aboutsummaryrefslogtreecommitdiff
path: root/target/arm/ptw.c
blob: 16226d14233a6fe81c5f77e330b6797ecc3722dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
/*
 * ARM page table walking.
 *
 * This code is licensed under the GNU GPL v2 or later.
 *
 * SPDX-License-Identifier: GPL-2.0-or-later
 */

#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/range.h"
#include "cpu.h"
#include "internals.h"
#include "idau.h"


static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
                               bool s1_is_el0, hwaddr *phys_ptr,
                               MemTxAttrs *txattrs, int *prot,
                               target_ulong *page_size_ptr,
                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
    __attribute__((nonnull));

/* This mapping is common between ID_AA64MMFR0.PARANGE and TCR_ELx.{I}PS. */
static const uint8_t pamax_map[] = {
    [0] = 32,
    [1] = 36,
    [2] = 40,
    [3] = 42,
    [4] = 44,
    [5] = 48,
    [6] = 52,
};

/* The cpu-specific constant value of PAMax; also used by hw/arm/virt. */
unsigned int arm_pamax(ARMCPU *cpu)
{
    if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
        unsigned int parange =
            FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);

        /*
         * id_aa64mmfr0 is a read-only register so values outside of the
         * supported mappings can be considered an implementation error.
         */
        assert(parange < ARRAY_SIZE(pamax_map));
        return pamax_map[parange];
    }

    /*
     * In machvirt_init, we call arm_pamax on a cpu that is not fully
     * initialized, so we can't rely on the propagation done in realize.
     */
    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE) ||
        arm_feature(&cpu->env, ARM_FEATURE_V7VE)) {
        /* v7 with LPAE */
        return 40;
    }
    /* Anything else */
    return 32;
}

/*
 * Convert a possible stage1+2 MMU index into the appropriate stage 1 MMU index
 */
ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_SE10_0:
        return ARMMMUIdx_Stage1_SE0;
    case ARMMMUIdx_SE10_1:
        return ARMMMUIdx_Stage1_SE1;
    case ARMMMUIdx_SE10_1_PAN:
        return ARMMMUIdx_Stage1_SE1_PAN;
    case ARMMMUIdx_E10_0:
        return ARMMMUIdx_Stage1_E0;
    case ARMMMUIdx_E10_1:
        return ARMMMUIdx_Stage1_E1;
    case ARMMMUIdx_E10_1_PAN:
        return ARMMMUIdx_Stage1_E1_PAN;
    default:
        return mmu_idx;
    }
}

ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
{
    return stage_1_mmu_idx(arm_mmu_idx(env));
}

static bool regime_translation_big_endian(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    return (regime_sctlr(env, mmu_idx) & SCTLR_EE) != 0;
}

static bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    switch (mmu_idx) {
    case ARMMMUIdx_SE10_0:
    case ARMMMUIdx_E20_0:
    case ARMMMUIdx_SE20_0:
    case ARMMMUIdx_Stage1_E0:
    case ARMMMUIdx_Stage1_SE0:
    case ARMMMUIdx_MUser:
    case ARMMMUIdx_MSUser:
    case ARMMMUIdx_MUserNegPri:
    case ARMMMUIdx_MSUserNegPri:
        return true;
    default:
        return false;
    case ARMMMUIdx_E10_0:
    case ARMMMUIdx_E10_1:
    case ARMMMUIdx_E10_1_PAN:
        g_assert_not_reached();
    }
}

/* Return the TTBR associated with this translation regime */
static uint64_t regime_ttbr(CPUARMState *env, ARMMMUIdx mmu_idx, int ttbrn)
{
    if (mmu_idx == ARMMMUIdx_Stage2) {
        return env->cp15.vttbr_el2;
    }
    if (mmu_idx == ARMMMUIdx_Stage2_S) {
        return env->cp15.vsttbr_el2;
    }
    if (ttbrn == 0) {
        return env->cp15.ttbr0_el[regime_el(env, mmu_idx)];
    } else {
        return env->cp15.ttbr1_el[regime_el(env, mmu_idx)];
    }
}

/* Return true if the specified stage of address translation is disabled */
static bool regime_translation_disabled(CPUARMState *env, ARMMMUIdx mmu_idx)
{
    uint64_t hcr_el2;

    if (arm_feature(env, ARM_FEATURE_M)) {
        switch (env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)] &
                (R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK)) {
        case R_V7M_MPU_CTRL_ENABLE_MASK:
            /* Enabled, but not for HardFault and NMI */
            return mmu_idx & ARM_MMU_IDX_M_NEGPRI;
        case R_V7M_MPU_CTRL_ENABLE_MASK | R_V7M_MPU_CTRL_HFNMIENA_MASK:
            /* Enabled for all cases */
            return false;
        case 0:
        default:
            /*
             * HFNMIENA set and ENABLE clear is UNPREDICTABLE, but
             * we warned about that in armv7m_nvic.c when the guest set it.
             */
            return true;
        }
    }

    hcr_el2 = arm_hcr_el2_eff(env);

    if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
        /* HCR.DC means HCR.VM behaves as 1 */
        return (hcr_el2 & (HCR_DC | HCR_VM)) == 0;
    }

    if (hcr_el2 & HCR_TGE) {
        /* TGE means that NS EL0/1 act as if SCTLR_EL1.M is zero */
        if (!regime_is_secure(env, mmu_idx) && regime_el(env, mmu_idx) == 1) {
            return true;
        }
    }

    if ((hcr_el2 & HCR_DC) && arm_mmu_idx_is_stage1_of_2(mmu_idx)) {
        /* HCR.DC means SCTLR_EL1.M behaves as 0 */
        return true;
    }

    return (regime_sctlr(env, mmu_idx) & SCTLR_M) == 0;
}

static bool ptw_attrs_are_device(CPUARMState *env, ARMCacheAttrs cacheattrs)
{
    /*
     * For an S1 page table walk, the stage 1 attributes are always
     * some form of "this is Normal memory". The combined S1+S2
     * attributes are therefore only Device if stage 2 specifies Device.
     * With HCR_EL2.FWB == 0 this is when descriptor bits [5:4] are 0b00,
     * ie when cacheattrs.attrs bits [3:2] are 0b00.
     * With HCR_EL2.FWB == 1 this is when descriptor bit [4] is 0, ie
     * when cacheattrs.attrs bit [2] is 0.
     */
    assert(cacheattrs.is_s2_format);
    if (arm_hcr_el2_eff(env) & HCR_FWB) {
        return (cacheattrs.attrs & 0x4) == 0;
    } else {
        return (cacheattrs.attrs & 0xc) == 0;
    }
}

