1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
|
/*
* Copyright(c) 2019-2021 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/int128.h"
#include "fpu/softfloat.h"
#include "macros.h"
#include "fma_emu.h"
#define DF_INF_EXP 0x7ff
#define DF_BIAS 1023
#define DF_MANTBITS 52
#define DF_NAN 0xffffffffffffffffULL
#define DF_INF 0x7ff0000000000000ULL
#define DF_MINUS_INF 0xfff0000000000000ULL
#define DF_MAXF 0x7fefffffffffffffULL
#define DF_MINUS_MAXF 0xffefffffffffffffULL
#define SF_INF_EXP 0xff
#define SF_BIAS 127
#define SF_MANTBITS 23
#define SF_INF 0x7f800000
#define SF_MINUS_INF 0xff800000
#define SF_MAXF 0x7f7fffff
#define SF_MINUS_MAXF 0xff7fffff
#define HF_INF_EXP 0x1f
#define HF_BIAS 15
#define WAY_BIG_EXP 4096
typedef union {
double f;
uint64_t i;
struct {
uint64_t mant:52;
uint64_t exp:11;
uint64_t sign:1;
};
} Double;
typedef union {
float f;
uint32_t i;
struct {
uint32_t mant:23;
uint32_t exp:8;
uint32_t sign:1;
};
} Float;
static uint64_t float64_getmant(float64 f64)
{
Double a = { .i = f64 };
if (float64_is_normal(f64)) {
return a.mant | 1ULL << 52;
}
if (float64_is_zero(f64)) {
return 0;
}
if (float64_is_denormal(f64)) {
return a.mant;
}
return ~0ULL;
}
int32_t float64_getexp(float64 f64)
{
Double a = { .i = f64 };
if (float64_is_normal(f64)) {
return a.exp;
}
if (float64_is_denormal(f64)) {
return a.exp + 1;
}
return -1;
}
static uint64_t float32_getmant(float32 f32)
{
Float a = { .i = f32 };
if (float32_is_normal(f32)) {
return a.mant | 1ULL << 23;
}
if (float32_is_zero(f32)) {
return 0;
}
if (float32_is_denormal(f32)) {
return a.mant;
}
return ~0ULL;
}
int32_t float32_getexp(float32 f32)
{
Float a = { .i = f32 };
if (float32_is_normal(f32)) {
return a.exp;
}
if (float32_is_denormal(f32)) {
return a.exp + 1;
}
return -1;
}
static uint32_t int128_getw0(Int128 x)
{
return int128_getlo(x);
}
static uint32_t int128_getw1(Int128 x)
{
return int128_getlo(x) >> 32;
}
static Int128 int128_mul_6464(uint64_t ai, uint64_t bi)
{
Int128 a, b;
uint64_t pp0, pp1a, pp1b, pp1s, pp2;
a = int128_make64(ai);
b = int128_make64(bi);
pp0 = (uint64_t)int128_getw0(a) * (uint64_t)int128_getw0(b);
pp1a = (uint64_t)int128_getw1(a) * (uint64_t)int128_getw0(b);
pp1b = (uint64_t)int128_getw1(b) * (uint64_t)int128_getw0(a);
pp2 = (uint64_t)int128_getw1(a) * (uint64_t)int128_getw1(b);
pp1s = pp1a + pp1b;
if ((pp1s < pp1a) || (pp1s < pp1b)) {
pp2 += (1ULL << 32);
}
uint64_t ret_low = pp0 + (pp1s << 32);
if ((ret_low < pp0) || (ret_low < (pp1s << 32))) {
pp2 += 1;
}
return int128_make128(ret_low, pp2 + (pp1s >> 32));
}
static Int128 int128_sub_borrow(Int128 a, Int128 b, int borrow)
{
Int128 ret = int128_sub(a, b);
if (borrow != 0) {
ret = int128_sub(ret, int128_one());
}
return ret;
}
typedef struct {
Int128 mant;
int32_t exp;
uint8_t sign;
uint8_t guard;
uint8_t round;
uint8_t sticky;
} Accum;
static void accum_init(Accum *p)
{
p->mant = int128_zero();
p->exp = 0;
p->sign = 0;
p->guard = 0;
p->round = 0;
p->sticky = 0;
}
static Accum accum_norm_left(Accum a)
{
a.exp--;
a.mant = int128_lshift(a.mant, 1);
a.mant = int128_or(a.mant, int128_make64(a.guard));
a.guard = a.round;
a.round = a.sticky;
return a;
}
/* This function is marked inline for performance reasons */
