aboutsummaryrefslogtreecommitdiff
path: root/target/arm/vfp_helper.c
blob: cc7f9f5cb192d800655664e2215aa8766c087daf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
/*
 * ARM VFP floating-point operations
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "fpu/softfloat.h"
#include "internals.h"


/* VFP support.  We follow the convention used for VFP instructions:
   Single precision routines have a "s" suffix, double precision a
   "d" suffix.  */

/* Convert host exception flags to vfp form.  */
static inline int vfp_exceptbits_from_host(int host_bits)
{
    int target_bits = 0;

    if (host_bits & float_flag_invalid)
        target_bits |= 1;
    if (host_bits & float_flag_divbyzero)
        target_bits |= 2;
    if (host_bits & float_flag_overflow)
        target_bits |= 4;
    if (host_bits & (float_flag_underflow | float_flag_output_denormal))
        target_bits |= 8;
    if (host_bits & float_flag_inexact)
        target_bits |= 0x10;
    if (host_bits & float_flag_input_denormal)
        target_bits |= 0x80;
    return target_bits;
}

uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
{
    uint32_t i, fpscr;

    fpscr = env->vfp.xregs[ARM_VFP_FPSCR]
            | (env->vfp.vec_len << 16)
            | (env->vfp.vec_stride << 20);

    i = get_float_exception_flags(&env->vfp.fp_status);
    i |= get_float_exception_flags(&env->vfp.standard_fp_status);
    /* FZ16 does not generate an input denormal exception.  */
    i |= (get_float_exception_flags(&env->vfp.fp_status_f16)
          & ~float_flag_input_denormal);
    fpscr |= vfp_exceptbits_from_host(i);

    i = env->vfp.qc[0] | env->vfp.qc[1] | env->vfp.qc[2] | env->vfp.qc[3];
    fpscr |= i ? FPCR_QC : 0;

    return fpscr;
}

uint32_t vfp_get_fpscr(CPUARMState *env)
{
    return HELPER(vfp_get_fpscr)(env);
}

/* Convert vfp exception flags to target form.  */
static inline int vfp_exceptbits_to_host(int target_bits)
{
    int host_bits = 0;

    if (target_bits & 1)
        host_bits |= float_flag_invalid;
    if (target_bits & 2)
        host_bits |= float_flag_divbyzero;
    if (target_bits & 4)
        host_bits |= float_flag_overflow;
    if (target_bits & 8)
        host_bits |= float_flag_underflow;
    if (target_bits & 0x10)
        host_bits |= float_flag_inexact;
    if (target_bits & 0x80)
        host_bits |= float_flag_input_denormal;
    return host_bits;
}

void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
{
    int i;
    uint32_t changed = env->vfp.xregs[ARM_VFP_FPSCR];

    /* When ARMv8.2-FP16 is not supported, FZ16 is RES0.  */
    if (!cpu_isar_feature(aa64_fp16, arm_env_get_cpu(env))) {
        val &= ~FPCR_FZ16;
    }

    /*
     * We don't implement trapped exception handling, so the
     * trap enable bits, IDE|IXE|UFE|OFE|DZE|IOE are all RAZ/WI (not RES0!)
     *
     * If we exclude the exception flags, IOC|DZC|OFC|UFC|IXC|IDC
     * (which are stored in fp_status), and the other RES0 bits
     * in between, then we clear all of the low 16 bits.
     */
    env->vfp.xregs[ARM_VFP_FPSCR] = val & 0xf7c80000;
    env->vfp.vec_len = (val >> 16) & 7;
    env->vfp.vec_stride = (val >> 20) & 3;

    /*
     * The bit we set within fpscr_q is arbitrary; the register as a
     * whole being zero/non-zero is what counts.
     */
    env->vfp.qc[0] = val & FPCR_QC;
    env->vfp.qc[1] = 0;
    env->vfp.qc[2] = 0;
    env->vfp.qc[3] = 0;

    changed ^= val;
    if (changed & (3 << 22)) {
        i = (val >> 22) & 3;
        switch (i) {
        case FPROUNDING_TIEEVEN:
            i = float_round_nearest_even;
            break;
        case FPROUNDING_POSINF:
            i = float_round_up;
            break;
        case FPROUNDING_NEGINF:
            i = float_round_down;
            break;
        case FPROUNDING_ZERO:
            i = float_round_to_zero;
            break;
        }
        set_float_rounding_mode(i, &env->vfp.fp_status);
        set_float_rounding_mode(i, &env->vfp.fp_status_f16);
    }
    if (changed & FPCR_FZ16) {
        bool ftz_enabled = val & FPCR_FZ16;
        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status_f16);
    }
    if (changed & FPCR_FZ) {
        bool ftz_enabled = val & FPCR_FZ;
        set_flush_to_zero(ftz_enabled, &env->vfp.fp_status);
        set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status);
    }
    if (changed & FPCR_DN) {
        bool dnan_enabled = val & FPCR_DN;
        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status);
        set_default_nan_mode(dnan_enabled, &env->vfp.fp_status_f16);
    }

