1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
|
/*
* HPPA memory access helper routines
*
* Copyright (c) 2017 Helge Deller
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "qom/cpu.h"
#include "trace.h"
#ifdef CONFIG_USER_ONLY
int hppa_cpu_handle_mmu_fault(CPUState *cs, vaddr address,
int size, int rw, int mmu_idx)
{
HPPACPU *cpu = HPPA_CPU(cs);
/* ??? Test between data page fault and data memory protection trap,
which would affect si_code. */
cs->exception_index = EXCP_DMP;
cpu->env.cr[CR_IOR] = address;
return 1;
}
#else
static hppa_tlb_entry *hppa_find_tlb(CPUHPPAState *env, vaddr addr)
{
int i;
for (i = 0; i < ARRAY_SIZE(env->tlb); ++i) {
hppa_tlb_entry *ent = &env->tlb[i];
if (ent->va_b <= addr && addr <= ent->va_e) {
trace_hppa_tlb_find_entry(env, ent + i, ent->entry_valid,
ent->va_b, ent->va_e, ent->pa);
return ent;
}
}
trace_hppa_tlb_find_entry_not_found(env, addr);
return NULL;
}
static void hppa_flush_tlb_ent(CPUHPPAState *env, hppa_tlb_entry *ent)
{
CPUState *cs = CPU(hppa_env_get_cpu(env));
unsigned i, n = 1 << (2 * ent->page_size);
uint64_t addr = ent->va_b;
trace_hppa_tlb_flush_ent(env, ent, ent->va_b, ent->va_e, ent->pa);
for (i = 0; i < n; ++i, addr += TARGET_PAGE_SIZE) {
/* Do not flush MMU_PHYS_IDX. */
tlb_flush_page_by_mmuidx(cs, addr, 0xf);
}
memset(ent, 0, sizeof(*ent));
ent->va_b = -1;
}
static hppa_tlb_entry *hppa_alloc_tlb_ent(CPUHPPAState *env)
{
hppa_tlb_entry *ent;
uint32_t i = env->tlb_last;
env->tlb_last = (i == ARRAY_SIZE(env->tlb) - 1 ? 0 : i + 1);
ent = &env->tlb[i];
hppa_flush_tlb_ent(env, ent);
return ent;
}
int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx,
int type, hwaddr *pphys, int *pprot)
{
hwaddr phys;
int prot, r_prot, w_prot, x_prot;
hppa_tlb_entry *ent;
int ret = -1;
/* Virtual translation disabled. Direct map virtual to physical. */
if (mmu_idx == MMU_PHYS_IDX) {
phys = addr;
prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
goto egress;
}
/* Find a valid tlb entry that matches the virtual address. */
ent = hppa_find_tlb(env, addr);
if (ent == NULL || !ent->entry_valid) {
phys = 0;
prot = 0;
ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS;
goto egress;
}
/* We now know the physical address. */
phys = ent->pa + (addr & ~TARGET_PAGE_MASK);
/* Map TLB access_rights field to QEMU protection. */
r_prot = (mmu_idx <= ent->ar_pl1) * PAGE_READ;
w_prot = (mmu_idx <= ent->ar_pl2) * PAGE_WRITE;
x_prot = (ent->ar_pl2 <= mmu_idx && mmu_idx <= ent->ar_pl1) * PAGE_EXEC;
switch (ent->ar_type) {
case 0: /* read-only: data page */
prot = r_prot;
break;
case 1: /* read/write: dynamic data page */
prot = r_prot | w_prot;
break;
case 2: /* read/execute: normal code page */
prot = r_prot | x_prot;
break;
case 3: /* read/write/execute: dynamic code page */
prot = r_prot | w_prot | x_prot;
break;
default: /* execute: promote to privilege level type & 3 */
prot = x_prot;
break;
}
/* access_id == 0 means public page and no check is performed */
if ((env->psw & PSW_P) && ent->access_id) {
/* If bits [31:1] match, and bit 0 is set, suppress write. */
int match = ent->access_id * 2 + 1;
if (match == env->cr[CR_PID1] || match == env->cr[CR_PID2] ||
match == env->cr[CR_PID3] || match == env->cr[CR_PID4]) {
prot &= PAGE_READ | PAGE_EXEC;
if (type == PAGE_WRITE) {
ret = EXCP_DMPI;
goto egress;
}
}
}
/* No guest access type indicates a non-architectural access from
within QEMU. Bypass checks for access, D, B and T bits. */
if (type == 0) {
goto egress;
}
if (unlikely(!(prot & type))) {
/* The access isn't allowed -- Inst/Data Memory Protection Fault. */
ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR;
goto egress;
}
/* In reverse priority order, check for conditions which raise faults.
