1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
|
/*
* AArch64 generic vector expansion
*
* Copyright (c) 2013 Alexander Graf <agraf@suse.de>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "translate.h"
#include "translate-a64.h"
static void gen_rax1_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m)
{
tcg_gen_rotli_i64(d, m, 1);
tcg_gen_xor_i64(d, d, n);
}
static void gen_rax1_vec(unsigned vece, TCGv_vec d, TCGv_vec n, TCGv_vec m)
{
tcg_gen_rotli_vec(vece, d, m, 1);
tcg_gen_xor_vec(vece, d, d, n);
}
void gen_gvec_rax1(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, uint32_t opr_sz, uint32_t max_sz)
{
static const TCGOpcode vecop_list[] = { INDEX_op_rotli_vec, 0 };
static const GVecGen3 op = {
.fni8 = gen_rax1_i64,
.fniv = gen_rax1_vec,
.opt_opc = vecop_list,
.fno = gen_helper_crypto_rax1,
.vece = MO_64,
};
tcg_gen_gvec_3(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz, &op);
}
static void gen_xar8_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, int64_t sh)
{
TCGv_i64 t = tcg_temp_new_i64();
uint64_t mask = dup_const(MO_8, 0xff >> sh);
tcg_gen_xor_i64(t, n, m);
tcg_gen_shri_i64(d, t, sh);
tcg_gen_shli_i64(t, t, 8 - sh);
tcg_gen_andi_i64(d, d, mask);
tcg_gen_andi_i64(t, t, ~mask);
tcg_gen_or_i64(d, d, t);
}
static void gen_xar16_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, int64_t sh)
{
TCGv_i64 t = tcg_temp_new_i64();
uint64_t mask = dup_const(MO_16, 0xffff >> sh);
tcg_gen_xor_i64(t, n, m);
tcg_gen_shri_i64(d, t, sh);
tcg_gen_shli_i64(t, t, 16 - sh);
tcg_gen_andi_i64(d, d, mask);
tcg_gen_andi_i64(t, t, ~mask);
tcg_gen_or_i64(d, d, t);
}
static void gen_xar_i32(TCGv_i32 d, TCGv_i32 n, TCGv_i32 m, int32_t sh)
{
tcg_gen_xor_i32(d, n, m);
tcg_gen_rotri_i32(d, d, sh);
}
static void gen_xar_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, int64_t sh)
{
tcg_gen_xor_i64(d, n, m);
tcg_gen_rotri_i64(d, d, sh);
}
static void gen_xar_vec(unsigned vece, TCGv_vec d, TCGv_vec n,
TCGv_vec m, int64_t sh)
{
tcg_gen_xor_vec(vece, d, n, m);
tcg_gen_rotri_vec(vece, d, d, sh);
}
void gen_gvec_xar(unsigned vece, uint32_t rd_ofs, uint32_t rn_ofs,
uint32_t rm_ofs, int64_t shift,
uint32_t opr_sz, uint32_t max_sz)
{
static const TCGOpcode vecop[] = { INDEX_op_rotli_vec, 0 };
static const GVecGen3i ops[4] = {
{ .fni8 = gen_xar8_i64,
.fniv = gen_xar_vec,
.fno = gen_helper_sve2_xar_b,
.opt_opc = vecop,
.vece = MO_8 },
{ .fni8 = gen_xar16_i64,
.fniv = gen_xar_vec,
.fno = gen_helper_sve2_xar_h,
.opt_opc = vecop,
.vece = MO_16 },
{ .fni4 = gen_xar_i32,
.fniv = gen_xar_vec,
.fno = gen_helper_sve2_xar_s,
.opt_opc = vecop,
.vece = MO_32 },
{ .fni8 = gen_xar_i64,
.fniv = gen_xar_vec,
.fno = gen_helper_gvec_xar_d,
.opt_opc = vecop,
.vece = MO_64 }
};
int esize = 8 << vece;
/* The SVE2 range is 1 .. esize; the AdvSIMD range is 0 .. esize-1. */
tcg_debug_assert(shift >= 0);
tcg_debug_assert(shift <= esize);
shift &= esize - 1;
if (shift == 0) {
/* xar with no rotate devolves to xor. */
tcg_gen_gvec_xor(vece, rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz);
} else {
tcg_gen_gvec_3i(rd_ofs, rn_ofs, rm_ofs, opr_sz, max_sz,
shift, &ops[vece]);
}
}