    /* The exception flags are ORed together when we read fpscr so we
     * only need to preserve the current state in one of our
     * float_status values.
     */
    i = vfp_exceptbits_to_host(val);
    set_float_exception_flags(i, &env->vfp.fp_status);
    set_float_exception_flags(0, &env->vfp.fp_status_f16);
    set_float_exception_flags(0, &env->vfp.standard_fp_status);
}

void vfp_set_fpscr(CPUARMState *env, uint32_t val)
{
    HELPER(vfp_set_fpscr)(env, val);
}

#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))

#define VFP_BINOP(name) \
float32 VFP_HELPER(name, s)(float32 a, float32 b, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    return float32_ ## name(a, b, fpst); \
} \
float64 VFP_HELPER(name, d)(float64 a, float64 b, void *fpstp) \
{ \
    float_status *fpst = fpstp; \
    return float64_ ## name(a, b, fpst); \
}
VFP_BINOP(add)
VFP_BINOP(sub)
VFP_BINOP(mul)
VFP_BINOP(div)
VFP_BINOP(min)
VFP_BINOP(max)
VFP_BINOP(minnum)
VFP_BINOP(maxnum)
#undef VFP_BINOP

float32 VFP_HELPER(neg, s)(float32 a)
{
    return float32_chs(a);
}

float64 VFP_HELPER(neg, d)(float64 a)
{
    return float64_chs(a);
}

float32 VFP_HELPER(abs, s)(float32 a)
{
    return float32_abs(a);
}

float64 VFP_HELPER(abs, d)(float64 a)
{
    return float64_abs(a);
}

float32 VFP_HELPER(sqrt, s)(float32 a, CPUARMState *env)
{
    return float32_sqrt(a, &env->vfp.fp_status);
}

float64 VFP_HELPER(sqrt, d)(float64 a, CPUARMState *env)
{
    return float64_sqrt(a, &env->vfp.fp_status);
}

static void softfloat_to_vfp_compare(CPUARMState *env, int cmp)
{
    uint32_t flags;
    switch (cmp) {
    case float_relation_equal:
        flags = 0x6;
        break;
    case float_relation_less:
        flags = 0x8;
        break;
    case float_relation_greater:
        flags = 0x2;
        break;
    case float_relation_unordered:
        flags = 0x3;
        break;
    default:
        g_assert_not_reached();
    }
    env->vfp.xregs[ARM_VFP_FPSCR] =
        deposit32(env->vfp.xregs[ARM_VFP_FPSCR], 28, 4, flags);
}

/* XXX: check quiet/signaling case */
#define DO_VFP_cmp(p, type) \
void VFP_HELPER(cmp, p)(type a, type b, CPUARMState *env)  \
{ \
    softfloat_to_vfp_compare(env, \
        type ## _compare_quiet(a, b, &env->vfp.fp_status)); \
} \
void VFP_HELPER(cmpe, p)(type a, type b, CPUARMState *env) \
{ \
    softfloat_to_vfp_compare(env, \
        type ## _compare(a, b, &env->vfp.fp_status)); \
}
DO_VFP_cmp(s, float32)
DO_VFP_cmp(d, float64)
#undef DO_VFP_cmp

/* Integer to float and float to integer conversions */

#define CONV_ITOF(name, ftype, fsz, sign)                           \
ftype HELPER(name)(uint32_t x, void *fpstp)                         \
{                                                                   \
    float_status *fpst = fpstp;                                     \
    return sign##int32_to_##float##fsz((sign##int32_t)x, fpst);     \
}

#define CONV_FTOI(name, ftype, fsz, sign, round)                \
sign##int32_t HELPER(name)(ftype x, void *fpstp)                \
{                                                               \
    float_status *fpst = fpstp;                                 \
    if (float##fsz##_is_any_nan(x)) {                           \
        float_raise(float_flag_invalid, fpst);                  \
        return 0;                                               \
    }                                                           \
    return float##fsz##_to_##sign##int32##round(x, fpst);       \
}