static inline Accum accum_norm_right(Accum a, int amt)
{
if (amt > 130) {
a.sticky |=
a.round | a.guard | int128_nz(a.mant);
a.guard = a.round = 0;
a.mant = int128_zero();
a.exp += amt;
return a;
}
while (amt >= 64) {
a.sticky |= a.round | a.guard | (int128_getlo(a.mant) != 0);
a.guard = (int128_getlo(a.mant) >> 63) & 1;
a.round = (int128_getlo(a.mant) >> 62) & 1;
a.mant = int128_make64(int128_gethi(a.mant));
a.exp += 64;
amt -= 64;
}
while (amt > 0) {
a.exp++;
a.sticky |= a.round;
a.round = a.guard;
a.guard = int128_getlo(a.mant) & 1;
a.mant = int128_rshift(a.mant, 1);
amt--;
}
return a;
}
/*
* On the add/sub, we need to be able to shift out lots of bits, but need a
* sticky bit for what was shifted out, I think.
*/
static Accum accum_add(Accum a, Accum b);
static Accum accum_sub(Accum a, Accum b, int negate)
{
Accum ret;
accum_init(&ret);
int borrow;
if (a.sign != b.sign) {
b.sign = !b.sign;
return accum_add(a, b);
}
if (b.exp > a.exp) {
/* small - big == - (big - small) */
return accum_sub(b, a, !negate);
}
if ((b.exp == a.exp) && (int128_gt(b.mant, a.mant))) {
/* small - big == - (big - small) */
return accum_sub(b, a, !negate);
}
while (a.exp > b.exp) {
/* Try to normalize exponents: shrink a exponent and grow mantissa */
if (int128_gethi(a.mant) & (1ULL << 62)) {
/* Can't grow a any more */
break;
} else {
a = accum_norm_left(a);
}
}
while (a.exp > b.exp) {
/* Try to normalize exponents: grow b exponent and shrink mantissa */
/* Keep around shifted out bits... we might need those later */
b = accum_norm_right(b, a.exp - b.exp);
}
if ((int128_gt(b.mant, a.mant))) {
return accum_sub(b, a, !negate);
}
/* OK, now things should be normalized! */
ret.sign = a.sign;
ret.exp = a.exp;
assert(!int128_gt(b.mant, a.mant));
borrow = (b.round << 2) | (b.guard << 1) | b.sticky;
ret.mant = int128_sub_borrow(a.mant, b.mant, (borrow != 0));
borrow = 0 - borrow;
ret.guard = (borrow >> 2) & 1;
ret.round = (borrow >> 1) & 1;
ret.sticky = (borrow >> 0) & 1;
if (negate) {
ret.sign = !ret.sign;
}
return ret;
}
static Accum accum_add(Accum a, Accum b)
{
Accum ret;
accum_init(&ret);
if (a.sign != b.sign) {
b.sign = !b.sign;
return accum_sub(a, b, 0);
}
if (b.exp > a.exp) {
/* small + big == (big + small) */
return accum_add(b, a);
}
if ((b.exp == a.exp) && int128_gt(b.mant, a.mant)) {
/* small + big == (big + small) */
return accum_add(b, a);
}
while (a.exp > b.exp) {
/* Try to normalize exponents: shrink a exponent and grow mantissa */
if (int128_gethi(a.mant) & (1ULL << 62)) {
/* Can't grow a any more */
break;
} else {
a = accum_norm_left(a);
}
}
while (a.exp > b.exp) {
/* Try to normalize exponents: grow b exponent and shrink mantissa */
/* Keep around shifted out bits... we might need those later */
b = accum_norm_right(b, a.exp - b.exp);
}
/* OK, now things should be normalized! */
if (int128_gt(b.mant, a.mant)) {
return accum_add(b, a);
};
ret.sign = a.sign;
ret.exp = a.exp;
assert(!int128_gt(b.mant, a.mant));
ret.mant = int128_add(a.mant, b.mant);
ret.guard = b.guard;
ret.round = b.round;
ret.sticky = b.sticky;
return ret;
}
/* Return an infinity with requested sign */
static float64 infinite_float64(uint8_t sign)
{
if (sign) {