As we go, remove PROT bits that cover the condition we want to check.
In this way, the resulting PROT will force a re-check of the
architectural TLB entry for the next access. */
if (unlikely(!ent->d)) {
if (type & PAGE_WRITE) {
/* The D bit is not set -- TLB Dirty Bit Fault. */
ret = EXCP_TLB_DIRTY;
}
prot &= PAGE_READ | PAGE_EXEC;
}
if (unlikely(ent->b)) {
if (type & PAGE_WRITE) {
/* The B bit is set -- Data Memory Break Fault. */
ret = EXCP_DMB;
}
prot &= PAGE_READ | PAGE_EXEC;
}
if (unlikely(ent->t)) {
if (!(type & PAGE_EXEC)) {
/* The T bit is set -- Page Reference Fault. */
ret = EXCP_PAGE_REF;
}
prot &= PAGE_EXEC;
}
egress:
*pphys = phys;
*pprot = prot;
trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys);
return ret;
}
hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr)
{
HPPACPU *cpu = HPPA_CPU(cs);
hwaddr phys;
int prot, excp;
/* If the (data) mmu is disabled, bypass translation. */
/* ??? We really ought to know if the code mmu is disabled too,
in order to get the correct debugging dumps. */
if (!(cpu->env.psw & PSW_D)) {
return addr;
}
excp = hppa_get_physical_address(&cpu->env, addr, MMU_KERNEL_IDX, 0,
&phys, &prot);
/* Since we're translating for debugging, the only error that is a
hard error is no translation at all. Otherwise, while a real cpu
access might not have permission, the debugger does. */
return excp == EXCP_DTLB_MISS ? -1 : phys;
}
void tlb_fill(CPUState *cs, target_ulong addr, int size,
MMUAccessType type, int mmu_idx, uintptr_t retaddr)
{
HPPACPU *cpu = HPPA_CPU(cs);
CPUHPPAState *env = &cpu->env;
int prot, excp, a_prot;
hwaddr phys;
switch (type) {
case MMU_INST_FETCH:
a_prot = PAGE_EXEC;
break;
case MMU_DATA_STORE:
a_prot = PAGE_WRITE;
break;
default:
a_prot = PAGE_READ;
break;
}
excp = hppa_get_physical_address(env, addr, mmu_idx,
a_prot, &phys, &prot);
if (unlikely(excp >= 0)) {
trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx);
/* Failure. Raise the indicated exception. */
cs->exception_index = excp;
if (cpu->env.psw & PSW_Q) {
/* ??? Needs tweaking for hppa64. */
cpu->env.cr[CR_IOR] = addr;
cpu->env.cr[CR_ISR] = addr >> 32;
}
cpu_loop_exit_restore(cs, retaddr);
}
trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK,
phys & TARGET_PAGE_MASK, size, type, mmu_idx);
/* Success! Store the translation into the QEMU TLB. */
tlb_set_page(cs, addr & TARGET_PAGE_MASK, phys & TARGET_PAGE_MASK,
prot, mmu_idx, TARGET_PAGE_SIZE);
}
/* Insert (Insn/Data) TLB Address. Note this is PA 1.1 only. */
void HELPER(itlba)(CPUHPPAState *env, target_ulong addr, target_ureg reg)
{
hppa_tlb_entry *empty = NULL;
int i;
/* Zap any old entries covering ADDR; notice empty entries on the way. */
for (i = 0; i < ARRAY_SIZE(env->tlb); ++i) {
hppa_tlb_entry *ent = &env->tlb[i];
if (ent->va_b <= addr && addr <= ent->va_e) {
if (ent->entry_valid) {
hppa_flush_tlb_ent(env, ent);
}
if (!empty) {
empty = ent;
}
}
}
/* If we didn't see an empty entry, evict one. */
if (empty == NULL) {
empty = hppa_alloc_tlb_ent(env);