#define FLOAT_CONVS(name, p, ftype, fsz, sign)            \
    CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign)        \
    CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, )        \
    CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)

FLOAT_CONVS(si, h, uint32_t, 16, )
FLOAT_CONVS(si, s, float32, 32, )
FLOAT_CONVS(si, d, float64, 64, )
FLOAT_CONVS(ui, h, uint32_t, 16, u)
FLOAT_CONVS(ui, s, float32, 32, u)
FLOAT_CONVS(ui, d, float64, 64, u)

#undef CONV_ITOF
#undef CONV_FTOI
#undef FLOAT_CONVS

/* floating point conversion */
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUARMState *env)
{
    return float32_to_float64(x, &env->vfp.fp_status);
}

float32 VFP_HELPER(fcvts, d)(float64 x, CPUARMState *env)
{
    return float64_to_float32(x, &env->vfp.fp_status);
}

/* VFP3 fixed point conversion.  */
#define VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype) \
float##fsz HELPER(vfp_##name##to##p)(uint##isz##_t  x, uint32_t shift, \
                                     void *fpstp) \
{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpstp); }

#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype, ROUND, suff)   \
uint##isz##_t HELPER(vfp_to##name##p##suff)(float##fsz x, uint32_t shift, \
                                            void *fpst)                   \
{                                                                         \
    if (unlikely(float##fsz##_is_any_nan(x))) {                           \
        float_raise(float_flag_invalid, fpst);                            \
        return 0;                                                         \
    }                                                                     \
    return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst);       \
}

#define VFP_CONV_FIX(name, p, fsz, isz, itype)                   \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
                         float_round_to_zero, _round_to_zero)    \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
                         get_float_rounding_mode(fpst), )

#define VFP_CONV_FIX_A64(name, p, fsz, isz, itype)               \
VFP_CONV_FIX_FLOAT(name, p, fsz, isz, itype)                     \
VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, isz, itype,               \
                         get_float_rounding_mode(fpst), )

VFP_CONV_FIX(sh, d, 64, 64, int16)
VFP_CONV_FIX(sl, d, 64, 64, int32)
VFP_CONV_FIX_A64(sq, d, 64, 64, int64)
VFP_CONV_FIX(uh, d, 64, 64, uint16)
VFP_CONV_FIX(ul, d, 64, 64, uint32)
VFP_CONV_FIX_A64(uq, d, 64, 64, uint64)
VFP_CONV_FIX(sh, s, 32, 32, int16)
VFP_CONV_FIX(sl, s, 32, 32, int32)
VFP_CONV_FIX_A64(sq, s, 32, 64, int64)
VFP_CONV_FIX(uh, s, 32, 32, uint16)
VFP_CONV_FIX(ul, s, 32, 32, uint32)
VFP_CONV_FIX_A64(uq, s, 32, 64, uint64)

#undef VFP_CONV_FIX
#undef VFP_CONV_FIX_FLOAT
#undef VFP_CONV_FLOAT_FIX_ROUND
#undef VFP_CONV_FIX_A64

uint32_t HELPER(vfp_sltoh)(uint32_t x, uint32_t shift, void *fpst)
{
    return int32_to_float16_scalbn(x, -shift, fpst);
}

uint32_t HELPER(vfp_ultoh)(uint32_t x, uint32_t shift, void *fpst)
{
    return uint32_to_float16_scalbn(x, -shift, fpst);
}

uint32_t HELPER(vfp_sqtoh)(uint64_t x, uint32_t shift, void *fpst)
{
    return int64_to_float16_scalbn(x, -shift, fpst);
}

uint32_t HELPER(vfp_uqtoh)(uint64_t x, uint32_t shift, void *fpst)
{
    return uint64_to_float16_scalbn(x, -shift, fpst);
}

uint32_t HELPER(vfp_toshh)(uint32_t x, uint32_t shift, void *fpst)
{
    if (unlikely(float16_is_any_nan(x))) {
        float_raise(float_flag_invalid, fpst);
        return 0;
    }
    return float16_to_int16_scalbn(x, get_float_rounding_mode(fpst),
                                   shift, fpst);
}

uint32_t HELPER(vfp_touhh)(uint32_t x, uint32_t shift, void *fpst)
{
    if (unlikely(float16_is_any_nan(x))) {
        float_raise(float_flag_invalid, fpst);
        return 0;
    }
    return float16_to_uint16_scalbn(x, get_float_rounding_mode(fpst),
                                    shift, fpst);
}