return make_float64(DF_MINUS_INF);
} else {
return make_float64(DF_INF);
}
}
/* Return a maximum finite value with requested sign */
static float64 maxfinite_float64(uint8_t sign)
{
if (sign) {
return make_float64(DF_MINUS_MAXF);
} else {
return make_float64(DF_MAXF);
}
}
/* Return a zero value with requested sign */
static float64 zero_float64(uint8_t sign)
{
if (sign) {
return make_float64(0x8000000000000000);
} else {
return float64_zero;
}
}
/* Return an infinity with the requested sign */
float32 infinite_float32(uint8_t sign)
{
if (sign) {
return make_float32(SF_MINUS_INF);
} else {
return make_float32(SF_INF);
}
}
/* Return a maximum finite value with the requested sign */
static float32 maxfinite_float32(uint8_t sign)
{
if (sign) {
return make_float32(SF_MINUS_MAXF);
} else {
return make_float32(SF_MAXF);
}
}
/* Return a zero value with requested sign */
static float32 zero_float32(uint8_t sign)
{
if (sign) {
return make_float32(0x80000000);
} else {
return float32_zero;
}
}
#define GEN_XF_ROUND(SUFFIX, MANTBITS, INF_EXP, INTERNAL_TYPE) \
static SUFFIX accum_round_##SUFFIX(Accum a, float_status * fp_status) \
{ \
if ((int128_gethi(a.mant) == 0) && (int128_getlo(a.mant) == 0) \
&& ((a.guard | a.round | a.sticky) == 0)) { \
/* result zero */ \
switch (fp_status->float_rounding_mode) { \
case float_round_down: \
return zero_##SUFFIX(1); \
default: \
return zero_##SUFFIX(0); \
} \
} \
/* Normalize right */ \
/* We want MANTBITS bits of mantissa plus the leading one. */ \
/* That means that we want MANTBITS+1 bits, or 0x000000000000FF_FFFF */ \
/* So we need to normalize right while the high word is non-zero and \
* while the low word is nonzero when masked with 0xffe0_0000_0000_0000 */ \
while ((int128_gethi(a.mant) != 0) || \
((int128_getlo(a.mant) >> (MANTBITS + 1)) != 0)) { \
a = accum_norm_right(a, 1); \
} \
/* \
* OK, now normalize left \
* We want to normalize left until we have a leading one in bit 24 \
* Theoretically, we only need to shift a maximum of one to the left if we \
* shifted out lots of bits from B, or if we had no shift / 1 shift sticky \
* shoudl be 0 \
*/ \
while ((int128_getlo(a.mant) & (1ULL << MANTBITS)) == 0) { \
a = accum_norm_left(a); \
} \
/* \
* OK, now we might need to denormalize because of potential underflow. \
* We need to do this before rounding, and rounding might make us normal \
* again \
*/ \
while (a.exp <= 0) { \
a = accum_norm_right(a, 1 - a.exp); \
/* \
* Do we have underflow? \
* That's when we get an inexact answer because we ran out of bits \
* in a denormal. \
*/ \
if (a.guard || a.round || a.sticky) { \
float_raise(float_flag_underflow, fp_status); \
} \
} \
/* OK, we're relatively canonical... now we need to round */ \
if (a.guard || a.round || a.sticky) { \
float_raise(float_flag_inexact, fp_status); \
switch (fp_status->float_rounding_mode) { \
case float_round_to_zero: \
/* Chop and we're done */ \
break; \
case float_round_up: \
if (a.sign == 0) { \
a.mant = int128_add(a.mant, int128_one()); \
} \
break; \
case float_round_down: \
if (a.sign != 0) { \
a.mant = int128_add(a.mant, int128_one()); \
} \
break; \
default: \
if (a.round || a.sticky) { \
/* round up if guard is 1, down if guard is zero */ \
