86GenFunc group1_gen[8] = {
        gen_ADD, gen_OR, gen_ADC, gen_SBB, gen_AND, gen_SUB, gen_XOR, gen_SUB,
    };
    int op = (get_modrm(s, env) >> 3) & 7;
    entry->gen = group1_gen[op];

    if (op == 7) {
        /* prevent writeback for CMP */
        entry->op1 = entry->op0;
        entry->op0 = X86_TYPE_None;
        entry->s0 = X86_SIZE_None;
    } else {
        entry->special = X86_SPECIAL_HasLock;
    }
}

static void decode_group1A(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    int op = (get_modrm(s, env) >> 3) & 7;
    if (op != 0) {
        /* could be XOP prefix too */
        *entry = UNKNOWN_OPCODE;
    } else {
        entry->gen = gen_POP;
        /* The address must use the value of ESP after the pop.  */
        s->popl_esp_hack = 1 << mo_pushpop(s, s->dflag);
    }
}

static void decode_group2(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86GenFunc group2_gen[8] = {
        gen_ROL, gen_ROR, gen_RCL, gen_RCR,
        gen_SHL, gen_SHR, gen_SHL /* SAL, undocumented */, gen_SAR,
    };
    int op = (get_modrm(s, env) >> 3) & 7;
    entry->gen = group2_gen[op];
    if (op == 7) {
        entry->special = X86_SPECIAL_SExtT0;
    } else {
        entry->special = X86_SPECIAL_ZExtT0;
    }
}

static void decode_group3(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_grp3[16] = {
        /* 0xf6 */
        [0x00] = X86_OP_ENTRYrr(AND, E,b, I,b),
        [0x02] = X86_OP_ENTRY1(NOT,  E,b,      lock),
        [0x03] = X86_OP_ENTRY1(NEG,  E,b,      lock),
        [0x04] = X86_OP_ENTRYrr(MUL, E,b, 0,b, zextT0),
        [0x05] = X86_OP_ENTRYrr(IMUL,E,b, 0,b, sextT0),
        [0x06] = X86_OP_ENTRYr(DIV,  E,b),
        [0x07] = X86_OP_ENTRYr(IDIV, E,b),

        /* 0xf7 */
        [0x08] = X86_OP_ENTRYrr(AND, E,v, I,z),
        [0x0a] = X86_OP_ENTRY1(NOT,  E,v,      lock),
        [0x0b] = X86_OP_ENTRY1(NEG,  E,v,      lock),
        [0x0c] = X86_OP_ENTRYrr(MUL, E,v, 0,v, zextT0),
        [0x0d] = X86_OP_ENTRYrr(IMUL,E,v, 0,v, sextT0),
        [0x0e] = X86_OP_ENTRYr(DIV,  E,v),
        [0x0f] = X86_OP_ENTRYr(IDIV, E,v),
    };

    int w = (*b & 1);
    int reg = (get_modrm(s, env) >> 3) & 7;

    *entry = opcodes_grp3[(w << 3) | reg];
}

static void decode_group4_5(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    static const X86OpEntry opcodes_grp4_5[16] = {
        /* 0xfe */
        [0x00] = X86_OP_ENTRY1(INC,     E,b,                           lock),
        [0x01] = X86_OP_ENTRY1(DEC,     E,b,                           lock),

        /* 0xff */
        [0x08] = X86_OP_ENTRY1(INC,     E,v,                           lock),
        [0x09] = X86_OP_ENTRY1(DEC,     E,v,                           lock),
        [0x0a] = X86_OP_ENTRY3(CALL_m,  None, None, E,f64, None, None, zextT0),
        [0x0b] = X86_OP_ENTRYr(CALLF_m, M,p),
        [0x0c] = X86_OP_ENTRY3(JMP_m,   None, None, E,f64, None, None, zextT0),
        [0x0d] = X86_OP_ENTRYr(JMPF_m,  M,p),
        [0x0e] = X86_OP_ENTRYr(PUSH,    E,f64),
    };

    int w = (*b & 1);
    int reg = (get_modrm(s, env) >> 3) & 7;

    *entry = opcodes_grp4_5[(w << 3) | reg];
}


static void decode_group11(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    int op = (get_modrm(s, env) >> 3) & 7;
    if (op != 0) {
        *entry = UNKNOWN_OPCODE;
    } else {
        entry->gen = gen_MOV;
    }
}

static const X86OpEntry opcodes_root[256] = {
    [0x00] = X86_OP_ENTRY2(ADD, E,b, G,b, lock),
    [0x01] = X86_OP_ENTRY2(ADD, E,v, G,v, lock),
    [0x02] = X86_OP_ENTRY2(ADD, G,b, E,b, lock),
    [0x03] = X86_OP_ENTRY2(ADD, G,v, E,v, lock),
    [0x04] = X86_OP_ENTRY2(ADD, 0,b, I,b, lock),   /* AL, Ib */
    [0x05] = X86_OP_ENTRY2(ADD, 0,v, I,z, lock),   /* rAX, Iz */
    [0x06] = X86_OP_ENTRYr(PUSH, ES, w, chk(i64)),
    [0x07] = X86_OP_ENTRYw(POP, ES, w, chk(i64)),

    [0x10] = X86_OP_ENTRY2(ADC, E,b, G,b, lock),
    [0x11] = X86_OP_ENTRY2(ADC, E,v, G,v, lock),
    [0x12] = X86_OP_ENTRY2(ADC, G,b, E,b, lock),
    [0x13] = X86_OP_ENTRY2(ADC, G,v, E,v, lock),
    [0x14] = X86_OP_ENTRY2(ADC, 0,b, I,b, lock),   /* AL, Ib */
    [0x15] = X86_OP_ENTRY2(ADC, 0,v, I,z, lock),   /* rAX, Iz */
    [0x16] = X86_OP_ENTRYr(PUSH, SS, w, chk(i64)),
    [0x17] = X86_OP_ENTRYw(POP, SS, w, chk(i64)),

    [0x20] = X86_OP_ENTRY2(AND, E,b, G,b, lock),
    [0x21] = X86_OP_ENTRY2(AND, E,v, G,v, lock),
    [0x22] = X86_OP_ENTRY2(AND, G,b, E,b, lock),
    [0x23] = X86_OP_ENTRY2(AND, G,v, E,v, lock),
    [0x24] = X86_OP_ENTRY2(AND, 0,b, I,b, lock),   /* AL, Ib */
    [0x25] = X86_OP_ENTRY2(AND, 0,v, I,z, lock),   /* rAX, Iz */
    [0x26] = {},
    [0x27] = X86_OP_ENTRY0(DAA, chk(i64)),

    [0x30] = X86_OP_ENTRY2(XOR, E,b, G,b, lock),
    [0x31] = X86_OP_ENTRY2(XOR, E,v, G,v, lock),
    [0x32] = X86_OP_ENTRY2(XOR, G,b, E,b, lock),
    [0x33] = X86_OP_ENTRY2(XOR, G,v, E,v, lock),
    [0x34] = X86_OP_ENTRY2(XOR, 0,b, I,b, lock),   /* AL, Ib */
    [0x35] = X86_OP_ENTRY2(XOR, 0,v, I,z, lock),   /* rAX, Iz */
    [0x36] = {},
    [0x37] = X86_OP_ENTRY0(AAA, chk(i64)),