uint32_t HELPER(vfp_toslh)(uint32_t x, uint32_t shift, void *fpst)
{
    if (unlikely(float16_is_any_nan(x))) {
        float_raise(float_flag_invalid, fpst);
        return 0;
    }
    return float16_to_int32_scalbn(x, get_float_rounding_mode(fpst),
                                   shift, fpst);
}

uint32_t HELPER(vfp_toulh)(uint32_t x, uint32_t shift, void *fpst)
{
    if (unlikely(float16_is_any_nan(x))) {
        float_raise(float_flag_invalid, fpst);
        return 0;
    }
    return float16_to_uint32_scalbn(x, get_float_rounding_mode(fpst),
                                    shift, fpst);
}

uint64_t HELPER(vfp_tosqh)(uint32_t x, uint32_t shift, void *fpst)
{
    if (unlikely(float16_is_any_nan(x))) {
        float_raise(float_flag_invalid, fpst);
        return 0;
    }
    return float16_to_int64_scalbn(x, get_float_rounding_mode(fpst),
                                   shift, fpst);
}

uint64_t HELPER(vfp_touqh)(uint32_t x, uint32_t shift, void *fpst)
{
    if (unlikely(float16_is_any_nan(x))) {
        float_raise(float_flag_invalid, fpst);
        return 0;
    }
    return float16_to_uint64_scalbn(x, get_float_rounding_mode(fpst),
                                    shift, fpst);
}

/* Set the current fp rounding mode and return the old one.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_rmode)(uint32_t rmode, void *fpstp)
{
    float_status *fp_status = fpstp;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

/* Set the current fp rounding mode in the standard fp status and return
 * the old one. This is for NEON instructions that need to change the
 * rounding mode but wish to use the standard FPSCR values for everything
 * else. Always set the rounding mode back to the correct value after
 * modifying it.
 * The argument is a softfloat float_round_ value.
 */
uint32_t HELPER(set_neon_rmode)(uint32_t rmode, CPUARMState *env)
{
    float_status *fp_status = &env->vfp.standard_fp_status;

    uint32_t prev_rmode = get_float_rounding_mode(fp_status);
    set_float_rounding_mode(rmode, fp_status);

    return prev_rmode;
}

/* Half precision conversions.  */
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, void *fpstp, uint32_t ahp_mode)
{
    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
     * it would affect flushing input denormals.
     */
    float_status *fpst = fpstp;
    flag save = get_flush_inputs_to_zero(fpst);
    set_flush_inputs_to_zero(false, fpst);
    float32 r = float16_to_float32(a, !ahp_mode, fpst);
    set_flush_inputs_to_zero(save, fpst);
    return r;
}

uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, void *fpstp, uint32_t ahp_mode)
{
    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
     * it would affect flushing output denormals.
     */
    float_status *fpst = fpstp;
    flag save = get_flush_to_zero(fpst);
    set_flush_to_zero(false, fpst);
    float16 r = float32_to_float16(a, !ahp_mode, fpst);
    set_flush_to_zero(save, fpst);
    return r;
}

float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, void *fpstp, uint32_t ahp_mode)
{
    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
     * it would affect flushing input denormals.
     */
    float_status *fpst = fpstp;
    flag save = get_flush_inputs_to_zero(fpst);
    set_flush_inputs_to_zero(false, fpst);
    float64 r = float16_to_float64(a, !ahp_mode, fpst);
    set_flush_inputs_to_zero(save, fpst);
    return r;
}

uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, void *fpstp, uint32_t ahp_mode)
{
    /* Squash FZ16 to 0 for the duration of conversion.  In this case,
     * it would affect flushing output denormals.
     */
    float_status *fpst = fpstp;
    flag save = get_flush_to_zero(fpst);
    set_flush_to_zero(false, fpst);
    float16 r = float64_to_float16(a, !ahp_mode, fpst);
    set_flush_to_zero(save, fpst);
    return r;
}

#define float32_two make_float32(0x40000000)
#define float32_three make_float32(0x40400000)
#define float32_one_point_five make_float32(0x3fc00000)

float32 HELPER(recps_f32)(float32 a, float32 b, CPUARMState *env)
{
    float_status *s = &env->vfp.standard_fp_status;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
        return float32_two;
    }
    return float32_sub(float32_two, float32_mul(a, b, s), s);
}

float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
{
    float_status *s = &env->vfp.standard_fp_status;
    float32 product;
    if ((float32_is_infinity(a) && float32_is_zero_or_denormal(b)) ||
        (float32_is_infinity(b) && float32_is_zero_or_denormal(a))) {
        if (!(float32_is_zero(a) || float32_is_zero(b))) {
            float_raise(float_flag_input_denormal, s);
        }
        return float32_one_point_five;
    }
    product = float32_mul(a, b, s);
    return float32_div(float32_sub(float32_three, product, s), float32_two, s);
}