a.mant = int128_add(a.mant, int128_make64(a.guard)); \
} else if (a.guard) { \
/* exactly .5, round up if odd */ \
a.mant = int128_add(a.mant, int128_and(a.mant, int128_one())); \
} \
break; \
} \
} \
/* \
* OK, now we might have carried all the way up. \
* So we might need to shr once \
* at least we know that the lsb should be zero if we rounded and \
* got a carry out... \
*/ \
if ((int128_getlo(a.mant) >> (MANTBITS + 1)) != 0) { \
a = accum_norm_right(a, 1); \
} \
/* Overflow? */ \
if (a.exp >= INF_EXP) { \
/* Yep, inf result */ \
float_raise(float_flag_overflow, fp_status); \
float_raise(float_flag_inexact, fp_status); \
switch (fp_status->float_rounding_mode) { \
case float_round_to_zero: \
return maxfinite_##SUFFIX(a.sign); \
case float_round_up: \
if (a.sign == 0) { \
return infinite_##SUFFIX(a.sign); \
} else { \
return maxfinite_##SUFFIX(a.sign); \
} \
case float_round_down: \
if (a.sign != 0) { \
return infinite_##SUFFIX(a.sign); \
} else { \
return maxfinite_##SUFFIX(a.sign); \
} \
default: \
return infinite_##SUFFIX(a.sign); \
} \
} \
/* Underflow? */ \
if (int128_getlo(a.mant) & (1ULL << MANTBITS)) { \
/* Leading one means: No, we're normal. So, we should be done... */ \
INTERNAL_TYPE ret; \
ret.i = 0; \
ret.sign = a.sign; \
ret.exp = a.exp; \
ret.mant = int128_getlo(a.mant); \
return ret.i; \
} \
assert(a.exp == 1); \
INTERNAL_TYPE ret; \
ret.i = 0; \
ret.sign = a.sign; \
ret.exp = 0; \
ret.mant = int128_getlo(a.mant); \
return ret.i; \
}
GEN_XF_ROUND(float64, DF_MANTBITS, DF_INF_EXP, Double)
GEN_XF_ROUND(float32, SF_MANTBITS, SF_INF_EXP, Float)
static bool is_inf_prod(float64 a, float64 b)
{
return ((float64_is_infinity(a) && float64_is_infinity(b)) ||
(float64_is_infinity(a) && is_finite(b) && (!float64_is_zero(b))) ||
(float64_is_infinity(b) && is_finite(a) && (!float64_is_zero(a))));
}
static float64 special_fma(float64 a, float64 b, float64 c,
float_status *fp_status)
{
float64 ret = make_float64(0);
/*
* If A multiplied by B is an exact infinity and C is also an infinity
* but with the opposite sign, FMA returns NaN and raises invalid.
*/
uint8_t a_sign = float64_is_neg(a);
uint8_t b_sign = float64_is_neg(b);
uint8_t c_sign = float64_is_neg(c);
if (is_inf_prod(a, b) && float64_is_infinity(c)) {
if ((a_sign ^ b_sign) != c_sign) {
ret = make_float64(DF_NAN);
float_raise(float_flag_invalid, fp_status);
return ret;
}
}
if ((float64_is_infinity(a) && float64_is_zero(b)) ||
(float64_is_zero(a) && float64_is_infinity(b))) {
ret = make_float64(DF_NAN);
float_raise(float_flag_invalid, fp_status);
return ret;
}
/*
* If none of the above checks are true and C is a NaN,
* a NaN shall be returned
* If A or B are NaN, a NAN shall be returned.
*/
if (float64_is_any_nan(a) ||
float64_is_any_nan(b) ||
float64_is_any_nan(c)) {
if (float64_is_any_nan(a) && (fGETBIT(51, a) == 0)) {
float_raise(float_flag_invalid, fp_status);
}
if (float64_is_any_nan(b) && (fGETBIT(51, b) == 0)) {
float_raise(float_flag_invalid, fp_status);
}
if (float64_is_any_nan(c) && (fGETBIT(51, c) == 0)) {
float_raise(float_flag_invalid, fp_status);
}
ret = make_float64(DF_NAN);
return ret;
}
/*
* We have checked for adding opposite-signed infinities.
