1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
|
/*
* Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "iclass.h"
#include "attribs.h"
#include "genptr.h"
#include "decode.h"
#include "insn.h"
#include "printinsn.h"
#include "mmvec/decode_ext_mmvec.h"
#define fZXTN(N, M, VAL) ((VAL) & ((1LL << (N)) - 1))
enum {
EXT_IDX_noext = 0,
EXT_IDX_noext_AFTER = 4,
EXT_IDX_mmvec = 4,
EXT_IDX_mmvec_AFTER = 8,
XX_LAST_EXT_IDX
};
/*
* Certain operand types represent a non-contiguous set of values.
* For example, the compound compare-and-jump instruction can only access
* registers R0-R7 and R16-23.
* This table represents the mapping from the encoding to the actual values.
*/
#define DEF_REGMAP(NAME, ELEMENTS, ...) \
static const unsigned int DECODE_REGISTER_##NAME[ELEMENTS] = \
{ __VA_ARGS__ };
/* Name Num Table */
DEF_REGMAP(R_16, 16, 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23)
DEF_REGMAP(R__8, 8, 0, 2, 4, 6, 16, 18, 20, 22)
DEF_REGMAP(R_8, 8, 0, 1, 2, 3, 4, 5, 6, 7)
#define DECODE_MAPPED_REG(OPNUM, NAME) \
insn->regno[OPNUM] = DECODE_REGISTER_##NAME[insn->regno[OPNUM]];
/* Helper functions for decode_*_generated.c.inc */
#define DECODE_MAPPED(NAME) \
static int decode_mapped_reg_##NAME(DisasContext *ctx, int x) \
{ \
return DECODE_REGISTER_##NAME[x]; \
}
DECODE_MAPPED(R_16)
DECODE_MAPPED(R_8)
DECODE_MAPPED(R__8)
/* Helper function for decodetree_trans_funcs_generated.c.inc */
static int shift_left(DisasContext *ctx, int x, int n, int immno)
{
int ret = x;
Insn *insn = ctx->insn;
if (!insn->extension_valid ||
insn->which_extended != immno) {
ret <<= n;
}
return ret;
}
/* Include the generated decoder for 32 bit insn */
#include "decode_normal_generated.c.inc"
#include "decode_hvx_generated.c.inc"
/* Include the generated decoder for 16 bit insn */
#include "decode_subinsn_a_generated.c.inc"
#include "decode_subinsn_l1_generated.c.inc"
#include "decode_subinsn_l2_generated.c.inc"
#include "decode_subinsn_s1_generated.c.inc"
#include "decode_subinsn_s2_generated.c.inc"
/* Include the generated helpers for the decoder */
#include "decodetree_trans_funcs_generated.c.inc"
void decode_send_insn_to(Packet *packet, int start, int newloc)
{
Insn tmpinsn;
int direction;
int i;
if (start == newloc) {
return;
}
if (start < newloc) {
/* Move towards end */
direction = 1;
} else {
/* move towards beginning */
direction = -1;
}
for (i = start; i != newloc; i += direction) {
tmpinsn = packet->insn[i];
packet->insn[i] = packet->insn[i + direction];
packet->insn[i + direction] = tmpinsn;
}
}
/* Fill newvalue registers with the correct regno */
static void
decode_fill_newvalue_regno(Packet *packet)
{
int i, use_regidx, offset, def_idx, dst_idx;
for (i = 1; i < packet->num_insns; i++) {
if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE) &&
!GET_ATTRIB(packet->insn[i].opcode, A_EXTENSION)) {
g_assert(packet->insn[i].new_read_idx != -1);
use_regidx = packet->insn[i].new_read_idx;
/*
* What's encoded at the N-field is the offset to who's producing
* the value. Shift off the LSB which indicates odd/even register,
* then walk backwards and skip over the constant extenders.
*/
offset = packet->insn[i].regno[use_regidx] >> 1;
def_idx = i - offset;
for (int j = 0; j < offset; j++) {
if (GET_ATTRIB(packet->insn[i - j - 1].opcode, A_IT_EXTENDER)) {
def_idx--;
}
}
/*
* Check for a badly encoded N-field which points to an instruction
* out-of-range
*/
g_assert(!((def_idx < 0) || (def_idx > (packet->num_insns - 1))));
/* Now patch up the consumer with the register number */
g_assert(packet->insn[def_idx].dest_idx != -1);
dst_idx = packet->insn[def_idx].dest_idx;
packet->insn[i].regno[use_regidx] =
packet->insn[def_idx].regno[dst_idx];
/*
* We need to remember who produces this value to later
* check if it was dynamically cancelled
*/
packet->insn[i].new_value_producer_slot =
packet->insn[def_idx].slot;
}
}
}
/* Split CJ into a compare and a jump */
static void decode_split_cmpjump(Packet *pkt)
{
int last, i;
int numinsns = pkt->num_insns;
/*
* First, split all compare-jumps.