/* Translate a S1 pagetable walk through S2 if needed.  */
static hwaddr S1_ptw_translate(CPUARMState *env, ARMMMUIdx mmu_idx,
                               hwaddr addr, bool *is_secure,
                               ARMMMUFaultInfo *fi)
{
    if (arm_mmu_idx_is_stage1_of_2(mmu_idx) &&
        !regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
        target_ulong s2size;
        hwaddr s2pa;
        int s2prot;
        int ret;
        ARMMMUIdx s2_mmu_idx = *is_secure ? ARMMMUIdx_Stage2_S
                                          : ARMMMUIdx_Stage2;
        ARMCacheAttrs cacheattrs = {};
        MemTxAttrs txattrs = {};

        ret = get_phys_addr_lpae(env, addr, MMU_DATA_LOAD, s2_mmu_idx, false,
                                 &s2pa, &txattrs, &s2prot, &s2size, fi,
                                 &cacheattrs);
        if (ret) {
            assert(fi->type != ARMFault_None);
            fi->s2addr = addr;
            fi->stage2 = true;
            fi->s1ptw = true;
            fi->s1ns = !*is_secure;
            return ~0;
        }
        if ((arm_hcr_el2_eff(env) & HCR_PTW) &&
            ptw_attrs_are_device(env, cacheattrs)) {
            /*
             * PTW set and S1 walk touched S2 Device memory:
             * generate Permission fault.
             */
            fi->type = ARMFault_Permission;
            fi->s2addr = addr;
            fi->stage2 = true;
            fi->s1ptw = true;
            fi->s1ns = !*is_secure;
            return ~0;
        }

        if (arm_is_secure_below_el3(env)) {
            /* Check if page table walk is to secure or non-secure PA space. */
            if (*is_secure) {
                *is_secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
            } else {
                *is_secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
            }
        } else {
            assert(!*is_secure);
        }

        addr = s2pa;
    }
    return addr;
}

/* All loads done in the course of a page table walk go through here. */
static uint32_t arm_ldl_ptw(CPUARMState *env, hwaddr addr, bool is_secure,
                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
{
    CPUState *cs = env_cpu(env);
    MemTxAttrs attrs = {};
    MemTxResult result = MEMTX_OK;
    AddressSpace *as;
    uint32_t data;

    addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
    attrs.secure = is_secure;
    as = arm_addressspace(cs, attrs);
    if (fi->s1ptw) {
        return 0;
    }
    if (regime_translation_big_endian(env, mmu_idx)) {
        data = address_space_ldl_be(as, addr, attrs, &result);
    } else {
        data = address_space_ldl_le(as, addr, attrs, &result);
    }
    if (result == MEMTX_OK) {
        return data;
    }
    fi->type = ARMFault_SyncExternalOnWalk;
    fi->ea = arm_extabort_type(result);
    return 0;
}

static uint64_t arm_ldq_ptw(CPUARMState *env, hwaddr addr, bool is_secure,
                            ARMMMUIdx mmu_idx, ARMMMUFaultInfo *fi)
{
    CPUState *cs = env_cpu(env);
    MemTxAttrs attrs = {};
    MemTxResult result = MEMTX_OK;
    AddressSpace *as;
    uint64_t data;

    addr = S1_ptw_translate(env, mmu_idx, addr, &is_secure, fi);
    attrs.secure = is_secure;
    as = arm_addressspace(cs, attrs);
    if (fi->s1ptw) {
        return 0;
    }
    if (regime_translation_big_endian(env, mmu_idx)) {
        data = address_space_ldq_be(as, addr, attrs, &result);
    } else {
        data = address_space_ldq_le(as, addr, attrs, &result);
    }
    if (result == MEMTX_OK) {
        return data;
    }
    fi->type = ARMFault_SyncExternalOnWalk;
    fi->ea = arm_extabort_type(result);
    return 0;
}

static bool get_level1_table_address(CPUARMState *env, ARMMMUIdx mmu_idx,
                                     uint32_t *table, uint32_t address)
{
    /* Note that we can only get here for an AArch32 PL0/PL1 lookup */
    uint64_t tcr = regime_tcr_value(env, mmu_idx);
    int maskshift = extract32(tcr, 0, 3);
    uint32_t mask = ~(((uint32_t)0xffffffffu) >> maskshift);
    uint32_t base_mask;

    if (address & mask) {
        if (tcr & TTBCR_PD1) {
            /* Translation table walk disabled for TTBR1 */
            return false;
        }
        *table = regime_ttbr(env, mmu_idx, 1) & 0xffffc000;
    } else {
        if (tcr & TTBCR_PD0) {
            /* Translation table walk disabled for TTBR0 */
            return false;
        }
        base_mask = ~((uint32_t)0x3fffu >> maskshift);
        *table = regime_ttbr(env, mmu_idx, 0) & base_mask;
    }
    *table |= (address >> 18) & 0x3ffc;
    return true;
}