/* NEON helpers.  */

/* Constants 256 and 512 are used in some helpers; we avoid relying on
 * int->float conversions at run-time.  */
#define float64_256 make_float64(0x4070000000000000LL)
#define float64_512 make_float64(0x4080000000000000LL)
#define float16_maxnorm make_float16(0x7bff)
#define float32_maxnorm make_float32(0x7f7fffff)
#define float64_maxnorm make_float64(0x7fefffffffffffffLL)

/* Reciprocal functions
 *
 * The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
 */

/* See RecipEstimate()
 *
 * input is a 9 bit fixed point number
 * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
 * result range 256 .. 511 for a number from 1.0 to 511/256.
 */

static int recip_estimate(int input)
{
    int a, b, r;
    assert(256 <= input && input < 512);
    a = (input * 2) + 1;
    b = (1 << 19) / a;
    r = (b + 1) >> 1;
    assert(256 <= r && r < 512);
    return r;
}

/*
 * Common wrapper to call recip_estimate
 *
 * The parameters are exponent and 64 bit fraction (without implicit
 * bit) where the binary point is nominally at bit 52. Returns a
 * float64 which can then be rounded to the appropriate size by the
 * callee.
 */

static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac)
{
    uint32_t scaled, estimate;
    uint64_t result_frac;
    int result_exp;

    /* Handle sub-normals */
    if (*exp == 0) {
        if (extract64(frac, 51, 1) == 0) {
            *exp = -1;
            frac <<= 2;
        } else {
            frac <<= 1;
        }
    }

    /* scaled = UInt('1':fraction<51:44>) */
    scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
    estimate = recip_estimate(scaled);

    result_exp = exp_off - *exp;
    result_frac = deposit64(0, 44, 8, estimate);
    if (result_exp == 0) {
        result_frac = deposit64(result_frac >> 1, 51, 1, 1);
    } else if (result_exp == -1) {
        result_frac = deposit64(result_frac >> 2, 50, 2, 1);
        result_exp = 0;
    }

    *exp = result_exp;

    return result_frac;
}

static bool round_to_inf(float_status *fpst, bool sign_bit)
{
    switch (fpst->float_rounding_mode) {
    case float_round_nearest_even: /* Round to Nearest */
        return true;
    case float_round_up: /* Round to +Inf */
        return !sign_bit;
    case float_round_down: /* Round to -Inf */
        return sign_bit;
    case float_round_to_zero: /* Round to Zero */
        return false;
    }

    g_assert_not_reached();
}

uint32_t HELPER(recpe_f16)(uint32_t input, void *fpstp)
{
    float_status *fpst = fpstp;
    float16 f16 = float16_squash_input_denormal(input, fpst);
    uint32_t f16_val = float16_val(f16);
    uint32_t f16_sign = float16_is_neg(f16);
    int f16_exp = extract32(f16_val, 10, 5);
    uint32_t f16_frac = extract32(f16_val, 0, 10);
    uint64_t f64_frac;

    if (float16_is_any_nan(f16)) {
        float16 nan = f16;
        if (float16_is_signaling_nan(f16, fpst)) {
            float_raise(float_flag_invalid, fpst);
            nan = float16_silence_nan(f16, fpst);
        }
        if (fpst->default_nan_mode) {
            nan =  float16_default_nan(fpst);
        }
        return nan;
    } else if (float16_is_infinity(f16)) {
        return float16_set_sign(float16_zero, float16_is_neg(f16));
    } else if (float16_is_zero(f16)) {
        float_raise(float_flag_divbyzero, fpst);
        return float16_set_sign(float16_infinity, float16_is_neg(f16));
    } else if (float16_abs(f16) < (1 << 8)) {
        /* Abs(value) < 2.0^-16 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f16_sign)) {
            return float16_set_sign(float16_infinity, f16_sign);
        } else {
            return float16_set_sign(float16_maxnorm, f16_sign);
        }
    } else if (f16_exp >= 29 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float16_set_sign(float16_zero, float16_is_neg(f16));
    }

    f64_frac = call_recip_estimate(&f16_exp, 29,
                                   ((uint64_t) f16_frac) << (52 - 10));