}
/* Note that empty->entry_valid == 0 already. */
empty->va_b = addr & TARGET_PAGE_MASK;
empty->va_e = empty->va_b + TARGET_PAGE_SIZE - 1;
empty->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS;
trace_hppa_tlb_itlba(env, empty, empty->va_b, empty->va_e, empty->pa);
}
/* Insert (Insn/Data) TLB Protection. Note this is PA 1.1 only. */
void HELPER(itlbp)(CPUHPPAState *env, target_ulong addr, target_ureg reg)
{
hppa_tlb_entry *ent = hppa_find_tlb(env, addr);
if (unlikely(ent == NULL)) {
qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n");
return;
}
ent->access_id = extract32(reg, 1, 18);
ent->u = extract32(reg, 19, 1);
ent->ar_pl2 = extract32(reg, 20, 2);
ent->ar_pl1 = extract32(reg, 22, 2);
ent->ar_type = extract32(reg, 24, 3);
ent->b = extract32(reg, 27, 1);
ent->d = extract32(reg, 28, 1);
ent->t = extract32(reg, 29, 1);
ent->entry_valid = 1;
trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2,
ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t);
}
/* Purge (Insn/Data) TLB. This is explicitly page-based, and is
synchronous across all processors. */
static void ptlb_work(CPUState *cpu, run_on_cpu_data data)
{
CPUHPPAState *env = cpu->env_ptr;
target_ulong addr = (target_ulong) data.target_ptr;
hppa_tlb_entry *ent = hppa_find_tlb(env, addr);
if (ent && ent->entry_valid) {
hppa_flush_tlb_ent(env, ent);
}
}
void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr)
{
CPUState *src = CPU(hppa_env_get_cpu(env));
CPUState *cpu;
trace_hppa_tlb_ptlb(env);
run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr);
CPU_FOREACH(cpu) {
if (cpu != src) {
async_run_on_cpu(cpu, ptlb_work, data);
}
}
async_safe_run_on_cpu(src, ptlb_work, data);
}
/* Purge (Insn/Data) TLB entry. This affects an implementation-defined
number of pages/entries (we choose all), and is local to the cpu. */
void HELPER(ptlbe)(CPUHPPAState *env)
{
CPUState *src = CPU(hppa_env_get_cpu(env));
trace_hppa_tlb_ptlbe(env);
memset(env->tlb, 0, sizeof(env->tlb));
tlb_flush_by_mmuidx(src, 0xf);
}
void cpu_hppa_change_prot_id(CPUHPPAState *env)
{
if (env->psw & PSW_P) {
CPUState *src = CPU(hppa_env_get_cpu(env));
tlb_flush_by_mmuidx(src, 0xf);
}
}
void HELPER(change_prot_id)(CPUHPPAState *env)
{
cpu_hppa_change_prot_id(env);
}
target_ureg HELPER(lpa)(CPUHPPAState *env, target_ulong addr)
{
hwaddr phys;
int prot, excp;
excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0,
&phys, &prot);
if (excp >= 0) {
if (env->psw & PSW_Q) {
/* ??? Needs tweaking for hppa64. */
env->cr[CR_IOR] = addr;
env->cr[CR_ISR] = addr >> 32;
}
if (excp == EXCP_DTLB_MISS) {
excp = EXCP_NA_DTLB_MISS;
}
trace_hppa_tlb_lpa_failed(env, addr);
hppa_dynamic_excp(env, excp, GETPC());
}
trace_hppa_tlb_lpa_success(env, addr, phys);
return phys;
}
/* Return the ar_type of the TLB at VADDR, or -1. */
int hppa_artype_for_page(CPUHPPAState *env, target_ulong vaddr)
{
hppa_tlb_entry *ent = hppa_find_tlb(env, vaddr);
return ent ? ent->ar_type : -1;
}
#endif /* CONFIG_USER_ONLY */
|