    [0x40] = X86_OP_ENTRY1(INC, 0,v, chk(i64)),
    [0x41] = X86_OP_ENTRY1(INC, 1,v, chk(i64)),
    [0x42] = X86_OP_ENTRY1(INC, 2,v, chk(i64)),
    [0x43] = X86_OP_ENTRY1(INC, 3,v, chk(i64)),
    [0x44] = X86_OP_ENTRY1(INC, 4,v, chk(i64)),
    [0x45] = X86_OP_ENTRY1(INC, 5,v, chk(i64)),
    [0x46] = X86_OP_ENTRY1(INC, 6,v, chk(i64)),
    [0x47] = X86_OP_ENTRY1(INC, 7,v, chk(i64)),

    [0x50] = X86_OP_ENTRYr(PUSH, LoBits,d64),
    [0x51] = X86_OP_ENTRYr(PUSH, LoBits,d64),
    [0x52] = X86_OP_ENTRYr(PUSH, LoBits,d64),
    [0x53] = X86_OP_ENTRYr(PUSH, LoBits,d64),
    [0x54] = X86_OP_ENTRYr(PUSH, LoBits,d64),
    [0x55] = X86_OP_ENTRYr(PUSH, LoBits,d64),
    [0x56] = X86_OP_ENTRYr(PUSH, LoBits,d64),
    [0x57] = X86_OP_ENTRYr(PUSH, LoBits,d64),

    [0x60] = X86_OP_ENTRY0(PUSHA, chk(i64)),
    [0x61] = X86_OP_ENTRY0(POPA, chk(i64)),
    [0x62] = X86_OP_ENTRYrr(BOUND, G,v, M,a, chk(i64)),
    [0x63] = X86_OP_GROUP0(63),
    [0x64] = {},
    [0x65] = {},
    [0x66] = {},
    [0x67] = {},

    [0x70] = X86_OP_ENTRYr(Jcc, J,b),
    [0x71] = X86_OP_ENTRYr(Jcc, J,b),
    [0x72] = X86_OP_ENTRYr(Jcc, J,b),
    [0x73] = X86_OP_ENTRYr(Jcc, J,b),
    [0x74] = X86_OP_ENTRYr(Jcc, J,b),
    [0x75] = X86_OP_ENTRYr(Jcc, J,b),
    [0x76] = X86_OP_ENTRYr(Jcc, J,b),
    [0x77] = X86_OP_ENTRYr(Jcc, J,b),

    [0x80] = X86_OP_GROUP2(group1, E,b, I,b),
    [0x81] = X86_OP_GROUP2(group1, E,v, I,z),
    [0x82] = X86_OP_GROUP2(group1, E,b, I,b, chk(i64)),
    [0x83] = X86_OP_GROUP2(group1, E,v, I,b),
    [0x84] = X86_OP_ENTRYrr(AND, E,b, G,b),
    [0x85] = X86_OP_ENTRYrr(AND, E,v, G,v),
    [0x86] = X86_OP_ENTRY2(XCHG, E,b, G,b, xchg),
    [0x87] = X86_OP_ENTRY2(XCHG, E,v, G,v, xchg),

    [0x90] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
    [0x91] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
    [0x92] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
    [0x93] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
    [0x94] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
    [0x95] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
    [0x96] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),
    [0x97] = X86_OP_ENTRY2(XCHG, 0,v, LoBits,v),

    [0xA0] = X86_OP_ENTRY3(MOV, 0,b, O,b, None, None), /* AL, Ob */
    [0xA1] = X86_OP_ENTRY3(MOV, 0,v, O,v, None, None), /* rAX, Ov */
    [0xA2] = X86_OP_ENTRY3(MOV, O,b, 0,b, None, None), /* Ob, AL */
    [0xA3] = X86_OP_ENTRY3(MOV, O,v, 0,v, None, None), /* Ov, rAX */
    [0xA4] = X86_OP_ENTRYrr(MOVS, Y,b, X,b),
    [0xA5] = X86_OP_ENTRYrr(MOVS, Y,v, X,v),
    [0xA6] = X86_OP_ENTRYrr(CMPS, Y,b, X,b),
    [0xA7] = X86_OP_ENTRYrr(CMPS, Y,v, X,v),

    [0xB0] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
    [0xB1] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
    [0xB2] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
    [0xB3] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
    [0xB4] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
    [0xB5] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
    [0xB6] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),
    [0xB7] = X86_OP_ENTRY3(MOV, LoBits,b, I,b, None, None),

    [0xC0] = X86_OP_GROUP2(group2, E,b, I,b),
    [0xC1] = X86_OP_GROUP2(group2, E,v, I,b),
    [0xC2] = X86_OP_ENTRYr(RET, I,w),
    [0xC3] = X86_OP_ENTRY0(RET),
    [0xC4] = X86_OP_ENTRY3(LES, G,z, EM,p, None, None, chk(i64)),
    [0xC5] = X86_OP_ENTRY3(LDS, G,z, EM,p, None, None, chk(i64)),
    [0xC6] = X86_OP_GROUP3(group11, E,b, I,b, None, None), /* reg=000b */
    [0xC7] = X86_OP_GROUP3(group11, E,v, I,z, None, None), /* reg=000b */

    [0xD0] = X86_OP_GROUP1(group2, E,b),
    [0xD1] = X86_OP_GROUP1(group2, E,v),
    [0xD2] = X86_OP_GROUP2(group2, E,b, 1,b), /* CL */
    [0xD3] = X86_OP_GROUP2(group2, E,v, 1,b), /* CL */
    [0xD4] = X86_OP_ENTRY2(AAM, 0,w, I,b),
    [0xD5] = X86_OP_ENTRY2(AAD, 0,w, I,b),
    [0xD6] = X86_OP_ENTRYw(SALC, 0,b),
    [0xD7] = X86_OP_ENTRY1(XLAT, 0,b, zextT0), /* AL read/written */

    [0xE0] = X86_OP_ENTRYr(LOOPNE, J,b), /* implicit: CX with aflag size */
    [0xE1] = X86_OP_ENTRYr(LOOPE,  J,b), /* implicit: CX with aflag size */
    [0xE2] = X86_OP_ENTRYr(LOOP,   J,b), /* implicit: CX with aflag size */
    [0xE3] = X86_OP_ENTRYr(JCXZ,   J,b), /* implicit: CX with aflag size */
    [0xE4] = X86_OP_ENTRYwr(IN,    0,b, I_unsigned,b), /* AL */
    [0xE5] = X86_OP_ENTRYwr(IN,    0,v, I_unsigned,b), /* AX/EAX */
    [0xE6] = X86_OP_ENTRYrr(OUT,   0,b, I_unsigned,b), /* AL */
    [0xE7] = X86_OP_ENTRYrr(OUT,   0,v, I_unsigned,b), /* AX/EAX */

    [0xF1] = X86_OP_ENTRY0(INT1,   svm(ICEBP)),
    [0xF4] = X86_OP_ENTRY0(HLT,    chk(cpl0)),
    [0xF5] = X86_OP_ENTRY0(CMC),
    [0xF6] = X86_OP_GROUP1(group3, E,b),
    [0xF7] = X86_OP_GROUP1(group3, E,v),