* The compare is sent to the end as a new instruction.
* Do it this way so we don't reorder dual jumps. Those need to stay in
* original order.
*/
for (i = 0; i < numinsns; i++) {
/* It's a cmp-jump */
if (GET_ATTRIB(pkt->insn[i].opcode, A_NEWCMPJUMP)) {
last = pkt->num_insns;
pkt->insn[last] = pkt->insn[i]; /* copy the instruction */
pkt->insn[last].part1 = true; /* last insn does the CMP */
pkt->insn[i].part1 = false; /* existing insn does the JUMP */
pkt->num_insns++;
}
}
/* Now re-shuffle all the compares back to the beginning */
for (i = 0; i < pkt->num_insns; i++) {
if (pkt->insn[i].part1) {
decode_send_insn_to(pkt, i, 0);
}
}
}
static bool decode_opcode_can_jump(int opcode)
{
if ((GET_ATTRIB(opcode, A_JUMP)) ||
(GET_ATTRIB(opcode, A_CALL)) ||
(opcode == J2_trap0) ||
(opcode == J2_pause)) {
/* Exception to A_JUMP attribute */
if (opcode == J4_hintjumpr) {
return false;
}
return true;
}
return false;
}
static bool decode_opcode_ends_loop(int opcode)
{
return GET_ATTRIB(opcode, A_HWLOOP0_END) ||
GET_ATTRIB(opcode, A_HWLOOP1_END);
}
/* Set the is_* fields in each instruction */
static void decode_set_insn_attr_fields(Packet *pkt)
{
int i;
int numinsns = pkt->num_insns;
uint16_t opcode;
pkt->pkt_has_cof = false;
pkt->pkt_has_multi_cof = false;
pkt->pkt_has_endloop = false;
pkt->pkt_has_dczeroa = false;
for (i = 0; i < numinsns; i++) {
opcode = pkt->insn[i].opcode;
if (pkt->insn[i].part1) {
continue; /* Skip compare of cmp-jumps */
}
if (GET_ATTRIB(opcode, A_DCZEROA)) {
pkt->pkt_has_dczeroa = true;
}
if (GET_ATTRIB(opcode, A_STORE)) {
if (GET_ATTRIB(opcode, A_SCALAR_STORE) &&
!GET_ATTRIB(opcode, A_MEMSIZE_0B)) {
if (pkt->insn[i].slot == 0) {
pkt->pkt_has_store_s0 = true;
} else {
pkt->pkt_has_store_s1 = true;
}
}
}
if (decode_opcode_can_jump(opcode)) {
if (pkt->pkt_has_cof) {
pkt->pkt_has_multi_cof = true;
}
pkt->pkt_has_cof = true;
}
pkt->insn[i].is_endloop = decode_opcode_ends_loop(opcode);
pkt->pkt_has_endloop |= pkt->insn[i].is_endloop;
if (pkt->pkt_has_endloop) {
if (pkt->pkt_has_cof) {
pkt->pkt_has_multi_cof = true;
}
pkt->pkt_has_cof = true;
}
}
}
/*
* Shuffle for execution
* Move stores to end (in same order as encoding)
* Move compares to beginning (for use by .new insns)
*/
static void decode_shuffle_for_execution(Packet *packet)
{
bool changed = false;
int i;
bool flag; /* flag means we've seen a non-memory instruction */
int n_mems;
int last_insn = packet->num_insns - 1;
/*
* Skip end loops, somehow an end loop is getting in and messing
* up the order
*/
if (decode_opcode_ends_loop(packet->insn[last_insn].opcode)) {
last_insn--;
}
do {
changed = false;
/*
* Stores go last, must not reorder.
* Cannot shuffle stores past loads, either.
* Iterate backwards. If we see a non-memory instruction,
* then a store, shuffle the store to the front. Don't shuffle
* stores wrt each other or a load.