/*
 * Translate section/page access permissions to page R/W protection flags
 * @env:         CPUARMState
 * @mmu_idx:     MMU index indicating required translation regime
 * @ap:          The 3-bit access permissions (AP[2:0])
 * @domain_prot: The 2-bit domain access permissions
 */
static int ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx,
                         int ap, int domain_prot)
{
    bool is_user = regime_is_user(env, mmu_idx);

    if (domain_prot == 3) {
        return PAGE_READ | PAGE_WRITE;
    }

    switch (ap) {
    case 0:
        if (arm_feature(env, ARM_FEATURE_V7)) {
            return 0;
        }
        switch (regime_sctlr(env, mmu_idx) & (SCTLR_S | SCTLR_R)) {
        case SCTLR_S:
            return is_user ? 0 : PAGE_READ;
        case SCTLR_R:
            return PAGE_READ;
        default:
            return 0;
        }
    case 1:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 2:
        if (is_user) {
            return PAGE_READ;
        } else {
            return PAGE_READ | PAGE_WRITE;
        }
    case 3:
        return PAGE_READ | PAGE_WRITE;
    case 4: /* Reserved.  */
        return 0;
    case 5:
        return is_user ? 0 : PAGE_READ;
    case 6:
        return PAGE_READ;
    case 7:
        if (!arm_feature(env, ARM_FEATURE_V6K)) {
            return 0;
        }
        return PAGE_READ;
    default:
        g_assert_not_reached();
    }
}

/*
 * Translate section/page access permissions to page R/W protection flags.
 * @ap:      The 2-bit simple AP (AP[2:1])
 * @is_user: TRUE if accessing from PL0
 */
static int simple_ap_to_rw_prot_is_user(int ap, bool is_user)
{
    switch (ap) {
    case 0:
        return is_user ? 0 : PAGE_READ | PAGE_WRITE;
    case 1:
        return PAGE_READ | PAGE_WRITE;
    case 2:
        return is_user ? 0 : PAGE_READ;
    case 3:
        return PAGE_READ;
    default:
        g_assert_not_reached();
    }
}

static int simple_ap_to_rw_prot(CPUARMState *env, ARMMMUIdx mmu_idx, int ap)
{
    return simple_ap_to_rw_prot_is_user(ap, regime_is_user(env, mmu_idx));
}

static bool get_phys_addr_v5(CPUARMState *env, uint32_t address,
                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, int *prot,
                             target_ulong *page_size,
                             ARMMMUFaultInfo *fi)
{
    int level = 1;
    uint32_t table;
    uint32_t desc;
    int type;
    int ap;
    int domain = 0;
    int domain_prot;
    hwaddr phys_addr;
    uint32_t dacr;

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        fi->type = ARMFault_Translation;
        goto do_fault;
    }
    desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
                       mmu_idx, fi);
    if (fi->type != ARMFault_None) {
        goto do_fault;
    }
    type = (desc & 3);
    domain = (desc >> 5) & 0x0f;
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
    if (type == 0) {
        /* Section translation fault.  */
        fi->type = ARMFault_Translation;
        goto do_fault;
    }
    if (type != 2) {
        level = 2;
    }
    if (domain_prot == 0 || domain_prot == 2) {
        fi->type = ARMFault_Domain;
        goto do_fault;
    }
    if (type == 2) {
        /* 1Mb section.  */
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
        ap = (desc >> 10) & 3;
        *page_size = 1024 * 1024;
    } else {
        /* Lookup l2 entry.  */
        if (type == 1) {
            /* Coarse pagetable.  */
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
        } else {
            /* Fine pagetable.  */
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
        }
        desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
                           mmu_idx, fi);
        if (fi->type != ARMFault_None) {
            goto do_fault;
        }
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            fi->type = ARMFault_Translation;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
            *page_size = 0x10000;
            break;
        case 2: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            ap = (desc >> (4 + ((address >> 9) & 6))) & 3;
            *page_size = 0x1000;
            break;
        case 3: /* 1k page, or ARMv6/XScale "extended small (4k) page" */
            if (type == 1) {
                /* ARMv6/XScale extended small page format */
                if (arm_feature(env, ARM_FEATURE_XSCALE)
                    || arm_feature(env, ARM_FEATURE_V6)) {
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
                    *page_size = 0x1000;
                } else {
                    /*
                     * UNPREDICTABLE in ARMv5; we choose to take a
                     * page translation fault.
                     */
                    fi->type = ARMFault_Translation;
                    goto do_fault;
                }
            } else {
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
                *page_size = 0x400;
            }
            ap = (desc >> 4) & 3;
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            g_assert_not_reached();
        }
    }
    *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
    *prot |= *prot ? PAGE_EXEC : 0;
    if (!(*prot & (1 << access_type))) {
        /* Access permission fault.  */
        fi->type = ARMFault_Permission;
        goto do_fault;
    }
    *phys_ptr = phys_addr;
    return false;
do_fault:
    fi->domain = domain;
    fi->level = level;
    return true;
}

static bool get_phys_addr_v6(CPUARMState *env, uint32_t address,
                             MMUAccessType access_type, ARMMMUIdx mmu_idx,
                             hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                             target_ulong *page_size, ARMMMUFaultInfo *fi)
{
    ARMCPU *cpu = env_archcpu(env);
    int level = 1;
    uint32_t table;
    uint32_t desc;
    uint32_t xn;
    uint32_t pxn = 0;
    int type;
    int ap;
    int domain = 0;
    int domain_prot;
    hwaddr phys_addr;
    uint32_t dacr;
    bool ns;