    [0x08] = X86_OP_ENTRY2(OR, E,b, G,b, lock),
    [0x09] = X86_OP_ENTRY2(OR, E,v, G,v, lock),
    [0x0A] = X86_OP_ENTRY2(OR, G,b, E,b, lock),
    [0x0B] = X86_OP_ENTRY2(OR, G,v, E,v, lock),
    [0x0C] = X86_OP_ENTRY2(OR, 0,b, I,b, lock),   /* AL, Ib */
    [0x0D] = X86_OP_ENTRY2(OR, 0,v, I,z, lock),   /* rAX, Iz */
    [0x0E] = X86_OP_ENTRYr(PUSH, CS, w, chk(i64)),
    [0x0F] = X86_OP_GROUP0(0F),

    [0x18] = X86_OP_ENTRY2(SBB, E,b, G,b, lock),
    [0x19] = X86_OP_ENTRY2(SBB, E,v, G,v, lock),
    [0x1A] = X86_OP_ENTRY2(SBB, G,b, E,b, lock),
    [0x1B] = X86_OP_ENTRY2(SBB, G,v, E,v, lock),
    [0x1C] = X86_OP_ENTRY2(SBB, 0,b, I,b, lock),   /* AL, Ib */
    [0x1D] = X86_OP_ENTRY2(SBB, 0,v, I,z, lock),   /* rAX, Iz */
    [0x1E] = X86_OP_ENTRYr(PUSH, DS, w, chk(i64)),
    [0x1F] = X86_OP_ENTRYw(POP, DS, w, chk(i64)),

    [0x28] = X86_OP_ENTRY2(SUB, E,b, G,b, lock),
    [0x29] = X86_OP_ENTRY2(SUB, E,v, G,v, lock),
    [0x2A] = X86_OP_ENTRY2(SUB, G,b, E,b, lock),
    [0x2B] = X86_OP_ENTRY2(SUB, G,v, E,v, lock),
    [0x2C] = X86_OP_ENTRY2(SUB, 0,b, I,b, lock),   /* AL, Ib */
    [0x2D] = X86_OP_ENTRY2(SUB, 0,v, I,z, lock),   /* rAX, Iz */
    [0x2E] = {},
    [0x2F] = X86_OP_ENTRY0(DAS, chk(i64)),

    [0x38] = X86_OP_ENTRYrr(SUB, E,b, G,b),
    [0x39] = X86_OP_ENTRYrr(SUB, E,v, G,v),
    [0x3A] = X86_OP_ENTRYrr(SUB, G,b, E,b),
    [0x3B] = X86_OP_ENTRYrr(SUB, G,v, E,v),
    [0x3C] = X86_OP_ENTRYrr(SUB, 0,b, I,b),   /* AL, Ib */
    [0x3D] = X86_OP_ENTRYrr(SUB, 0,v, I,z),   /* rAX, Iz */
    [0x3E] = {},
    [0x3F] = X86_OP_ENTRY0(AAS, chk(i64)),

    [0x48] = X86_OP_ENTRY1(DEC, 0,v, chk(i64)),
    [0x49] = X86_OP_ENTRY1(DEC, 1,v, chk(i64)),
    [0x4A] = X86_OP_ENTRY1(DEC, 2,v, chk(i64)),
    [0x4B] = X86_OP_ENTRY1(DEC, 3,v, chk(i64)),
    [0x4C] = X86_OP_ENTRY1(DEC, 4,v, chk(i64)),
    [0x4D] = X86_OP_ENTRY1(DEC, 5,v, chk(i64)),
    [0x4E] = X86_OP_ENTRY1(DEC, 6,v, chk(i64)),
    [0x4F] = X86_OP_ENTRY1(DEC, 7,v, chk(i64)),

    [0x58] = X86_OP_ENTRYw(POP, LoBits,d64),
    [0x59] = X86_OP_ENTRYw(POP, LoBits,d64),
    [0x5A] = X86_OP_ENTRYw(POP, LoBits,d64),
    [0x5B] = X86_OP_ENTRYw(POP, LoBits,d64),
    [0x5C] = X86_OP_ENTRYw(POP, LoBits,d64),
    [0x5D] = X86_OP_ENTRYw(POP, LoBits,d64),
    [0x5E] = X86_OP_ENTRYw(POP, LoBits,d64),
    [0x5F] = X86_OP_ENTRYw(POP, LoBits,d64),

    [0x68] = X86_OP_ENTRYr(PUSH, I,z),
    [0x69] = X86_OP_ENTRY3(IMUL3, G,v, E,v, I,z, sextT0),
    [0x6A] = X86_OP_ENTRYr(PUSH, I,b),
    [0x6B] = X86_OP_ENTRY3(IMUL3, G,v, E,v, I,b, sextT0),
    [0x6C] = X86_OP_ENTRYrr(INS, Y,b, 2,w), /* DX */
    [0x6D] = X86_OP_ENTRYrr(INS, Y,z, 2,w), /* DX */
    [0x6E] = X86_OP_ENTRYrr(OUTS, X,b, 2,w), /* DX */
    [0x6F] = X86_OP_ENTRYrr(OUTS, X,z, 2,w), /* DX */

    [0x78] = X86_OP_ENTRYr(Jcc, J,b),
    [0x79] = X86_OP_ENTRYr(Jcc, J,b),
    [0x7A] = X86_OP_ENTRYr(Jcc, J,b),
    [0x7B] = X86_OP_ENTRYr(Jcc, J,b),
    [0x7C] = X86_OP_ENTRYr(Jcc, J,b),
    [0x7D] = X86_OP_ENTRYr(Jcc, J,b),
    [0x7E] = X86_OP_ENTRYr(Jcc, J,b),
    [0x7F] = X86_OP_ENTRYr(Jcc, J,b),

    [0x88] = X86_OP_ENTRY3(MOV, E,b, G,b, None, None),
    [0x89] = X86_OP_ENTRY3(MOV, E,v, G,v, None, None),
    [0x8A] = X86_OP_ENTRY3(MOV, G,b, E,b, None, None),
    [0x8B] = X86_OP_ENTRY3(MOV, G,v, E,v, None, None),
    [0x8C] = X86_OP_ENTRY3(MOV, E,v, S,w, None, None),
    [0x8D] = X86_OP_ENTRY3(LEA, G,v, M,v, None, None, noseg),
    [0x8E] = X86_OP_ENTRY3(MOV, S,w, E,v, None, None),
    [0x8F] = X86_OP_GROUPw(group1A, E,v),

    [0x98] = X86_OP_ENTRY1(CBW,    0,v), /* rAX */
    [0x99] = X86_OP_ENTRY3(CWD,    2,v, 0,v, None, None), /* rDX, rAX */
    [0x9A] = X86_OP_ENTRYrr(CALLF, I_unsigned,p, I_unsigned,w, chk(i64)),
    [0x9B] = X86_OP_ENTRY0(WAIT),
    [0x9C] = X86_OP_ENTRY0(PUSHF,  chk(vm86_iopl) svm(PUSHF)),
    [0x9D] = X86_OP_ENTRY0(POPF,   chk(vm86_iopl) svm(POPF)),
    [0x9E] = X86_OP_ENTRY0(SAHF),
    [0x9F] = X86_OP_ENTRY0(LAHF),