*/
for (flag = false, n_mems = 0, i = last_insn; i >= 0; i--) {
int opcode = packet->insn[i].opcode;
if (flag && GET_ATTRIB(opcode, A_STORE)) {
decode_send_insn_to(packet, i, last_insn - n_mems);
n_mems++;
changed = true;
} else if (GET_ATTRIB(opcode, A_STORE)) {
n_mems++;
} else if (GET_ATTRIB(opcode, A_LOAD)) {
/*
* Don't set flag, since we don't want to shuffle a
* store past a load
*/
n_mems++;
} else if (GET_ATTRIB(opcode, A_DOTNEWVALUE)) {
/*
* Don't set flag, since we don't want to shuffle past
* a .new value
*/
} else {
flag = true;
}
}
if (changed) {
continue;
}
/* Compares go first, may be reordered wrt each other */
for (flag = false, i = 0; i < last_insn + 1; i++) {
int opcode = packet->insn[i].opcode;
if (packet->insn[i].has_pred_dest &&
GET_ATTRIB(opcode, A_STORE) == 0) {
/* This should be a compare (not a store conditional) */
if (flag) {
decode_send_insn_to(packet, i, 0);
changed = true;
continue;
}
} else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P3) &&
!decode_opcode_ends_loop(packet->insn[i].opcode)) {
/*
* spNloop instruction
* Don't reorder endloops; they are not valid for .new uses,
* and we want to match HW
*/
if (flag) {
decode_send_insn_to(packet, i, 0);
changed = true;
continue;
}
} else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P0) &&
!GET_ATTRIB(opcode, A_NEWCMPJUMP)) {
if (flag) {
decode_send_insn_to(packet, i, 0);
changed = true;
continue;
}
} else {
flag = true;
}
}
if (changed) {
continue;
}
} while (changed);
/*
* If we have a .new register compare/branch, move that to the very
* very end, past stores
*/
for (i = 0; i < last_insn; i++) {
if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE)) {
decode_send_insn_to(packet, i, last_insn);
break;
}
}
}
static void
apply_extender(Packet *pkt, int i, uint32_t extender)
{
int immed_num;
uint32_t base_immed;
immed_num = pkt->insn[i].which_extended;
base_immed = pkt->insn[i].immed[immed_num];
pkt->insn[i].immed[immed_num] = extender | fZXTN(6, 32, base_immed);
}
static void decode_apply_extenders(Packet *packet)
{
int i;
for (i = 0; i < packet->num_insns; i++) {
if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) {
packet->insn[i + 1].extension_valid = true;
apply_extender(packet, i + 1, packet->insn[i].immed[0]);
}
}
}
static void decode_remove_extenders(Packet *packet)
{
int i, j;
for (i = 0; i < packet->num_insns; i++) {
if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) {
/* Remove this one by moving the remaining instructions down */
for (j = i;
(j < packet->num_insns - 1) && (j < INSTRUCTIONS_MAX - 1);
j++) {
packet->insn[j] = packet->insn[j + 1];
}
packet->num_insns--;
}
}
}
static SlotMask get_valid_slots(const Packet *pkt, unsigned int slot)
{
if (GET_ATTRIB(pkt->insn[slot].opcode, A_EXTENSION)) {
return mmvec_ext_decode_find_iclass_slots(pkt->insn[slot].opcode);
} else {
return find_iclass_slots(pkt->insn[slot].opcode,
pkt->insn[slot].iclass);
}
}
/*
* Section 10.3 of the Hexagon V73 Programmer's Reference Manual
*
* A duplex is encoded as a 32-bit instruction with bits [15:14] set to 00.
* The sub-instructions that comprise a duplex are encoded as 13-bit fields
* in the duplex.