static void gen_eor3_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_i64 k)
{
tcg_gen_xor_i64(d, n, m);
tcg_gen_xor_i64(d, d, k);
}
static void gen_eor3_vec(unsigned vece, TCGv_vec d, TCGv_vec n,
TCGv_vec m, TCGv_vec k)
{
tcg_gen_xor_vec(vece, d, n, m);
tcg_gen_xor_vec(vece, d, d, k);
}
void gen_gvec_eor3(unsigned vece, uint32_t d, uint32_t n, uint32_t m,
uint32_t a, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen4 op = {
.fni8 = gen_eor3_i64,
.fniv = gen_eor3_vec,
.fno = gen_helper_sve2_eor3,
.vece = MO_64,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
tcg_gen_gvec_4(d, n, m, a, oprsz, maxsz, &op);
}
static void gen_bcax_i64(TCGv_i64 d, TCGv_i64 n, TCGv_i64 m, TCGv_i64 k)
{
tcg_gen_andc_i64(d, m, k);
tcg_gen_xor_i64(d, d, n);
}
static void gen_bcax_vec(unsigned vece, TCGv_vec d, TCGv_vec n,
TCGv_vec m, TCGv_vec k)
{
tcg_gen_andc_vec(vece, d, m, k);
tcg_gen_xor_vec(vece, d, d, n);
}
void gen_gvec_bcax(unsigned vece, uint32_t d, uint32_t n, uint32_t m,
uint32_t a, uint32_t oprsz, uint32_t maxsz)
{
static const GVecGen4 op = {
.fni8 = gen_bcax_i64,
.fniv = gen_bcax_vec,
.fno = gen_helper_sve2_bcax,
.vece = MO_64,
.prefer_i64 = TCG_TARGET_REG_BITS == 64,
};
tcg_gen_gvec_4(d, n, m, a, oprsz, maxsz, &op);
}
/*
* Set @res to the correctly saturated result.
* Set @qc non-zero if saturation occured.
*/
void gen_suqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
TCGv_i64 a, TCGv_i64 b, MemOp esz)
{
TCGv_i64 max = tcg_constant_i64((1ull << ((8 << esz) - 1)) - 1);
TCGv_i64 t = tcg_temp_new_i64();
tcg_gen_add_i64(t, a, b);
tcg_gen_smin_i64(res, t, max);
tcg_gen_xor_i64(t, t, res);
tcg_gen_or_i64(qc, qc, t);
}
void gen_suqadd_d(TCGv_i64 res, TCGv_i64 qc, TCGv_i64 a, TCGv_i64 b)
{
TCGv_i64 max = tcg_constant_i64(INT64_MAX);
TCGv_i64 t = tcg_temp_new_i64();
/* Maximum value that can be added to @a without overflow. */
tcg_gen_sub_i64(t, max, a);
/* Constrain addend so that the next addition never overflows. */
tcg_gen_umin_i64(t, t, b);
tcg_gen_add_i64(res, a, t);
tcg_gen_xor_i64(t, t, b);
tcg_gen_or_i64(qc, qc, t);
}
static void gen_suqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec qc,
TCGv_vec a, TCGv_vec b)
{
TCGv_vec max =
tcg_constant_vec_matching(t, vece, (1ull << ((8 << vece) - 1)) - 1);
TCGv_vec u = tcg_temp_new_vec_matching(t);
/* Maximum value that can be added to @a without overflow. */
tcg_gen_sub_vec(vece, u, max, a);
/* Constrain addend so that the next addition never overflows. */
tcg_gen_umin_vec(vece, u, u, b);
tcg_gen_add_vec(vece, t, u, a);
/* Compute QC by comparing the adjusted @b. */
tcg_gen_xor_vec(vece, u, u, b);
tcg_gen_or_vec(vece, qc, qc, u);
}
void gen_gvec_suqadd_qc(unsigned vece, uint32_t rd_ofs,
uint32_t rn_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz)
{
static const TCGOpcode vecop_list[] = {
INDEX_op_add_vec, INDEX_op_sub_vec, INDEX_op_umin_vec, 0
};
static const GVecGen4 ops[4] = {
{ .fniv = gen_suqadd_vec,
.fno = gen_helper_gvec_suqadd_b,
.opt_opc = vecop_list,
.write_aofs = true,
.vece = MO_8 },
{ .fniv = gen_suqadd_vec,
.fno = gen_helper_gvec_suqadd_h,
.opt_opc = vecop_list,
.write_aofs = true,
.vece = MO_16 },
{ .fniv = gen_suqadd_vec,