    [0xA8] = X86_OP_ENTRYrr(AND, 0,b, I,b),   /* AL, Ib */
    [0xA9] = X86_OP_ENTRYrr(AND, 0,v, I,z),   /* rAX, Iz */
    [0xAA] = X86_OP_ENTRY3(STOS, Y,b, 0,b, None, None),
    [0xAB] = X86_OP_ENTRY3(STOS, Y,v, 0,v, None, None),
    /* Manual writeback because REP LODS (!) has to write EAX/RAX after every LODS.  */
    [0xAC] = X86_OP_ENTRYr(LODS, X,b),
    [0xAD] = X86_OP_ENTRYr(LODS, X,v),
    [0xAE] = X86_OP_ENTRYrr(SCAS, 0,b, Y,b),
    [0xAF] = X86_OP_ENTRYrr(SCAS, 0,v, Y,v),

    [0xB8] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),
    [0xB9] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),
    [0xBA] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),
    [0xBB] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),
    [0xBC] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),
    [0xBD] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),
    [0xBE] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),
    [0xBF] = X86_OP_ENTRY3(MOV, LoBits,v, I,v, None, None),

    [0xC8] = X86_OP_ENTRYrr(ENTER, I,w, I,b),
    [0xC9] = X86_OP_ENTRY1(LEAVE, A,d64),
    [0xCA] = X86_OP_ENTRYr(RETF,  I,w),
    [0xCB] = X86_OP_ENTRY0(RETF),
    [0xCC] = X86_OP_ENTRY0(INT3),
    [0xCD] = X86_OP_ENTRYr(INT, I,b,  chk(vm86_iopl)),
    [0xCE] = X86_OP_ENTRY0(INTO),
    [0xCF] = X86_OP_ENTRY0(IRET,      chk(vm86_iopl) svm(IRET)),

    [0xE8] = X86_OP_ENTRYr(CALL,   J,z_f64),
    [0xE9] = X86_OP_ENTRYr(JMP,    J,z_f64),
    [0xEA] = X86_OP_ENTRYrr(JMPF,  I_unsigned,p, I_unsigned,w, chk(i64)),
    [0xEB] = X86_OP_ENTRYr(JMP,    J,b),
    [0xEC] = X86_OP_ENTRYwr(IN,    0,b, 2,w), /* AL, DX */
    [0xED] = X86_OP_ENTRYwr(IN,    0,v, 2,w), /* AX/EAX, DX */
    [0xEE] = X86_OP_ENTRYrr(OUT,   0,b, 2,w), /* DX, AL */
    [0xEF] = X86_OP_ENTRYrr(OUT,   0,v, 2,w), /* DX, AX/EAX */

    [0xF8] = X86_OP_ENTRY0(CLC),
    [0xF9] = X86_OP_ENTRY0(STC),
    [0xFA] = X86_OP_ENTRY0(CLI,    chk(iopl)),
    [0xFB] = X86_OP_ENTRY0(STI,    chk(iopl)),
    [0xFC] = X86_OP_ENTRY0(CLD),
    [0xFD] = X86_OP_ENTRY0(STD),
    [0xFE] = X86_OP_GROUP1(group4_5, E,b),
    [0xFF] = X86_OP_GROUP1(group4_5, E,v),
};

#undef mmx
#undef vex1
#undef vex2
#undef vex3
#undef vex4
#undef vex4_unal
#undef vex5
#undef vex6
#undef vex7
#undef vex8
#undef vex11
#undef vex12
#undef vex13

/*
 * Decode the fixed part of the opcode and place the last
 * in b.
 */
static void decode_root(DisasContext *s, CPUX86State *env, X86OpEntry *entry, uint8_t *b)
{
    *entry = opcodes_root[*b];
}


static int decode_modrm(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
                        X86DecodedOp *op, X86OpType type)
{
    int modrm = get_modrm(s, env);
    if ((modrm >> 6) == 3) {
        op->n = (modrm & 7);
        if (type != X86_TYPE_Q && type != X86_TYPE_N) {
            op->n |= REX_B(s);
        }
    } else {
        op->has_ea = true;
        op->n = -1;
        decode->mem = gen_lea_modrm_0(env, s, get_modrm(s, env));
    }
    return modrm;
}

static bool decode_op_size(DisasContext *s, X86OpEntry *e, X86OpSize size, MemOp *ot)
{
    switch (size) {
    case X86_SIZE_b:  /* byte */
        *ot = MO_8;
        return true;

    case X86_SIZE_d:  /* 32-bit */
    case X86_SIZE_ss: /* SSE/AVX scalar single precision */
        *ot = MO_32;
        return true;

    case X86_SIZE_p:  /* Far pointer, return offset size */
    case X86_SIZE_s:  /* Descriptor, return offset size */
    case X86_SIZE_v:  /* 16/32/64-bit, based on operand size */
        *ot = s->dflag;
        return true;

    case X86_SIZE_pi: /* MMX */
    case X86_SIZE_q:  /* 64-bit */
    case X86_SIZE_sd: /* SSE/AVX scalar double precision */
        *ot = MO_64;
        return true;

    case X86_SIZE_w:  /* 16-bit */
        *ot = MO_16;
        return true;

    case X86_SIZE_y:  /* 32/64-bit, based on operand size */
        *ot = s->dflag == MO_16 ? MO_32 : s->dflag;
        return true;

    case X86_SIZE_z:  /* 16-bit for 16-bit operand size, else 32-bit */
        *ot = s->dflag == MO_16 ? MO_16 : MO_32;
        return true;

    case X86_SIZE_z_f64:  /* 32-bit for 32-bit operand size or 64-bit mode, else 16-bit */
        *ot = !CODE64(s) && s->dflag == MO_16 ? MO_16 : MO_32;
        return true;

    case X86_SIZE_dq: /* SSE/AVX 128-bit */
        if (e->special == X86_SPECIAL_MMX &&
            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
            *ot = MO_64;
            return true;
        }
        if (s->vex_l && e->s0 != X86_SIZE_qq && e->s1 != X86_SIZE_qq) {
            return false;
        }
        *ot = MO_128;
        return true;

    case X86_SIZE_qq: /* AVX 256-bit */
        if (!s->vex_l) {
            return false;
        }
        *ot = MO_256;
        return true;

    case X86_SIZE_x:  /* 128/256-bit, based on operand size */
        if (e->special == X86_SPECIAL_MMX &&
            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
            *ot = MO_64;
            return true;
        }
        /* fall through */
    case X86_SIZE_ps: /* SSE/AVX packed single precision */
    case X86_SIZE_pd: /* SSE/AVX packed double precision */
        *ot = s->vex_l ? MO_256 : MO_128;
        return true;

    case X86_SIZE_xh: /* SSE/AVX packed half register */
        *ot = s->vex_l ? MO_128 : MO_64;
        return true;

    case X86_SIZE_d64:  /* Default to 64-bit in 64-bit mode */
        *ot = CODE64(s) && s->dflag == MO_32 ? MO_64 : s->dflag;
        return true;

    case X86_SIZE_f64:  /* Ignore size override prefix in 64-bit mode */
        *ot = CODE64(s) ? MO_64 : s->dflag;
        return true;