    /* Pagetable walk.  */
    /* Lookup l1 descriptor.  */
    if (!get_level1_table_address(env, mmu_idx, &table, address)) {
        /* Section translation fault if page walk is disabled by PD0 or PD1 */
        fi->type = ARMFault_Translation;
        goto do_fault;
    }
    desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
                       mmu_idx, fi);
    if (fi->type != ARMFault_None) {
        goto do_fault;
    }
    type = (desc & 3);
    if (type == 0 || (type == 3 && !cpu_isar_feature(aa32_pxn, cpu))) {
        /* Section translation fault, or attempt to use the encoding
         * which is Reserved on implementations without PXN.
         */
        fi->type = ARMFault_Translation;
        goto do_fault;
    }
    if ((type == 1) || !(desc & (1 << 18))) {
        /* Page or Section.  */
        domain = (desc >> 5) & 0x0f;
    }
    if (regime_el(env, mmu_idx) == 1) {
        dacr = env->cp15.dacr_ns;
    } else {
        dacr = env->cp15.dacr_s;
    }
    if (type == 1) {
        level = 2;
    }
    domain_prot = (dacr >> (domain * 2)) & 3;
    if (domain_prot == 0 || domain_prot == 2) {
        /* Section or Page domain fault */
        fi->type = ARMFault_Domain;
        goto do_fault;
    }
    if (type != 1) {
        if (desc & (1 << 18)) {
            /* Supersection.  */
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
            phys_addr |= (uint64_t)extract32(desc, 20, 4) << 32;
            phys_addr |= (uint64_t)extract32(desc, 5, 4) << 36;
            *page_size = 0x1000000;
        } else {
            /* Section.  */
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
            *page_size = 0x100000;
        }
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
        xn = desc & (1 << 4);
        pxn = desc & 1;
        ns = extract32(desc, 19, 1);
    } else {
        if (cpu_isar_feature(aa32_pxn, cpu)) {
            pxn = (desc >> 2) & 1;
        }
        ns = extract32(desc, 3, 1);
        /* Lookup l2 entry.  */
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
        desc = arm_ldl_ptw(env, table, regime_is_secure(env, mmu_idx),
                           mmu_idx, fi);
        if (fi->type != ARMFault_None) {
            goto do_fault;
        }
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
        switch (desc & 3) {
        case 0: /* Page translation fault.  */
            fi->type = ARMFault_Translation;
            goto do_fault;
        case 1: /* 64k page.  */
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
            xn = desc & (1 << 15);
            *page_size = 0x10000;
            break;
        case 2: case 3: /* 4k page.  */
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
            xn = desc & 1;
            *page_size = 0x1000;
            break;
        default:
            /* Never happens, but compiler isn't smart enough to tell.  */
            g_assert_not_reached();
        }
    }
    if (domain_prot == 3) {
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
    } else {
        if (pxn && !regime_is_user(env, mmu_idx)) {
            xn = 1;
        }
        if (xn && access_type == MMU_INST_FETCH) {
            fi->type = ARMFault_Permission;
            goto do_fault;
        }

        if (arm_feature(env, ARM_FEATURE_V6K) &&
                (regime_sctlr(env, mmu_idx) & SCTLR_AFE)) {
            /* The simplified model uses AP[0] as an access control bit.  */
            if ((ap & 1) == 0) {
                /* Access flag fault.  */
                fi->type = ARMFault_AccessFlag;
                goto do_fault;
            }
            *prot = simple_ap_to_rw_prot(env, mmu_idx, ap >> 1);
        } else {
            *prot = ap_to_rw_prot(env, mmu_idx, ap, domain_prot);
        }
        if (*prot && !xn) {
            *prot |= PAGE_EXEC;
        }
        if (!(*prot & (1 << access_type))) {
            /* Access permission fault.  */
            fi->type = ARMFault_Permission;
            goto do_fault;
        }
    }
    if (ns) {
        /* The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        attrs->secure = false;
    }
    *phys_ptr = phys_addr;
    return false;
do_fault:
    fi->domain = domain;
    fi->level = level;
    return true;
}

/*
 * Translate S2 section/page access permissions to protection flags
 * @env:     CPUARMState
 * @s2ap:    The 2-bit stage2 access permissions (S2AP)
 * @xn:      XN (execute-never) bits
 * @s1_is_el0: true if this is S2 of an S1+2 walk for EL0
 */
static int get_S2prot(CPUARMState *env, int s2ap, int xn, bool s1_is_el0)
{
    int prot = 0;

    if (s2ap & 1) {
        prot |= PAGE_READ;
    }
    if (s2ap & 2) {
        prot |= PAGE_WRITE;
    }

    if (cpu_isar_feature(any_tts2uxn, env_archcpu(env))) {
        switch (xn) {
        case 0:
            prot |= PAGE_EXEC;
            break;
        case 1:
            if (s1_is_el0) {
                prot |= PAGE_EXEC;
            }
            break;
        case 2:
            break;
        case 3:
            if (!s1_is_el0) {
                prot |= PAGE_EXEC;
            }
            break;
        default:
            g_assert_not_reached();
        }
    } else {
        if (!extract32(xn, 1, 1)) {
            if (arm_el_is_aa64(env, 2) || prot & PAGE_READ) {
                prot |= PAGE_EXEC;
            }
        }
    }
    return prot;
}

/*
 * Translate section/page access permissions to protection flags
 * @env:     CPUARMState
 * @mmu_idx: MMU index indicating required translation regime
 * @is_aa64: TRUE if AArch64
 * @ap:      The 2-bit simple AP (AP[2:1])
 * @ns:      NS (non-secure) bit
 * @xn:      XN (execute-never) bit
 * @pxn:     PXN (privileged execute-never) bit
 */
static int get_S1prot(CPUARMState *env, ARMMMUIdx mmu_idx, bool is_aa64,
                      int ap, int ns, int xn, int pxn)
{
    bool is_user = regime_is_user(env, mmu_idx);
    int prot_rw, user_rw;
    bool have_wxn;
    int wxn = 0;

    assert(mmu_idx != ARMMMUIdx_Stage2);
    assert(mmu_idx != ARMMMUIdx_Stage2_S);

    user_rw = simple_ap_to_rw_prot_is_user(ap, true);
    if (is_user) {
        prot_rw = user_rw;
    } else {
        if (user_rw && regime_is_pan(env, mmu_idx)) {
            /* PAN forbids data accesses but doesn't affect insn fetch */
            prot_rw = 0;
        } else {
            prot_rw = simple_ap_to_rw_prot_is_user(ap, false);
        }
    }

    if (ns && arm_is_secure(env) && (env->cp15.scr_el3 & SCR_SIF)) {
        return prot_rw;
    }