    /* result = sign : result_exp<4:0> : fraction<51:42> */
    f16_val = deposit32(0, 15, 1, f16_sign);
    f16_val = deposit32(f16_val, 10, 5, f16_exp);
    f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
    return make_float16(f16_val);
}

float32 HELPER(recpe_f32)(float32 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float32 f32 = float32_squash_input_denormal(input, fpst);
    uint32_t f32_val = float32_val(f32);
    bool f32_sign = float32_is_neg(f32);
    int f32_exp = extract32(f32_val, 23, 8);
    uint32_t f32_frac = extract32(f32_val, 0, 23);
    uint64_t f64_frac;

    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32, fpst)) {
            float_raise(float_flag_invalid, fpst);
            nan = float32_silence_nan(f32, fpst);
        }
        if (fpst->default_nan_mode) {
            nan =  float32_default_nan(fpst);
        }
        return nan;
    } else if (float32_is_infinity(f32)) {
        return float32_set_sign(float32_zero, float32_is_neg(f32));
    } else if (float32_is_zero(f32)) {
        float_raise(float_flag_divbyzero, fpst);
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if (float32_abs(f32) < (1ULL << 21)) {
        /* Abs(value) < 2.0^-128 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f32_sign)) {
            return float32_set_sign(float32_infinity, f32_sign);
        } else {
            return float32_set_sign(float32_maxnorm, f32_sign);
        }
    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float32_set_sign(float32_zero, float32_is_neg(f32));
    }

    f64_frac = call_recip_estimate(&f32_exp, 253,
                                   ((uint64_t) f32_frac) << (52 - 23));

    /* result = sign : result_exp<7:0> : fraction<51:29> */
    f32_val = deposit32(0, 31, 1, f32_sign);
    f32_val = deposit32(f32_val, 23, 8, f32_exp);
    f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
    return make_float32(f32_val);
}

float64 HELPER(recpe_f64)(float64 input, void *fpstp)
{
    float_status *fpst = fpstp;
    float64 f64 = float64_squash_input_denormal(input, fpst);
    uint64_t f64_val = float64_val(f64);
    bool f64_sign = float64_is_neg(f64);
    int f64_exp = extract64(f64_val, 52, 11);
    uint64_t f64_frac = extract64(f64_val, 0, 52);

    /* Deal with any special cases */
    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64, fpst)) {
            float_raise(float_flag_invalid, fpst);
            nan = float64_silence_nan(f64, fpst);
        }
        if (fpst->default_nan_mode) {
            nan =  float64_default_nan(fpst);
        }
        return nan;
    } else if (float64_is_infinity(f64)) {
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, fpst);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
        /* Abs(value) < 2.0^-1024 */
        float_raise(float_flag_overflow | float_flag_inexact, fpst);
        if (round_to_inf(fpst, f64_sign)) {
            return float64_set_sign(float64_infinity, f64_sign);
        } else {
            return float64_set_sign(float64_maxnorm, f64_sign);
        }
    } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
        float_raise(float_flag_underflow, fpst);
        return float64_set_sign(float64_zero, float64_is_neg(f64));
    }

    f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac);

    /* result = sign : result_exp<10:0> : fraction<51:0>; */
    f64_val = deposit64(0, 63, 1, f64_sign);
    f64_val = deposit64(f64_val, 52, 11, f64_exp);
    f64_val = deposit64(f64_val, 0, 52, f64_frac);
    return make_float64(f64_val);
}

/* The algorithm that must be used to calculate the estimate
 * is specified by the ARM ARM.
 */

static int do_recip_sqrt_estimate(int a)
{
    int b, estimate;

    assert(128 <= a && a < 512);
    if (a < 256) {
        a = a * 2 + 1;
    } else {
        a = (a >> 1) << 1;
        a = (a + 1) * 2;
    }
    b = 512;
    while (a * (b + 1) * (b + 1) < (1 << 28)) {
        b += 1;
    }
    estimate = (b + 1) / 2;
    assert(256 <= estimate && estimate < 512);

    return estimate;
}


static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac)
{
    int estimate;
    uint32_t scaled;

    if (*exp == 0) {
        while (extract64(frac, 51, 1) == 0) {
            frac = frac << 1;
            *exp -= 1;
        }
        frac = extract64(frac, 0, 51) << 1;
    }

    if (*exp & 1) {
        /* scaled = UInt('01':fraction<51:45>) */
        scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
    } else {
        /* scaled = UInt('1':fraction<51:44>) */
        scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
    }
    estimate = do_recip_sqrt_estimate(scaled);