    default:
        *ot = -1;
        return true;
    }
}

static bool decode_op(DisasContext *s, CPUX86State *env, X86DecodedInsn *decode,
                      X86DecodedOp *op, X86OpType type, int b)
{
    int modrm;

    switch (type) {
    case X86_TYPE_None:  /* Implicit or absent */
    case X86_TYPE_A:  /* Implicit */
    case X86_TYPE_F:  /* EFLAGS/RFLAGS */
    case X86_TYPE_X:  /* string source */
    case X86_TYPE_Y:  /* string destination */
        break;

    case X86_TYPE_B:  /* VEX.vvvv selects a GPR */
        op->unit = X86_OP_INT;
        op->n = s->vex_v;
        break;

    case X86_TYPE_C:  /* REG in the modrm byte selects a control register */
        op->unit = X86_OP_CR;
        goto get_reg;

    case X86_TYPE_D:  /* REG in the modrm byte selects a debug register */
        op->unit = X86_OP_DR;
        goto get_reg;

    case X86_TYPE_G:  /* REG in the modrm byte selects a GPR */
        op->unit = X86_OP_INT;
        goto get_reg;

    case X86_TYPE_S:  /* reg selects a segment register */
        op->unit = X86_OP_SEG;
        goto get_reg;

    case X86_TYPE_P:
        op->unit = X86_OP_MMX;
        goto get_reg;

    case X86_TYPE_V:  /* reg in the modrm byte selects an XMM/YMM register */
        if (decode->e.special == X86_SPECIAL_MMX &&
            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
            op->unit = X86_OP_MMX;
        } else {
            op->unit = X86_OP_SSE;
        }
    get_reg:
        op->n = ((get_modrm(s, env) >> 3) & 7) | REX_R(s);
        break;

    case X86_TYPE_E:  /* ALU modrm operand */
        op->unit = X86_OP_INT;
        goto get_modrm;

    case X86_TYPE_Q:  /* MMX modrm operand */
        op->unit = X86_OP_MMX;
        goto get_modrm;

    case X86_TYPE_W:  /* XMM/YMM modrm operand */
        if (decode->e.special == X86_SPECIAL_MMX &&
            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
            op->unit = X86_OP_MMX;
        } else {
            op->unit = X86_OP_SSE;
        }
        goto get_modrm;

    case X86_TYPE_N:  /* R/M in the modrm byte selects an MMX register */
        op->unit = X86_OP_MMX;
        goto get_modrm_reg;

    case X86_TYPE_U:  /* R/M in the modrm byte selects an XMM/YMM register */
        if (decode->e.special == X86_SPECIAL_MMX &&
            !(s->prefix & (PREFIX_DATA | PREFIX_REPZ | PREFIX_REPNZ))) {
            op->unit = X86_OP_MMX;
        } else {
            op->unit = X86_OP_SSE;
        }
        goto get_modrm_reg;

    case X86_TYPE_R:  /* R/M in the modrm byte selects a register */
        op->unit = X86_OP_INT;
    get_modrm_reg:
        modrm = get_modrm(s, env);
        if ((modrm >> 6) != 3) {
            return false;
        }
        goto get_modrm;

    case X86_TYPE_WM:  /* modrm byte selects an XMM/YMM memory operand */
        op->unit = X86_OP_SSE;
        goto get_modrm_mem;

    case X86_TYPE_EM:  /* modrm byte selects an ALU memory operand */
        op->unit = X86_OP_INT;
        /* fall through */
    case X86_TYPE_M:  /* modrm byte selects a memory operand */
    get_modrm_mem:
        modrm = get_modrm(s, env);
        if ((modrm >> 6) == 3) {
            return false;
        }
        /* fall through */
    case X86_TYPE_nop:  /* modrm operand decoded but not fetched */
    get_modrm:
        decode_modrm(s, env, decode, op, type);
        break;

    case X86_TYPE_O:  /* Absolute address encoded in the instruction */
        op->unit = X86_OP_INT;
        op->has_ea = true;
        op->n = -1;
        decode->mem = (AddressParts) {
            .def_seg = R_DS,
            .base = -1,
            .index = -1,
            .disp = insn_get_addr(env, s, s->aflag)
        };
        break;

    case X86_TYPE_H:  /* For AVX, VEX.vvvv selects an XMM/YMM register */
        if ((s->prefix & PREFIX_VEX)) {
            op->unit = X86_OP_SSE;
            op->n = s->vex_v;
            break;
        }
        if (op == &decode->op[0]) {
            /* shifts place the destination in VEX.vvvv, use modrm */
            return decode_op(s, env, decode, op, decode->e.op1, b);
        } else {
            return decode_op(s, env, decode, op, decode->e.op0, b);
        }

    case X86_TYPE_I:  /* Immediate */
    case X86_TYPE_J:  /* Relative offset for a jump */
        op->unit = X86_OP_IMM;
        decode->immediate = op->imm = insn_get_signed(env, s, op->ot);
        break;

    case X86_TYPE_I_unsigned:  /* Immediate */
        op->unit = X86_OP_IMM;
        decode->immediate = op->imm = insn_get(env, s, op->ot);
        break;

    case X86_TYPE_L:  /* The upper 4 bits of the immediate select a 128-bit register */
        op->n = insn_get(env, s, op->ot) >> 4;
        break;

    case X86_TYPE_2op:
        *op = decode->op[0];
        break;

    case X86_TYPE_LoBits:
        op->n = (b & 7) | REX_B(s);
        op->unit = X86_OP_INT;
        break;

    case X86_TYPE_0 ... X86_TYPE_7:
        op->n = type - X86_TYPE_0;
        op->unit = X86_OP_INT;
        break;

    case X86_TYPE_ES ... X86_TYPE_GS:
        op->n = type - X86_TYPE_ES;
        op->unit = X86_OP_SEG;
        break;
    }

    return true;
}

static bool validate_sse_prefix(DisasContext *s, X86OpEntry *e)
{
    uint16_t sse_prefixes;

    if (!e->valid_prefix) {
        return true;
    }
    if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
        /* In SSE instructions, 0xF3 and 0xF2 cancel 0x66.  */
        s->prefix &= ~PREFIX_DATA;
    }

    /* Now, either zero or one bit is set in sse_prefixes.  */
    sse_prefixes = s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA);
    return e->valid_prefix & (1 << sse_prefixes);
}

static bool decode_insn(DisasContext *s, CPUX86State *env, X86DecodeFunc decode_func,
                        X86DecodedInsn *decode)
{
    X86OpEntry *e = &decode->e;

    decode_func(s, env, e, &decode->b);
    while (e->is_decode) {
        e->is_decode = false;
        e->decode(s, env, e, &decode->b);
    }