    /* TODO have_wxn should be replaced with
     *   ARM_FEATURE_V8 || (ARM_FEATURE_V7 && ARM_FEATURE_EL2)
     * when ARM_FEATURE_EL2 starts getting set. For now we assume all LPAE
     * compatible processors have EL2, which is required for [U]WXN.
     */
    have_wxn = arm_feature(env, ARM_FEATURE_LPAE);

    if (have_wxn) {
        wxn = regime_sctlr(env, mmu_idx) & SCTLR_WXN;
    }

    if (is_aa64) {
        if (regime_has_2_ranges(mmu_idx) && !is_user) {
            xn = pxn || (user_rw & PAGE_WRITE);
        }
    } else if (arm_feature(env, ARM_FEATURE_V7)) {
        switch (regime_el(env, mmu_idx)) {
        case 1:
        case 3:
            if (is_user) {
                xn = xn || !(user_rw & PAGE_READ);
            } else {
                int uwxn = 0;
                if (have_wxn) {
                    uwxn = regime_sctlr(env, mmu_idx) & SCTLR_UWXN;
                }
                xn = xn || !(prot_rw & PAGE_READ) || pxn ||
                     (uwxn && (user_rw & PAGE_WRITE));
            }
            break;
        case 2:
            break;
        }
    } else {
        xn = wxn = 0;
    }

    if (xn || (wxn && (prot_rw & PAGE_WRITE))) {
        return prot_rw;
    }
    return prot_rw | PAGE_EXEC;
}

static ARMVAParameters aa32_va_parameters(CPUARMState *env, uint32_t va,
                                          ARMMMUIdx mmu_idx)
{
    uint64_t tcr = regime_tcr_value(env, mmu_idx);
    uint32_t el = regime_el(env, mmu_idx);
    int select, tsz;
    bool epd, hpd;

    assert(mmu_idx != ARMMMUIdx_Stage2_S);

    if (mmu_idx == ARMMMUIdx_Stage2) {
        /* VTCR */
        bool sext = extract32(tcr, 4, 1);
        bool sign = extract32(tcr, 3, 1);

        /*
         * If the sign-extend bit is not the same as t0sz[3], the result
         * is unpredictable. Flag this as a guest error.
         */
        if (sign != sext) {
            qemu_log_mask(LOG_GUEST_ERROR,
                          "AArch32: VTCR.S / VTCR.T0SZ[3] mismatch\n");
        }
        tsz = sextract32(tcr, 0, 4) + 8;
        select = 0;
        hpd = false;
        epd = false;
    } else if (el == 2) {
        /* HTCR */
        tsz = extract32(tcr, 0, 3);
        select = 0;
        hpd = extract64(tcr, 24, 1);
        epd = false;
    } else {
        int t0sz = extract32(tcr, 0, 3);
        int t1sz = extract32(tcr, 16, 3);

        if (t1sz == 0) {
            select = va > (0xffffffffu >> t0sz);
        } else {
            /* Note that we will detect errors later.  */
            select = va >= ~(0xffffffffu >> t1sz);
        }
        if (!select) {
            tsz = t0sz;
            epd = extract32(tcr, 7, 1);
            hpd = extract64(tcr, 41, 1);
        } else {
            tsz = t1sz;
            epd = extract32(tcr, 23, 1);
            hpd = extract64(tcr, 42, 1);
        }
        /* For aarch32, hpd0 is not enabled without t2e as well.  */
        hpd &= extract32(tcr, 6, 1);
    }

    return (ARMVAParameters) {
        .tsz = tsz,
        .select = select,
        .epd = epd,
        .hpd = hpd,
    };
}

/*
 * check_s2_mmu_setup
 * @cpu:        ARMCPU
 * @is_aa64:    True if the translation regime is in AArch64 state
 * @startlevel: Suggested starting level
 * @inputsize:  Bitsize of IPAs
 * @stride:     Page-table stride (See the ARM ARM)
 *
 * Returns true if the suggested S2 translation parameters are OK and
 * false otherwise.
 */
static bool check_s2_mmu_setup(ARMCPU *cpu, bool is_aa64, int level,
                               int inputsize, int stride, int outputsize)
{
    const int grainsize = stride + 3;
    int startsizecheck;

    /*
     * Negative levels are usually not allowed...
     * Except for FEAT_LPA2, 4k page table, 52-bit address space, which
     * begins with level -1.  Note that previous feature tests will have
     * eliminated this combination if it is not enabled.
     */
    if (level < (inputsize == 52 && stride == 9 ? -1 : 0)) {
        return false;
    }

    startsizecheck = inputsize - ((3 - level) * stride + grainsize);
    if (startsizecheck < 1 || startsizecheck > stride + 4) {
        return false;
    }

    if (is_aa64) {
        switch (stride) {
        case 13: /* 64KB Pages.  */
            if (level == 0 || (level == 1 && outputsize <= 42)) {
                return false;
            }
            break;
        case 11: /* 16KB Pages.  */
            if (level == 0 || (level == 1 && outputsize <= 40)) {
                return false;
            }
            break;
        case 9: /* 4KB Pages.  */
            if (level == 0 && outputsize <= 42) {
                return false;
            }
            break;
        default:
            g_assert_not_reached();
        }

        /* Inputsize checks.  */
        if (inputsize > outputsize &&
            (arm_el_is_aa64(&cpu->env, 1) || inputsize > 40)) {
            /* This is CONSTRAINED UNPREDICTABLE and we choose to fault.  */
            return false;
        }
    } else {
        /* AArch32 only supports 4KB pages. Assert on that.  */
        assert(stride == 9);

        if (level == 0) {
            return false;
        }
    }
    return true;
}

/**
 * get_phys_addr_lpae: perform one stage of page table walk, LPAE format
 *
 * Returns false if the translation was successful. Otherwise, phys_ptr,
 * attrs, prot and page_size may not be filled in, and the populated fsr
 * value provides information on why the translation aborted, in the format
 * of a long-format DFSR/IFSR fault register, with the following caveat:
 * the WnR bit is never set (the caller must do this).
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: MMU_DATA_LOAD, MMU_DATA_STORE or MMU_INST_FETCH
 * @mmu_idx: MMU index indicating required translation regime
 * @s1_is_el0: if @mmu_idx is ARMMMUIdx_Stage2 (so this is a stage 2 page
 *             table walk), must be true if this is stage 2 of a stage 1+2
 *             walk for an EL0 access. If @mmu_idx is anything else,
 *             @s1_is_el0 is ignored.
 * @phys_ptr: set to the physical address corresponding to the virtual address
 * @attrs: set to the memory transaction attributes to use
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size_ptr: set to the size of the page containing phys_ptr
 * @fi: set to fault info if the translation fails
 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
 */
static bool get_phys_addr_lpae(CPUARMState *env, uint64_t address,
                               MMUAccessType access_type, ARMMMUIdx mmu_idx,
                               bool s1_is_el0, hwaddr *phys_ptr,
                               MemTxAttrs *txattrs, int *prot,
                               target_ulong *page_size_ptr,
                               ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
{
    ARMCPU *cpu = env_archcpu(env);
    /* Read an LPAE long-descriptor translation table. */
    ARMFaultType fault_type = ARMFault_Translation;
    uint32_t level;
    ARMVAParameters param;
    uint64_t ttbr;
    hwaddr descaddr, indexmask, indexmask_grainsize;
    uint32_t tableattrs;
    target_ulong page_size;
    uint32_t attrs;
    int32_t stride;
    int addrsize, inputsize, outputsize;
    uint64_t tcr = regime_tcr_value(env, mmu_idx);
    int ap, ns, xn, pxn;
    uint32_t el = regime_el(env, mmu_idx);
    uint64_t descaddrmask;
    bool aarch64 = arm_el_is_aa64(env, el);
    bool guarded = false;