    *exp = (exp_off - *exp) / 2;
    return extract64(estimate, 0, 8) << 44;
}

uint32_t HELPER(rsqrte_f16)(uint32_t input, void *fpstp)
{
    float_status *s = fpstp;
    float16 f16 = float16_squash_input_denormal(input, s);
    uint16_t val = float16_val(f16);
    bool f16_sign = float16_is_neg(f16);
    int f16_exp = extract32(val, 10, 5);
    uint16_t f16_frac = extract32(val, 0, 10);
    uint64_t f64_frac;

    if (float16_is_any_nan(f16)) {
        float16 nan = f16;
        if (float16_is_signaling_nan(f16, s)) {
            float_raise(float_flag_invalid, s);
            nan = float16_silence_nan(f16, s);
        }
        if (s->default_nan_mode) {
            nan =  float16_default_nan(s);
        }
        return nan;
    } else if (float16_is_zero(f16)) {
        float_raise(float_flag_divbyzero, s);
        return float16_set_sign(float16_infinity, f16_sign);
    } else if (f16_sign) {
        float_raise(float_flag_invalid, s);
        return float16_default_nan(s);
    } else if (float16_is_infinity(f16)) {
        return float16_zero;
    }

    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */

    f64_frac = ((uint64_t) f16_frac) << (52 - 10);

    f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac);

    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
    val = deposit32(0, 15, 1, f16_sign);
    val = deposit32(val, 10, 5, f16_exp);
    val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
    return make_float16(val);
}

float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
{
    float_status *s = fpstp;
    float32 f32 = float32_squash_input_denormal(input, s);
    uint32_t val = float32_val(f32);
    uint32_t f32_sign = float32_is_neg(f32);
    int f32_exp = extract32(val, 23, 8);
    uint32_t f32_frac = extract32(val, 0, 23);
    uint64_t f64_frac;

    if (float32_is_any_nan(f32)) {
        float32 nan = f32;
        if (float32_is_signaling_nan(f32, s)) {
            float_raise(float_flag_invalid, s);
            nan = float32_silence_nan(f32, s);
        }
        if (s->default_nan_mode) {
            nan =  float32_default_nan(s);
        }
        return nan;
    } else if (float32_is_zero(f32)) {
        float_raise(float_flag_divbyzero, s);
        return float32_set_sign(float32_infinity, float32_is_neg(f32));
    } else if (float32_is_neg(f32)) {
        float_raise(float_flag_invalid, s);
        return float32_default_nan(s);
    } else if (float32_is_infinity(f32)) {
        return float32_zero;
    }

    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
     * preserving the parity of the exponent.  */

    f64_frac = ((uint64_t) f32_frac) << 29;

    f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac);

    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(15) */
    val = deposit32(0, 31, 1, f32_sign);
    val = deposit32(val, 23, 8, f32_exp);
    val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
    return make_float32(val);
}

float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
{
    float_status *s = fpstp;
    float64 f64 = float64_squash_input_denormal(input, s);
    uint64_t val = float64_val(f64);
    bool f64_sign = float64_is_neg(f64);
    int f64_exp = extract64(val, 52, 11);
    uint64_t f64_frac = extract64(val, 0, 52);

    if (float64_is_any_nan(f64)) {
        float64 nan = f64;
        if (float64_is_signaling_nan(f64, s)) {
            float_raise(float_flag_invalid, s);
            nan = float64_silence_nan(f64, s);
        }
        if (s->default_nan_mode) {
            nan =  float64_default_nan(s);
        }
        return nan;
    } else if (float64_is_zero(f64)) {
        float_raise(float_flag_divbyzero, s);
        return float64_set_sign(float64_infinity, float64_is_neg(f64));
    } else if (float64_is_neg(f64)) {
        float_raise(float_flag_invalid, s);
        return float64_default_nan(s);
    } else if (float64_is_infinity(f64)) {
        return float64_zero;
    }

    f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac);

    /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
    val = deposit64(0, 61, 1, f64_sign);
    val = deposit64(val, 52, 11, f64_exp);
    val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
    return make_float64(val);
}

uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
{
    /* float_status *s = fpstp; */
    int input, estimate;

    if ((a & 0x80000000) == 0) {
        return 0xffffffff;
    }

    input = extract32(a, 23, 9);
    estimate = recip_estimate(input);

    return deposit32(0, (32 - 9), 9, estimate);
}

uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
{
    int estimate;

    if ((a & 0xc0000000) == 0) {
        return 0xffffffff;
    }

    estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));

    return deposit32(0, 23, 9, estimate);
}

/* VFPv4 fused multiply-accumulate */
float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float32_muladd(a, b, c, 0, fpst);
}

float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
{
    float_status *fpst = fpstp;
    return float64_muladd(a, b, c, 0, fpst);
}