    if (!validate_sse_prefix(s, e)) {
        return false;
    }

    /* First compute size of operands in order to initialize s->rip_offset.  */
    if (e->op0 != X86_TYPE_None) {
        if (!decode_op_size(s, e, e->s0, &decode->op[0].ot)) {
            return false;
        }
        if (e->op0 == X86_TYPE_I) {
            s->rip_offset += 1 << decode->op[0].ot;
        }
    }
    if (e->op1 != X86_TYPE_None) {
        if (!decode_op_size(s, e, e->s1, &decode->op[1].ot)) {
            return false;
        }
        if (e->op1 == X86_TYPE_I) {
            s->rip_offset += 1 << decode->op[1].ot;
        }
    }
    if (e->op2 != X86_TYPE_None) {
        if (!decode_op_size(s, e, e->s2, &decode->op[2].ot)) {
            return false;
        }
        if (e->op2 == X86_TYPE_I) {
            s->rip_offset += 1 << decode->op[2].ot;
        }
    }
    if (e->op3 != X86_TYPE_None) {
        /*
         * A couple instructions actually use the extra immediate byte for an Lx
         * register operand; those are handled in the gen_* functions as one off.
         */
        assert(e->op3 == X86_TYPE_I && e->s3 == X86_SIZE_b);
        s->rip_offset += 1;
    }

    if (e->op0 != X86_TYPE_None &&
        !decode_op(s, env, decode, &decode->op[0], e->op0, decode->b)) {
        return false;
    }

    if (e->op1 != X86_TYPE_None &&
        !decode_op(s, env, decode, &decode->op[1], e->op1, decode->b)) {
        return false;
    }

    if (e->op2 != X86_TYPE_None &&
        !decode_op(s, env, decode, &decode->op[2], e->op2, decode->b)) {
        return false;
    }

    if (e->op3 != X86_TYPE_None) {
        decode->immediate = insn_get_signed(env, s, MO_8);
    }

    return true;
}

static bool has_cpuid_feature(DisasContext *s, X86CPUIDFeature cpuid)
{
    switch (cpuid) {
    case X86_FEAT_None:
        return true;
    case X86_FEAT_CMOV:
        return (s->cpuid_features & CPUID_CMOV);
    case X86_FEAT_F16C:
        return (s->cpuid_ext_features & CPUID_EXT_F16C);
    case X86_FEAT_FMA:
        return (s->cpuid_ext_features & CPUID_EXT_FMA);
    case X86_FEAT_MOVBE:
        return (s->cpuid_ext_features & CPUID_EXT_MOVBE);
    case X86_FEAT_PCLMULQDQ:
        return (s->cpuid_ext_features & CPUID_EXT_PCLMULQDQ);
    case X86_FEAT_SSE:
        return (s->cpuid_ext_features & CPUID_SSE);
    case X86_FEAT_SSE2:
        return (s->cpuid_ext_features & CPUID_SSE2);
    case X86_FEAT_SSE3:
        return (s->cpuid_ext_features & CPUID_EXT_SSE3);
    case X86_FEAT_SSSE3:
        return (s->cpuid_ext_features & CPUID_EXT_SSSE3);
    case X86_FEAT_SSE41:
        return (s->cpuid_ext_features & CPUID_EXT_SSE41);
    case X86_FEAT_SSE42:
        return (s->cpuid_ext_features & CPUID_EXT_SSE42);
    case X86_FEAT_AES:
        if (!(s->cpuid_ext_features & CPUID_EXT_AES)) {
            return false;
        } else if (!(s->prefix & PREFIX_VEX)) {
            return true;
        } else if (!(s->cpuid_ext_features & CPUID_EXT_AVX)) {
            return false;
        } else {
            return !s->vex_l || (s->cpuid_7_0_ecx_features & CPUID_7_0_ECX_VAES);
        }

    case X86_FEAT_AVX:
        return (s->cpuid_ext_features & CPUID_EXT_AVX);

    case X86_FEAT_3DNOW:
        return (s->cpuid_ext2_features & CPUID_EXT2_3DNOW);
    case X86_FEAT_SSE4A:
        return (s->cpuid_ext3_features & CPUID_EXT3_SSE4A);

    case X86_FEAT_ADX:
        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_ADX);
    case X86_FEAT_BMI1:
        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI1);
    case X86_FEAT_BMI2:
        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_BMI2);
    case X86_FEAT_AVX2:
        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_AVX2);
    case X86_FEAT_SHA_NI:
        return (s->cpuid_7_0_ebx_features & CPUID_7_0_EBX_SHA_NI);

    case X86_FEAT_CMPCCXADD:
        return (s->cpuid_7_1_eax_features & CPUID_7_1_EAX_CMPCCXADD);
    }
    g_assert_not_reached();
}

static bool validate_vex(DisasContext *s, X86DecodedInsn *decode)
{
    X86OpEntry *e = &decode->e;

    switch (e->vex_special) {
    case X86_VEX_REPScalar:
        /*
         * Instructions which differ between 00/66 and F2/F3 in the
         * exception classification and the size of the memory operand.
         */
        assert(e->vex_class == 1 || e->vex_class == 2 || e->vex_class == 4);
        if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ)) {
            e->vex_class = e->vex_class < 4 ? 3 : 5;
            if (s->vex_l) {
                goto illegal;
            }
            assert(decode->e.s2 == X86_SIZE_x);
            if (decode->op[2].has_ea) {
                decode->op[2].ot = s->prefix & PREFIX_REPZ ? MO_32 : MO_64;
            }
        }
        break;

    case X86_VEX_SSEUnaligned:
        /* handled in sse_needs_alignment.  */
        break;

    case X86_VEX_AVX2_256:
        if ((s->prefix & PREFIX_VEX) && s->vex_l && !has_cpuid_feature(s, X86_FEAT_AVX2)) {
            goto illegal;
        }
    }

    switch (e->vex_class) {
    case 0:
        if (s->prefix & PREFIX_VEX) {
            goto illegal;
        }
        return true;
    case 1:
    case 2:
    case 3:
    case 4:
    case 5:
    case 7:
        if (s->prefix & PREFIX_VEX) {
            if (!(s->flags & HF_AVX_EN_MASK)) {
                goto illegal;
            }
        } else if (e->special != X86_SPECIAL_MMX ||
                   (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) {
            if (!(s->flags & HF_OSFXSR_MASK)) {
                goto illegal;
            }
        }
        break;
    case 12:
        /* Must have a VSIB byte and no address prefix.  */
        assert(s->has_modrm);
        if ((s->modrm & 7) != 4 || s->aflag == MO_16) {
            goto illegal;
        }

        /* Check no overlap between registers.  */
        if (!decode->op[0].has_ea &&
            (decode->op[0].n == decode->mem.index || decode->op[0].n == decode->op[1].n)) {
            goto illegal;
        }
        assert(!decode->op[1].has_ea);
        if (decode->op[1].n == decode->mem.index) {
            goto illegal;
        }
        if (!decode->op[2].has_ea &&
            (decode->op[2].n == decode->mem.index || decode->op[2].n == decode->op[1].n)) {
            goto illegal;
        }
        /* fall through */
    case 6:
    case 11:
        if (!(s->prefix & PREFIX_VEX)) {
            goto illegal;
        }
        if (!(s->flags & HF_AVX_EN_MASK)) {
            goto illegal;
        }
        break;
    case 8:
        /* Non-VEX case handled in decode_0F77.  */
        assert(s->prefix & PREFIX_VEX);
        if (!(s->flags & HF_AVX_EN_MASK)) {
            goto illegal;
        }
        break;
    case 13:
        if (!(s->prefix & PREFIX_VEX)) {
            goto illegal;
        }
        if (s->vex_l) {
            goto illegal;
        }
        /* All integer instructions use VEX.vvvv, so exit.  */
        return true;
    }

    if (s->vex_v != 0 &&
        e->op0 != X86_TYPE_H && e->op0 != X86_TYPE_B &&
        e->op1 != X86_TYPE_H && e->op1 != X86_TYPE_B &&
        e->op2 != X86_TYPE_H && e->op2 != X86_TYPE_B) {
        goto illegal;
    }

    if (s->flags & HF_TS_MASK) {
        goto nm_exception;
    }
    if (s->flags & HF_EM_MASK) {
        goto illegal;
    }

    if (e->check) {
        if (e->check & X86_CHECK_VEX128) {
            if (s->vex_l) {
                goto illegal;
            }
        }
        if (e->check & X86_CHECK_W0) {
            if (s->vex_w) {
                goto illegal;
            }
        }
        if (e->check & X86_CHECK_W1) {
            if (!s->vex_w) {
                goto illegal;
            }
        }
    }
    return true;

nm_exception:
    gen_NM_exception(s);
    return false;
illegal:
    gen_illegal_opcode(s);
    return false;
}