    /* TODO: This code does not support shareability levels. */
    if (aarch64) {
        int ps;

        param = aa64_va_parameters(env, address, mmu_idx,
                                   access_type != MMU_INST_FETCH);
        level = 0;

        /*
         * If TxSZ is programmed to a value larger than the maximum,
         * or smaller than the effective minimum, it is IMPLEMENTATION
         * DEFINED whether we behave as if the field were programmed
         * within bounds, or if a level 0 Translation fault is generated.
         *
         * With FEAT_LVA, fault on less than minimum becomes required,
         * so our choice is to always raise the fault.
         */
        if (param.tsz_oob) {
            fault_type = ARMFault_Translation;
            goto do_fault;
        }

        addrsize = 64 - 8 * param.tbi;
        inputsize = 64 - param.tsz;

        /*
         * Bound PS by PARANGE to find the effective output address size.
         * ID_AA64MMFR0 is a read-only register so values outside of the
         * supported mappings can be considered an implementation error.
         */
        ps = FIELD_EX64(cpu->isar.id_aa64mmfr0, ID_AA64MMFR0, PARANGE);
        ps = MIN(ps, param.ps);
        assert(ps < ARRAY_SIZE(pamax_map));
        outputsize = pamax_map[ps];
    } else {
        param = aa32_va_parameters(env, address, mmu_idx);
        level = 1;
        addrsize = (mmu_idx == ARMMMUIdx_Stage2 ? 40 : 32);
        inputsize = addrsize - param.tsz;
        outputsize = 40;
    }

    /*
     * We determined the region when collecting the parameters, but we
     * have not yet validated that the address is valid for the region.
     * Extract the top bits and verify that they all match select.
     *
     * For aa32, if inputsize == addrsize, then we have selected the
     * region by exclusion in aa32_va_parameters and there is no more
     * validation to do here.
     */
    if (inputsize < addrsize) {
        target_ulong top_bits = sextract64(address, inputsize,
                                           addrsize - inputsize);
        if (-top_bits != param.select) {
            /* The gap between the two regions is a Translation fault */
            fault_type = ARMFault_Translation;
            goto do_fault;
        }
    }

    if (param.using64k) {
        stride = 13;
    } else if (param.using16k) {
        stride = 11;
    } else {
        stride = 9;
    }

    /*
     * Note that QEMU ignores shareability and cacheability attributes,
     * so we don't need to do anything with the SH, ORGN, IRGN fields
     * in the TTBCR.  Similarly, TTBCR:A1 selects whether we get the
     * ASID from TTBR0 or TTBR1, but QEMU's TLB doesn't currently
     * implement any ASID-like capability so we can ignore it (instead
     * we will always flush the TLB any time the ASID is changed).
     */
    ttbr = regime_ttbr(env, mmu_idx, param.select);

    /*
     * Here we should have set up all the parameters for the translation:
     * inputsize, ttbr, epd, stride, tbi
     */

    if (param.epd) {
        /*
         * Translation table walk disabled => Translation fault on TLB miss
         * Note: This is always 0 on 64-bit EL2 and EL3.
         */
        goto do_fault;
    }

    if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
        /*
         * The starting level depends on the virtual address size (which can
         * be up to 48 bits) and the translation granule size. It indicates
         * the number of strides (stride bits at a time) needed to
         * consume the bits of the input address. In the pseudocode this is:
         *  level = 4 - RoundUp((inputsize - grainsize) / stride)
         * where their 'inputsize' is our 'inputsize', 'grainsize' is
         * our 'stride + 3' and 'stride' is our 'stride'.
         * Applying the usual "rounded up m/n is (m+n-1)/n" and simplifying:
         * = 4 - (inputsize - stride - 3 + stride - 1) / stride
         * = 4 - (inputsize - 4) / stride;
         */
        level = 4 - (inputsize - 4) / stride;
    } else {
        /*
         * For stage 2 translations the starting level is specified by the
         * VTCR_EL2.SL0 field (whose interpretation depends on the page size)
         */
        uint32_t sl0 = extract32(tcr, 6, 2);
        uint32_t sl2 = extract64(tcr, 33, 1);
        uint32_t startlevel;
        bool ok;

        /* SL2 is RES0 unless DS=1 & 4kb granule. */
        if (param.ds && stride == 9 && sl2) {
            if (sl0 != 0) {
                level = 0;
                fault_type = ARMFault_Translation;
                goto do_fault;
            }
            startlevel = -1;
        } else if (!aarch64 || stride == 9) {
            /* AArch32 or 4KB pages */
            startlevel = 2 - sl0;

            if (cpu_isar_feature(aa64_st, cpu)) {
                startlevel &= 3;
            }
        } else {
            /* 16KB or 64KB pages */
            startlevel = 3 - sl0;
        }

        /* Check that the starting level is valid. */
        ok = check_s2_mmu_setup(cpu, aarch64, startlevel,
                                inputsize, stride, outputsize);
        if (!ok) {
            fault_type = ARMFault_Translation;
            goto do_fault;
        }
        level = startlevel;
    }

    indexmask_grainsize = MAKE_64BIT_MASK(0, stride + 3);
    indexmask = MAKE_64BIT_MASK(0, inputsize - (stride * (4 - level)));