* Other infinities return infinity with the correct sign
*/
if (float64_is_infinity(c)) {
ret = infinite_float64(c_sign);
return ret;
}
if (float64_is_infinity(a) || float64_is_infinity(b)) {
ret = infinite_float64(a_sign ^ b_sign);
return ret;
}
g_assert_not_reached();
}
static float32 special_fmaf(float32 a, float32 b, float32 c,
float_status *fp_status)
{
float64 aa, bb, cc;
aa = float32_to_float64(a, fp_status);
bb = float32_to_float64(b, fp_status);
cc = float32_to_float64(c, fp_status);
return float64_to_float32(special_fma(aa, bb, cc, fp_status), fp_status);
}
float32 internal_fmafx(float32 a, float32 b, float32 c, int scale,
float_status *fp_status)
{
Accum prod;
Accum acc;
Accum result;
accum_init(&prod);
accum_init(&acc);
accum_init(&result);
uint8_t a_sign = float32_is_neg(a);
uint8_t b_sign = float32_is_neg(b);
uint8_t c_sign = float32_is_neg(c);
if (float32_is_infinity(a) ||
float32_is_infinity(b) ||
float32_is_infinity(c)) {
return special_fmaf(a, b, c, fp_status);
}
if (float32_is_any_nan(a) ||
float32_is_any_nan(b) ||
float32_is_any_nan(c)) {
return special_fmaf(a, b, c, fp_status);
}
if ((scale == 0) && (float32_is_zero(a) || float32_is_zero(b))) {
float32 tmp = float32_mul(a, b, fp_status);
tmp = float32_add(tmp, c, fp_status);
return tmp;
}
/* (a * 2**b) * (c * 2**d) == a*c * 2**(b+d) */
prod.mant = int128_mul_6464(float32_getmant(a), float32_getmant(b));
/*
* Note: extracting the mantissa into an int is multiplying by
* 2**23, so adjust here
*/
prod.exp = float32_getexp(a) + float32_getexp(b) - SF_BIAS - 23;
prod.sign = a_sign ^ b_sign;
if (float32_is_zero(a) || float32_is_zero(b)) {
prod.exp = -2 * WAY_BIG_EXP;
}
if ((scale > 0) && float32_is_denormal(c)) {
acc.mant = int128_mul_6464(0, 0);
acc.exp = -WAY_BIG_EXP;
acc.sign = c_sign;
acc.sticky = 1;
result = accum_add(prod, acc);
} else if (!float32_is_zero(c)) {
acc.mant = int128_mul_6464(float32_getmant(c), 1);
acc.exp = float32_getexp(c);
acc.sign = c_sign;
result = accum_add(prod, acc);
} else {
result = prod;
}
result.exp += scale;
return accum_round_float32(result, fp_status);
}
float32 internal_mpyf(float32 a, float32 b, float_status *fp_status)
{
if (float32_is_zero(a) || float32_is_zero(b)) {
return float32_mul(a, b, fp_status);
}
return internal_fmafx(a, b, float32_zero, 0, fp_status);
}
float64 internal_mpyhh(float64 a, float64 b,
unsigned long long int accumulated,
float_status *fp_status)
{
Accum x;
unsigned long long int prod;
unsigned int sticky;
uint8_t a_sign, b_sign;
sticky = accumulated & 1;
accumulated >>= 1;
accum_init(&x);
if (float64_is_zero(a) ||
float64_is_any_nan(a) ||
float64_is_infinity(a)) {
return float64_mul(a, b, fp_status);
}
if (float64_is_zero(b) ||
float64_is_any_nan(b) ||
float64_is_infinity(b)) {
return float64_mul(a, b, fp_status);
}
x.mant = int128_mul_6464(accumulated, 1);
x.sticky = sticky;
prod = fGETUWORD(1, float64_getmant(a)) * fGETUWORD(1, float64_getmant(b));
x.mant = int128_add(x.mant, int128_mul_6464(prod, 0x100000000ULL));
x.exp = float64_getexp(a) + float64_getexp(b) - DF_BIAS - 20;
if (!float64_is_normal(a) || !float64_is_normal(b)) {
/* crush to inexact zero */
x.sticky = 1;
x.exp = -4096;
}
a_sign = float64_is_neg(a);
b_sign = float64_is_neg(b);
x.sign = a_sign ^ b_sign;
return accum_round_float64(x, fp_status);
}
|