/*
 * Convert one instruction. s->base.is_jmp is set if the translation must
 * be stopped.
 */
static void disas_insn(DisasContext *s, CPUState *cpu)
{
    CPUX86State *env = cpu_env(cpu);
    X86DecodedInsn decode;
    X86DecodeFunc decode_func = decode_root;
    uint8_t cc_live, b;

    s->pc = s->base.pc_next;
    s->override = -1;
    s->popl_esp_hack = 0;
#ifdef TARGET_X86_64
    s->rex_r = 0;
    s->rex_x = 0;
    s->rex_b = 0;
#endif
    s->rip_offset = 0; /* for relative ip address */
    s->vex_l = 0;
    s->vex_v = 0;
    s->vex_w = false;
    s->has_modrm = false;
    s->prefix = 0;

 next_byte:
    b = x86_ldub_code(env, s);

    /* Collect prefixes.  */
    switch (b) {
    case 0xf3:
        s->prefix |= PREFIX_REPZ;
        s->prefix &= ~PREFIX_REPNZ;
        goto next_byte;
    case 0xf2:
        s->prefix |= PREFIX_REPNZ;
        s->prefix &= ~PREFIX_REPZ;
        goto next_byte;
    case 0xf0:
        s->prefix |= PREFIX_LOCK;
        goto next_byte;
    case 0x2e:
        s->override = R_CS;
        goto next_byte;
    case 0x36:
        s->override = R_SS;
        goto next_byte;
    case 0x3e:
        s->override = R_DS;
        goto next_byte;
    case 0x26:
        s->override = R_ES;
        goto next_byte;
    case 0x64:
        s->override = R_FS;
        goto next_byte;
    case 0x65:
        s->override = R_GS;
        goto next_byte;
    case 0x66:
        s->prefix |= PREFIX_DATA;
        goto next_byte;
    case 0x67:
        s->prefix |= PREFIX_ADR;
        goto next_byte;
#ifdef TARGET_X86_64
    case 0x40 ... 0x4f:
        if (CODE64(s)) {
            /* REX prefix */
            s->prefix |= PREFIX_REX;
            s->vex_w = (b >> 3) & 1;
            s->rex_r = (b & 0x4) << 1;
            s->rex_x = (b & 0x2) << 2;
            s->rex_b = (b & 0x1) << 3;
            goto next_byte;
        }
        break;
#endif
    case 0xc5: /* 2-byte VEX */
    case 0xc4: /* 3-byte VEX */
        /*
         * VEX prefixes cannot be used except in 32-bit mode.
         * Otherwise the instruction is LES or LDS.
         */
        if (CODE32(s) && !VM86(s)) {
            static const int pp_prefix[4] = {
                0, PREFIX_DATA, PREFIX_REPZ, PREFIX_REPNZ
            };
            int vex3, vex2 = x86_ldub_code(env, s);

            if (!CODE64(s) && (vex2 & 0xc0) != 0xc0) {
                /*
                 * 4.1.4.6: In 32-bit mode, bits [7:6] must be 11b,
                 * otherwise the instruction is LES or LDS.
                 */
                s->pc--; /* rewind the advance_pc() x86_ldub_code() did */
                break;
            }

            /* 4.1.1-4.1.3: No preceding lock, 66, f2, f3, or rex prefixes. */
            if (s->prefix & (PREFIX_REPZ | PREFIX_REPNZ
                             | PREFIX_LOCK | PREFIX_DATA | PREFIX_REX)) {
                goto illegal_op;
            }
#ifdef TARGET_X86_64
            s->rex_r = (~vex2 >> 4) & 8;
#endif
            if (b == 0xc5) {
                /* 2-byte VEX prefix: RVVVVlpp, implied 0f leading opcode byte */
                vex3 = vex2;
                decode_func = decode_0F;
            } else {
                /* 3-byte VEX prefix: RXBmmmmm wVVVVlpp */
                vex3 = x86_ldub_code(env, s);
#ifdef TARGET_X86_64
                s->rex_x = (~vex2 >> 3) & 8;
                s->rex_b = (~vex2 >> 2) & 8;
#endif
                s->vex_w = (vex3 >> 7) & 1;
                switch (vex2 & 0x1f) {
                case 0x01: /* Implied 0f leading opcode bytes.  */
                    decode_func = decode_0F;
                    break;
                case 0x02: /* Implied 0f 38 leading opcode bytes.  */
                    decode_func = decode_0F38;
                    break;
                case 0x03: /* Implied 0f 3a leading opcode bytes.  */
                    decode_func = decode_0F3A;
                    break;
                default:   /* Reserved for future use.  */
                    goto unknown_op;
                }
            }
            s->vex_v = (~vex3 >> 3) & 0xf;
            s->vex_l = (vex3 >> 2) & 1;
            s->prefix |= pp_prefix[vex3 & 3] | PREFIX_VEX;
        }
        break;
    default:
        break;
    }

    /* Post-process prefixes.  */
    if (CODE64(s)) {
        /*
         * In 64-bit mode, the default data size is 32-bit.  Select 64-bit
         * data with rex_w, and 16-bit data with 0x66; rex_w takes precedence
         * over 0x66 if both are present.
         */
        s->dflag = (REX_W(s) ? MO_64 : s->prefix & PREFIX_DATA ? MO_16 : MO_32);
        /* In 64-bit mode, 0x67 selects 32-bit addressing.  */
        s->aflag = (s->prefix & PREFIX_ADR ? MO_32 : MO_64);
    } else {
        /* In 16/32-bit mode, 0x66 selects the opposite data size.  */
        if (CODE32(s) ^ ((s->prefix & PREFIX_DATA) != 0)) {
            s->dflag = MO_32;
        } else {
            s->dflag = MO_16;
        }
        /* In 16/32-bit mode, 0x67 selects the opposite addressing.  */
        if (CODE32(s) ^ ((s->prefix & PREFIX_ADR) != 0)) {
            s->aflag = MO_32;
        }  else {
            s->aflag = MO_16;
        }
    }