    /* Now we can extract the actual base address from the TTBR */
    descaddr = extract64(ttbr, 0, 48);

    /*
     * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [5:2] of TTBR.
     *
     * Otherwise, if the base address is out of range, raise AddressSizeFault.
     * In the pseudocode, this is !IsZero(baseregister<47:outputsize>),
     * but we've just cleared the bits above 47, so simplify the test.
     */
    if (outputsize > 48) {
        descaddr |= extract64(ttbr, 2, 4) << 48;
    } else if (descaddr >> outputsize) {
        level = 0;
        fault_type = ARMFault_AddressSize;
        goto do_fault;
    }

    /*
     * We rely on this masking to clear the RES0 bits at the bottom of the TTBR
     * and also to mask out CnP (bit 0) which could validly be non-zero.
     */
    descaddr &= ~indexmask;

    /*
     * For AArch32, the address field in the descriptor goes up to bit 39
     * for both v7 and v8.  However, for v8 the SBZ bits [47:40] must be 0
     * or an AddressSize fault is raised.  So for v8 we extract those SBZ
     * bits as part of the address, which will be checked via outputsize.
     * For AArch64, the address field goes up to bit 47, or 49 with FEAT_LPA2;
     * the highest bits of a 52-bit output are placed elsewhere.
     */
    if (param.ds) {
        descaddrmask = MAKE_64BIT_MASK(0, 50);
    } else if (arm_feature(env, ARM_FEATURE_V8)) {
        descaddrmask = MAKE_64BIT_MASK(0, 48);
    } else {
        descaddrmask = MAKE_64BIT_MASK(0, 40);
    }
    descaddrmask &= ~indexmask_grainsize;

    /*
     * Secure accesses start with the page table in secure memory and
     * can be downgraded to non-secure at any step. Non-secure accesses
     * remain non-secure. We implement this by just ORing in the NSTable/NS
     * bits at each step.
     */
    tableattrs = regime_is_secure(env, mmu_idx) ? 0 : (1 << 4);
    for (;;) {
        uint64_t descriptor;
        bool nstable;

        descaddr |= (address >> (stride * (4 - level))) & indexmask;
        descaddr &= ~7ULL;
        nstable = extract32(tableattrs, 4, 1);
        descriptor = arm_ldq_ptw(env, descaddr, !nstable, mmu_idx, fi);
        if (fi->type != ARMFault_None) {
            goto do_fault;
        }

        if (!(descriptor & 1) ||
            (!(descriptor & 2) && (level == 3))) {
            /* Invalid, or the Reserved level 3 encoding */
            goto do_fault;
        }

        descaddr = descriptor & descaddrmask;

        /*
         * For FEAT_LPA and PS=6, bits [51:48] of descaddr are in [15:12]
         * of descriptor.  For FEAT_LPA2 and effective DS, bits [51:50] of
         * descaddr are in [9:8].  Otherwise, if descaddr is out of range,
         * raise AddressSizeFault.
         */
        if (outputsize > 48) {
            if (param.ds) {
                descaddr |= extract64(descriptor, 8, 2) << 50;
            } else {
                descaddr |= extract64(descriptor, 12, 4) << 48;
            }
        } else if (descaddr >> outputsize) {
            fault_type = ARMFault_AddressSize;
            goto do_fault;
        }

        if ((descriptor & 2) && (level < 3)) {
            /*
             * Table entry. The top five bits are attributes which may
             * propagate down through lower levels of the table (and
             * which are all arranged so that 0 means "no effect", so
             * we can gather them up by ORing in the bits at each level).
             */
            tableattrs |= extract64(descriptor, 59, 5);
            level++;
            indexmask = indexmask_grainsize;
            continue;
        }
        /*
         * Block entry at level 1 or 2, or page entry at level 3.
         * These are basically the same thing, although the number
         * of bits we pull in from the vaddr varies. Note that although
         * descaddrmask masks enough of the low bits of the descriptor
         * to give a correct page or table address, the address field
         * in a block descriptor is smaller; so we need to explicitly
         * clear the lower bits here before ORing in the low vaddr bits.
         */
        page_size = (1ULL << ((stride * (4 - level)) + 3));
        descaddr &= ~(hwaddr)(page_size - 1);
        descaddr |= (address & (page_size - 1));
        /* Extract attributes from the descriptor */
        attrs = extract64(descriptor, 2, 10)
            | (extract64(descriptor, 52, 12) << 10);

        if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
            /* Stage 2 table descriptors do not include any attribute fields */
            break;
        }
        /* Merge in attributes from table descriptors */
        attrs |= nstable << 3; /* NS */
        guarded = extract64(descriptor, 50, 1);  /* GP */
        if (param.hpd) {
            /* HPD disables all the table attributes except NSTable.  */
            break;
        }
        attrs |= extract32(tableattrs, 0, 2) << 11;     /* XN, PXN */
        /*
         * The sense of AP[1] vs APTable[0] is reversed, as APTable[0] == 1
         * means "force PL1 access only", which means forcing AP[1] to 0.
         */
        attrs &= ~(extract32(tableattrs, 2, 1) << 4);   /* !APT[0] => AP[1] */
        attrs |= extract32(tableattrs, 3, 1) << 5;      /* APT[1] => AP[2] */
        break;
    }
    /*
     * Here descaddr is the final physical address, and attributes
     * are all in attrs.
     */
    fault_type = ARMFault_AccessFlag;
    if ((attrs & (1 << 8)) == 0) {
        /* Access flag */
        goto do_fault;
    }

    ap = extract32(attrs, 4, 2);

    if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
        ns = mmu_idx == ARMMMUIdx_Stage2;
        xn = extract32(attrs, 11, 2);
        *prot = get_S2prot(env, ap, xn, s1_is_el0);
    } else {
        ns = extract32(attrs, 3, 1);
        xn = extract32(attrs, 12, 1);
        pxn = extract32(attrs, 11, 1);
        *prot = get_S1prot(env, mmu_idx, aarch64, ap, ns, xn, pxn);
    }