*
* Per table 10-4, the 4-bit duplex iclass is encoded in bits 31:29, 13
*/
static uint32_t get_duplex_iclass(uint32_t encoding)
{
uint32_t iclass = extract32(encoding, 13, 1);
iclass = deposit32(iclass, 1, 3, extract32(encoding, 29, 3));
return iclass;
}
/*
* Per table 10-5, the duplex ICLASS field values that specify the group of
* each sub-instruction in a duplex
*
* This table points to the decode instruction for each entry in the table
*/
typedef bool (*subinsn_decode_func)(DisasContext *ctx, uint16_t insn);
typedef struct {
subinsn_decode_func decode_slot0_subinsn;
subinsn_decode_func decode_slot1_subinsn;
} subinsn_decode_groups;
static const subinsn_decode_groups decode_groups[16] = {
[0x0] = { decode_subinsn_l1, decode_subinsn_l1 },
[0x1] = { decode_subinsn_l2, decode_subinsn_l1 },
[0x2] = { decode_subinsn_l2, decode_subinsn_l2 },
[0x3] = { decode_subinsn_a, decode_subinsn_a },
[0x4] = { decode_subinsn_l1, decode_subinsn_a },
[0x5] = { decode_subinsn_l2, decode_subinsn_a },
[0x6] = { decode_subinsn_s1, decode_subinsn_a },
[0x7] = { decode_subinsn_s2, decode_subinsn_a },
[0x8] = { decode_subinsn_s1, decode_subinsn_l1 },
[0x9] = { decode_subinsn_s1, decode_subinsn_l2 },
[0xa] = { decode_subinsn_s1, decode_subinsn_s1 },
[0xb] = { decode_subinsn_s2, decode_subinsn_s1 },
[0xc] = { decode_subinsn_s2, decode_subinsn_l1 },
[0xd] = { decode_subinsn_s2, decode_subinsn_l2 },
[0xe] = { decode_subinsn_s2, decode_subinsn_s2 },
[0xf] = { NULL, NULL }, /* Reserved */
};
static uint16_t get_slot0_subinsn(uint32_t encoding)
{
return extract32(encoding, 0, 13);
}
static uint16_t get_slot1_subinsn(uint32_t encoding)
{
return extract32(encoding, 16, 13);
}
static unsigned int
decode_insns(DisasContext *ctx, Insn *insn, uint32_t encoding)
{
if (parse_bits(encoding) != 0) {
if (decode_normal(ctx, encoding) ||
decode_hvx(ctx, encoding)) {
insn->generate = opcode_genptr[insn->opcode];
insn->iclass = iclass_bits(encoding);
return 1;
}
g_assert_not_reached();
} else {
uint32_t iclass = get_duplex_iclass(encoding);
unsigned int slot0_subinsn = get_slot0_subinsn(encoding);
unsigned int slot1_subinsn = get_slot1_subinsn(encoding);
subinsn_decode_func decode_slot0_subinsn =
decode_groups[iclass].decode_slot0_subinsn;
subinsn_decode_func decode_slot1_subinsn =
decode_groups[iclass].decode_slot1_subinsn;
/* The slot1 subinsn needs to be in the packet first */
if (decode_slot1_subinsn(ctx, slot1_subinsn)) {
insn->generate = opcode_genptr[insn->opcode];
insn->iclass = iclass_bits(encoding);
ctx->insn = ++insn;
if (decode_slot0_subinsn(ctx, slot0_subinsn)) {
insn->generate = opcode_genptr[insn->opcode];
insn->iclass = iclass_bits(encoding);
return 2;
}
}
g_assert_not_reached();
}
}
static void decode_add_endloop_insn(Insn *insn, int loopnum)
{
if (loopnum == 10) {
insn->opcode = J2_endloop01;
insn->generate = opcode_genptr[J2_endloop01];
} else if (loopnum == 1) {
insn->opcode = J2_endloop1;
insn->generate = opcode_genptr[J2_endloop1];
} else if (loopnum == 0) {
insn->opcode = J2_endloop0;
insn->generate = opcode_genptr[J2_endloop0];
} else {
g_assert_not_reached();
}
}
static bool decode_parsebits_is_loopend(uint32_t encoding32)
{
uint32_t bits = parse_bits(encoding32);
return bits == 0x2;
}
static bool has_valid_slot_assignment(Packet *pkt)
{
int used_slots = 0;
for (int i = 0; i < pkt->num_insns; i++) {
int slot_mask;
Insn *insn = &pkt->insn[i];
if (decode_opcode_ends_loop(insn->opcode)) {
/* We overload slot 0 for endloop. */
continue;
}
slot_mask = 1 << insn->slot;
if (used_slots & slot_mask) {
return false;
}
used_slots |= slot_mask;
}
return true;
}
static bool
decode_set_slot_number(Packet *pkt)
{
int slot;
int i;
bool hit_mem_insn = false;
bool hit_duplex = false;
bool slot0_found = false;
bool slot1_found = false;
int slot1_iidx = 0;
/*
* The slots are encoded in reverse order
* For each instruction, count down until you find a suitable slot
*/
for (i = 0, slot = 3; i < pkt->num_insns; i++) {
SlotMask valid_slots = get_valid_slots(pkt, i);
while (!(valid_slots & (1 << slot))) {
slot--;
}
pkt->insn[i].slot = slot;
if (slot) {
/* I've assigned the slot, now decrement it for the next insn */
slot--;
}
}
/* Fix the exceptions - mem insns to slot 0,1 */
for (i = pkt->num_insns - 1; i >= 0; i--) {