    /* Go back to old decoder for unconverted opcodes.  */
    if (!(s->prefix & PREFIX_VEX)) {
        if ((b & ~7) == 0xd8) {
            if (!disas_insn_x87(s, cpu, b)) {
                goto unknown_op;
            }
            return;
        }

        if (b == 0x0f) {
            b = x86_ldub_code(env, s);
            switch (b) {
            case 0x00 ... 0x03: /* mostly privileged instructions */
            case 0x05 ... 0x09:
            case 0x1a ... 0x1b: /* MPX */
            case 0x20 ... 0x23: /* mov from/to CR and DR */
            case 0x30 ... 0x35: /* more privileged instructions */
            case 0xa2 ... 0xa5: /* CPUID, BT, SHLD */
            case 0xaa ... 0xae: /* RSM, SHRD, grp15 */
            case 0xb0 ... 0xb1: /* cmpxchg */
            case 0xb3:          /* btr */
            case 0xb8:          /* integer ops */
            case 0xba ... 0xbd: /* integer ops */
            case 0xc0 ... 0xc1: /* xadd */
            case 0xc7:          /* grp9 */
                disas_insn_old(s, cpu, b + 0x100);
                return;
            default:
                decode_func = do_decode_0F;
                break;
            }
        }
    }

    memset(&decode, 0, sizeof(decode));
    decode.cc_op = -1;
    decode.b = b;
    if (!decode_insn(s, env, decode_func, &decode)) {
        goto illegal_op;
    }
    if (!decode.e.gen) {
        goto unknown_op;
    }

    if (!has_cpuid_feature(s, decode.e.cpuid)) {
        goto illegal_op;
    }

    /* Checks that result in #UD come first.  */
    if (decode.e.check) {
        if (decode.e.check & X86_CHECK_i64) {
            if (CODE64(s)) {
                goto illegal_op;
            }
        }
        if (decode.e.check & X86_CHECK_o64) {
            if (!CODE64(s)) {
                goto illegal_op;
            }
        }
        if (decode.e.check & X86_CHECK_prot) {
            if (!PE(s) || VM86(s)) {
                goto illegal_op;
            }
        }
    }

    switch (decode.e.special) {
    case X86_SPECIAL_None:
        break;

    case X86_SPECIAL_Locked:
        if (decode.op[0].has_ea) {
            s->prefix |= PREFIX_LOCK;
        }
        decode.e.special = X86_SPECIAL_HasLock;
        /* fallthrough */
    case X86_SPECIAL_HasLock:
        break;

    case X86_SPECIAL_Op0_Rd:
        assert(decode.op[0].unit == X86_OP_INT);
        if (!decode.op[0].has_ea) {
            decode.op[0].ot = MO_32;
        }
        break;

    case X86_SPECIAL_Op2_Ry:
        assert(decode.op[2].unit == X86_OP_INT);
        if (!decode.op[2].has_ea) {
            decode.op[2].ot = s->dflag == MO_16 ? MO_32 : s->dflag;
        }
        break;

    case X86_SPECIAL_AVXExtMov:
        if (!decode.op[2].has_ea) {
            decode.op[2].ot = s->vex_l ? MO_256 : MO_128;
        } else if (s->vex_l) {
            decode.op[2].ot++;
        }
        break;

    case X86_SPECIAL_SExtT0:
    case X86_SPECIAL_ZExtT0:
        /* Handled in gen_load.  */
        assert(decode.op[1].unit == X86_OP_INT);
        break;

    case X86_SPECIAL_NoSeg:
        decode.mem.def_seg = -1;
        s->override = -1;
        break;

    default:
        break;
    }

    if (s->prefix & PREFIX_LOCK) {
        if (decode.e.special != X86_SPECIAL_HasLock || !decode.op[0].has_ea) {
            goto illegal_op;
        }
    }

    if (!validate_vex(s, &decode)) {
        return;
    }

    /*
     * Checks that result in #GP or VMEXIT come second.  Intercepts are
     * generally checked after non-memory exceptions (i.e. before all
     * exceptions if there is no memory operand).  Exceptions are
     * vm86 checks (INTn, IRET, PUSHF/POPF), RSM and XSETBV (!).
     *
     * RSM and XSETBV will be handled in the gen_* functions
     * instead of using chk().
     */
    if (decode.e.check & X86_CHECK_cpl0) {
        if (CPL(s) != 0) {
            goto gp_fault;
        }
    }
    if (decode.e.intercept && unlikely(GUEST(s))) {
        gen_helper_svm_check_intercept(tcg_env,
                                       tcg_constant_i32(decode.e.intercept));
    }
    if (decode.e.check) {
        if ((decode.e.check & X86_CHECK_vm86_iopl) && VM86(s)) {
            if (IOPL(s) < 3) {
                goto gp_fault;
            }
        } else if (decode.e.check & X86_CHECK_cpl_iopl) {
            if (IOPL(s) < CPL(s)) {
                goto gp_fault;
            }
        }
    }

    if (decode.e.special == X86_SPECIAL_MMX &&
        !(s->prefix & (PREFIX_REPZ | PREFIX_REPNZ | PREFIX_DATA))) {
        gen_helper_enter_mmx(tcg_env);
    }

    if (decode.op[0].has_ea || decode.op[1].has_ea || decode.op[2].has_ea) {
        gen_load_ea(s, &decode.mem, decode.e.vex_class == 12);
    }
    if (s->prefix & PREFIX_LOCK) {
        gen_load(s, &decode, 2, s->T1);
        decode.e.gen(s, env, &decode);
    } else {
        if (decode.op[0].unit == X86_OP_MMX) {
            compute_mmx_offset(&decode.op[0]);
        } else if (decode.op[0].unit == X86_OP_SSE) {
            compute_xmm_offset(&decode.op[0]);
        }
        gen_load(s, &decode, 1, s->T0);
        gen_load(s, &decode, 2, s->T1);
        decode.e.gen(s, env, &decode);
        gen_writeback(s, &decode, 0, s->T0);
    }

    /*
     * Write back flags after last memory access.  Some newer ALU instructions, as
     * well as SSE instructions, write flags in the gen_* function, but that can
     * cause incorrect tracking of CC_OP for instructions that write to both memory
     * and flags.
     */
    if (decode.cc_op != -1) {
        if (decode.cc_dst) {
            tcg_gen_mov_tl(cpu_cc_dst, decode.cc_dst);
        }
        if (decode.cc_src) {
            tcg_gen_mov_tl(cpu_cc_src, decode.cc_src);
        }
        if (decode.cc_src2) {
            tcg_gen_mov_tl(cpu_cc_src2, decode.cc_src2);
        }
        if (decode.cc_op == CC_OP_DYNAMIC) {
            tcg_gen_mov_i32(cpu_cc_op, decode.cc_op_dynamic);
        }
        set_cc_op(s, decode.cc_op);
        cc_live = cc_op_live[decode.cc_op];
    } else {
        cc_live = 0;
    }
    if (decode.cc_op != CC_OP_DYNAMIC) {
        assert(!decode.cc_op_dynamic);
        assert(!!decode.cc_dst == !!(cc_live & USES_CC_DST));
        assert(!!decode.cc_src == !!(cc_live & USES_CC_SRC));
        assert(!!decode.cc_src2 == !!(cc_live & USES_CC_SRC2));
    }

    return;
 gp_fault:
    gen_exception_gpf(s);
    return;
 illegal_op:
    gen_illegal_opcode(s);
    return;
 unknown_op:
    gen_unknown_opcode(env, s);
}