.fno = gen_helper_gvec_suqadd_s,
.opt_opc = vecop_list,
.write_aofs = true,
.vece = MO_32 },
{ .fniv = gen_suqadd_vec,
.fni8 = gen_suqadd_d,
.fno = gen_helper_gvec_suqadd_d,
.opt_opc = vecop_list,
.write_aofs = true,
.vece = MO_64 },
};
tcg_debug_assert(opr_sz <= sizeof_field(CPUARMState, vfp.qc));
tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc),
rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
}
void gen_usqadd_bhs(TCGv_i64 res, TCGv_i64 qc,
TCGv_i64 a, TCGv_i64 b, MemOp esz)
{
TCGv_i64 max = tcg_constant_i64(MAKE_64BIT_MASK(0, 8 << esz));
TCGv_i64 zero = tcg_constant_i64(0);
TCGv_i64 tmp = tcg_temp_new_i64();
tcg_gen_add_i64(tmp, a, b);
tcg_gen_smin_i64(res, tmp, max);
tcg_gen_smax_i64(res, res, zero);
tcg_gen_xor_i64(tmp, tmp, res);
tcg_gen_or_i64(qc, qc, tmp);
}
void gen_usqadd_d(TCGv_i64 res, TCGv_i64 qc, TCGv_i64 a, TCGv_i64 b)
{
TCGv_i64 tmp = tcg_temp_new_i64();
TCGv_i64 tneg = tcg_temp_new_i64();
TCGv_i64 tpos = tcg_temp_new_i64();
TCGv_i64 max = tcg_constant_i64(UINT64_MAX);
TCGv_i64 zero = tcg_constant_i64(0);
tcg_gen_add_i64(tmp, a, b);
/* If @b is positive, saturate if (a + b) < a, aka unsigned overflow. */
tcg_gen_movcond_i64(TCG_COND_LTU, tpos, tmp, a, max, tmp);
/* If @b is negative, saturate if a < -b, ie subtraction is negative. */
tcg_gen_neg_i64(tneg, b);
tcg_gen_movcond_i64(TCG_COND_LTU, tneg, a, tneg, zero, tmp);
/* Select correct result from sign of @b. */
tcg_gen_movcond_i64(TCG_COND_LT, res, b, zero, tneg, tpos);
tcg_gen_xor_i64(tmp, tmp, res);
tcg_gen_or_i64(qc, qc, tmp);
}
static void gen_usqadd_vec(unsigned vece, TCGv_vec t, TCGv_vec qc,
TCGv_vec a, TCGv_vec b)
{
TCGv_vec u = tcg_temp_new_vec_matching(t);
TCGv_vec z = tcg_constant_vec_matching(t, vece, 0);
/* Compute unsigned saturation of add for +b and sub for -b. */
tcg_gen_neg_vec(vece, t, b);
tcg_gen_usadd_vec(vece, u, a, b);
tcg_gen_ussub_vec(vece, t, a, t);
/* Select the correct result depending on the sign of b. */
tcg_gen_cmpsel_vec(TCG_COND_LT, vece, t, b, z, t, u);
/* Compute QC by comparing against the non-saturated result. */
tcg_gen_add_vec(vece, u, a, b);
tcg_gen_xor_vec(vece, u, u, t);
tcg_gen_or_vec(vece, qc, qc, u);
}
void gen_gvec_usqadd_qc(unsigned vece, uint32_t rd_ofs,
uint32_t rn_ofs, uint32_t rm_ofs,
uint32_t opr_sz, uint32_t max_sz)
{
static const TCGOpcode vecop_list[] = {
INDEX_op_neg_vec, INDEX_op_add_vec,
INDEX_op_usadd_vec, INDEX_op_ussub_vec,
INDEX_op_cmpsel_vec, 0
};
static const GVecGen4 ops[4] = {
{ .fniv = gen_usqadd_vec,
.fno = gen_helper_gvec_usqadd_b,
.opt_opc = vecop_list,
.write_aofs = true,
.vece = MO_8 },
{ .fniv = gen_usqadd_vec,
.fno = gen_helper_gvec_usqadd_h,
.opt_opc = vecop_list,
.write_aofs = true,
.vece = MO_16 },
{ .fniv = gen_usqadd_vec,
.fno = gen_helper_gvec_usqadd_s,
.opt_opc = vecop_list,
.write_aofs = true,
.vece = MO_32 },
{ .fniv = gen_usqadd_vec,
.fni8 = gen_usqadd_d,
.fno = gen_helper_gvec_usqadd_d,
.opt_opc = vecop_list,
.write_aofs = true,
.vece = MO_64 },
};
tcg_debug_assert(opr_sz <= sizeof_field(CPUARMState, vfp.qc));
tcg_gen_gvec_4(rd_ofs, offsetof(CPUARMState, vfp.qc),
rn_ofs, rm_ofs, opr_sz, max_sz, &ops[vece]);
}
|