/* First memory instruction always goes to slot 0 */
if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) ||
GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) &&
!hit_mem_insn) {
hit_mem_insn = true;
pkt->insn[i].slot = 0;
continue;
}
/* Next memory instruction always goes to slot 1 */
if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) ||
GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) &&
hit_mem_insn) {
pkt->insn[i].slot = 1;
}
}
/* Fix the exceptions - duplex always slot 0,1 */
for (i = pkt->num_insns - 1; i >= 0; i--) {
/* First subinsn always goes to slot 0 */
if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && !hit_duplex) {
hit_duplex = true;
pkt->insn[i].slot = 0;
continue;
}
/* Next subinsn always goes to slot 1 */
if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && hit_duplex) {
pkt->insn[i].slot = 1;
}
}
/* Fix the exceptions - slot 1 is never empty, always aligns to slot 0 */
for (i = pkt->num_insns - 1; i >= 0; i--) {
/* Is slot0 used? */
if (pkt->insn[i].slot == 0) {
bool is_endloop = (pkt->insn[i].opcode == J2_endloop01);
is_endloop |= (pkt->insn[i].opcode == J2_endloop0);
is_endloop |= (pkt->insn[i].opcode == J2_endloop1);
/*
* Make sure it's not endloop since, we're overloading
* slot0 for endloop
*/
if (!is_endloop) {
slot0_found = true;
}
}
/* Is slot1 used? */
if (pkt->insn[i].slot == 1) {
slot1_found = true;
slot1_iidx = i;
}
}
/* Is slot0 empty and slot1 used? */
if ((!slot0_found) && slot1_found) {
/* Then push it to slot0 */
pkt->insn[slot1_iidx].slot = 0;
}
return has_valid_slot_assignment(pkt);
}
/*
* decode_packet
* Decodes packet with given words
* Returns 0 on insufficient words,
* or number of words used on success
*/
int decode_packet(DisasContext *ctx, int max_words, const uint32_t *words,
Packet *pkt, bool disas_only)
{
int num_insns = 0;
int words_read = 0;
bool end_of_packet = false;
int new_insns = 0;
int i;
uint32_t encoding32;
/* Initialize */
memset(pkt, 0, sizeof(*pkt));
/* Try to build packet */
while (!end_of_packet && (words_read < max_words)) {
Insn *insn = &pkt->insn[num_insns];
ctx->insn = insn;
encoding32 = words[words_read];
end_of_packet = is_packet_end(encoding32);
new_insns = decode_insns(ctx, insn, encoding32);
g_assert(new_insns > 0);
/*
* If we saw an extender, mark next word extended so immediate
* decode works
*/
if (pkt->insn[num_insns].opcode == A4_ext) {
pkt->insn[num_insns + 1].extension_valid = true;
}
num_insns += new_insns;
words_read++;
}
pkt->num_insns = num_insns;
if (!end_of_packet) {
/* Ran out of words! */
return 0;
}
pkt->encod_pkt_size_in_bytes = words_read * 4;
pkt->pkt_has_hvx = false;
for (i = 0; i < num_insns; i++) {
pkt->pkt_has_hvx |=
GET_ATTRIB(pkt->insn[i].opcode, A_CVI);
}
/*
* Check for :endloop in the parse bits
* Section 10.6 of the Programmer's Reference describes the encoding
* The end of hardware loop 0 can be encoded with 2 words
* The end of hardware loop 1 needs 3 words
*/
if ((words_read == 2) && (decode_parsebits_is_loopend(words[0]))) {
decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0);
}
if (words_read >= 3) {
bool has_loop0, has_loop1;
has_loop0 = decode_parsebits_is_loopend(words[0]);
has_loop1 = decode_parsebits_is_loopend(words[1]);
if (has_loop0 && has_loop1) {
decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 10);
} else if (has_loop1) {
decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 1);
} else if (has_loop0) {
decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0);
}
}
decode_apply_extenders(pkt);
if (!disas_only) {
decode_remove_extenders(pkt);
if (!decode_set_slot_number(pkt)) {
/* Invalid packet */
return 0;
}
}
decode_fill_newvalue_regno(pkt);
if (pkt->pkt_has_hvx) {
mmvec_ext_decode_checks(pkt, disas_only);
}
if (!disas_only) {
decode_shuffle_for_execution(pkt);
decode_split_cmpjump(pkt);
decode_set_insn_attr_fields(pkt);
}
return words_read;
}
/* Used for "-d in_asm" logging */
int disassemble_hexagon(uint32_t *words, int nwords, bfd_vma pc,
GString *buf)
{
DisasContext ctx;
Packet pkt;
memset(&ctx, 0, sizeof(DisasContext));
ctx.pkt = &pkt;
if (decode_packet(&ctx, nwords, words, &pkt, true) > 0) {
snprint_a_pkt_disas(buf, &pkt, words, pc);
return pkt.encod_pkt_size_in_bytes;
} else {
g_string_assign(buf, "<invalid>");
return 0;
}
}
|