/* ARMv8 round to integral */
float32 HELPER(rints_exact)(float32 x, void *fp_status)
{
    return float32_round_to_int(x, fp_status);
}

float64 HELPER(rintd_exact)(float64 x, void *fp_status)
{
    return float64_round_to_int(x, fp_status);
}

float32 HELPER(rints)(float32 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float32 ret;

    ret = float32_round_to_int(x, fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

float64 HELPER(rintd)(float64 x, void *fp_status)
{
    int old_flags = get_float_exception_flags(fp_status), new_flags;
    float64 ret;

    ret = float64_round_to_int(x, fp_status);

    new_flags = get_float_exception_flags(fp_status);

    /* Suppress any inexact exceptions the conversion produced */
    if (!(old_flags & float_flag_inexact)) {
        new_flags = get_float_exception_flags(fp_status);
        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
    }

    return ret;
}

/* Convert ARM rounding mode to softfloat */
int arm_rmode_to_sf(int rmode)
{
    switch (rmode) {
    case FPROUNDING_TIEAWAY:
        rmode = float_round_ties_away;
        break;
    case FPROUNDING_ODD:
        /* FIXME: add support for TIEAWAY and ODD */
        qemu_log_mask(LOG_UNIMP, "arm: unimplemented rounding mode: %d\n",
                      rmode);
        /* fall through for now */
    case FPROUNDING_TIEEVEN:
    default:
        rmode = float_round_nearest_even;
        break;
    case FPROUNDING_POSINF:
        rmode = float_round_up;
        break;
    case FPROUNDING_NEGINF:
        rmode = float_round_down;
        break;
    case FPROUNDING_ZERO:
        rmode = float_round_to_zero;
        break;
    }
    return rmode;
}

/*
 * Implement float64 to int32_t conversion without saturation;
 * the result is supplied modulo 2^32.
 */
uint64_t HELPER(fjcvtzs)(float64 value, void *vstatus)
{
    float_status *status = vstatus;
    uint32_t exp, sign;
    uint64_t frac;
    uint32_t inexact = 1; /* !Z */

    sign = extract64(value, 63, 1);
    exp = extract64(value, 52, 11);
    frac = extract64(value, 0, 52);

    if (exp == 0) {
        /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript.  */
        inexact = sign;
        if (frac != 0) {
            if (status->flush_inputs_to_zero) {
                float_raise(float_flag_input_denormal, status);
            } else {
                float_raise(float_flag_inexact, status);
                inexact = 1;
            }
        }
        frac = 0;
    } else if (exp == 0x7ff) {
        /* This operation raises Invalid for both NaN and overflow (Inf).  */
        float_raise(float_flag_invalid, status);
        frac = 0;
    } else {
        int true_exp = exp - 1023;
        int shift = true_exp - 52;

        /* Restore implicit bit.  */
        frac |= 1ull << 52;

        /* Shift the fraction into place.  */
        if (shift >= 0) {
            /* The number is so large we must shift the fraction left.  */
            if (shift >= 64) {
                /* The fraction is shifted out entirely.  */
                frac = 0;
            } else {
                frac <<= shift;
            }
        } else if (shift > -64) {
            /* Normal case -- shift right and notice if bits shift out.  */
            inexact = (frac << (64 + shift)) != 0;
            frac >>= -shift;
        } else {
            /* The fraction is shifted out entirely.  */
            frac = 0;
        }

        /* Notice overflow or inexact exceptions.  */
        if (true_exp > 31 || frac > (sign ? 0x80000000ull : 0x7fffffff)) {
            /* Overflow, for which this operation raises invalid.  */
            float_raise(float_flag_invalid, status);
            inexact = 1;
        } else if (inexact) {
            float_raise(float_flag_inexact, status);
        }

        /* Honor the sign.  */
        if (sign) {
            frac = -frac;
        }
    }

    /* Pack the result and the env->ZF representation of Z together.  */
    return deposit64(frac, 32, 32, inexact);
}

uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
{
    uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status);
    uint32_t result = pair;
    uint32_t z = (pair >> 32) == 0;

    /* Store Z, clear NCV, in FPSCR.NZCV.  */
    env->vfp.xregs[ARM_VFP_FPSCR]
        = (env->vfp.xregs[ARM_VFP_FPSCR] & ~CPSR_NZCV) | (z * CPSR_Z);

    return result;
}