    fault_type = ARMFault_Permission;
    if (!(*prot & (1 << access_type))) {
        goto do_fault;
    }

    if (ns) {
        /*
         * The NS bit will (as required by the architecture) have no effect if
         * the CPU doesn't support TZ or this is a non-secure translation
         * regime, because the attribute will already be non-secure.
         */
        txattrs->secure = false;
    }
    /* When in aarch64 mode, and BTI is enabled, remember GP in the IOTLB.  */
    if (aarch64 && guarded && cpu_isar_feature(aa64_bti, cpu)) {
        arm_tlb_bti_gp(txattrs) = true;
    }

    if (mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S) {
        cacheattrs->is_s2_format = true;
        cacheattrs->attrs = extract32(attrs, 0, 4);
    } else {
        /* Index into MAIR registers for cache attributes */
        uint8_t attrindx = extract32(attrs, 0, 3);
        uint64_t mair = env->cp15.mair_el[regime_el(env, mmu_idx)];
        assert(attrindx <= 7);
        cacheattrs->is_s2_format = false;
        cacheattrs->attrs = extract64(mair, attrindx * 8, 8);
    }

    /*
     * For FEAT_LPA2 and effective DS, the SH field in the attributes
     * was re-purposed for output address bits.  The SH attribute in
     * that case comes from TCR_ELx, which we extracted earlier.
     */
    if (param.ds) {
        cacheattrs->shareability = param.sh;
    } else {
        cacheattrs->shareability = extract32(attrs, 6, 2);
    }

    *phys_ptr = descaddr;
    *page_size_ptr = page_size;
    return false;

do_fault:
    fi->type = fault_type;
    fi->level = level;
    /* Tag the error as S2 for failed S1 PTW at S2 or ordinary S2.  */
    fi->stage2 = fi->s1ptw || (mmu_idx == ARMMMUIdx_Stage2 ||
                               mmu_idx == ARMMMUIdx_Stage2_S);
    fi->s1ns = mmu_idx == ARMMMUIdx_Stage2;
    return true;
}

static bool get_phys_addr_pmsav5(CPUARMState *env, uint32_t address,
                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, int *prot,
                                 ARMMMUFaultInfo *fi)
{
    int n;
    uint32_t mask;
    uint32_t base;
    bool is_user = regime_is_user(env, mmu_idx);

    if (regime_translation_disabled(env, mmu_idx)) {
        /* MPU disabled.  */
        *phys_ptr = address;
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
        return false;
    }

    *phys_ptr = address;
    for (n = 7; n >= 0; n--) {
        base = env->cp15.c6_region[n];
        if ((base & 1) == 0) {
            continue;
        }
        mask = 1 << ((base >> 1) & 0x1f);
        /* Keep this shift separate from the above to avoid an
           (undefined) << 32.  */
        mask = (mask << 1) - 1;
        if (((base ^ address) & ~mask) == 0) {
            break;
        }
    }
    if (n < 0) {
        fi->type = ARMFault_Background;
        return true;
    }

    if (access_type == MMU_INST_FETCH) {
        mask = env->cp15.pmsav5_insn_ap;
    } else {
        mask = env->cp15.pmsav5_data_ap;
    }
    mask = (mask >> (n * 4)) & 0xf;
    switch (mask) {
    case 0:
        fi->type = ARMFault_Permission;
        fi->level = 1;
        return true;
    case 1:
        if (is_user) {
            fi->type = ARMFault_Permission;
            fi->level = 1;
            return true;
        }
        *prot = PAGE_READ | PAGE_WRITE;
        break;
    case 2:
        *prot = PAGE_READ;
        if (!is_user) {
            *prot |= PAGE_WRITE;
        }
        break;
    case 3:
        *prot = PAGE_READ | PAGE_WRITE;
        break;
    case 5:
        if (is_user) {
            fi->type = ARMFault_Permission;
            fi->level = 1;
            return true;
        }
        *prot = PAGE_READ;
        break;
    case 6:
        *prot = PAGE_READ;
        break;
    default:
        /* Bad permission.  */
        fi->type = ARMFault_Permission;
        fi->level = 1;
        return true;
    }
    *prot |= PAGE_EXEC;
    return false;
}

static void get_phys_addr_pmsav7_default(CPUARMState *env, ARMMMUIdx mmu_idx,
                                         int32_t address, int *prot)
{
    if (!arm_feature(env, ARM_FEATURE_M)) {
        *prot = PAGE_READ | PAGE_WRITE;
        switch (address) {
        case 0xF0000000 ... 0xFFFFFFFF:
            if (regime_sctlr(env, mmu_idx) & SCTLR_V) {
                /* hivecs execing is ok */
                *prot |= PAGE_EXEC;
            }
            break;
        case 0x00000000 ... 0x7FFFFFFF:
            *prot |= PAGE_EXEC;
            break;
        }
    } else {
        /* Default system address map for M profile cores.
         * The architecture specifies which regions are execute-never;
         * at the MPU level no other checks are defined.
         */
        switch (address) {
        case 0x00000000 ... 0x1fffffff: /* ROM */
        case 0x20000000 ... 0x3fffffff: /* SRAM */
        case 0x60000000 ... 0x7fffffff: /* RAM */
        case 0x80000000 ... 0x9fffffff: /* RAM */
            *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
            break;
        case 0x40000000 ... 0x5fffffff: /* Peripheral */
        case 0xa0000000 ... 0xbfffffff: /* Device */
        case 0xc0000000 ... 0xdfffffff: /* Device */
        case 0xe0000000 ... 0xffffffff: /* System */
            *prot = PAGE_READ | PAGE_WRITE;
            break;
        default:
            g_assert_not_reached();
        }
    }
}

static bool m_is_ppb_region(CPUARMState *env, uint32_t address)
{
    /* True if address is in the M profile PPB region 0xe0000000 - 0xe00fffff */
    return arm_feature(env, ARM_FEATURE_M) &&
        extract32(address, 20, 12) == 0xe00;
}

static bool m_is_system_region(CPUARMState *env, uint32_t address)
{
    /*
     * True if address is in the M profile system region
     * 0xe0000000 - 0xffffffff
     */
    return arm_feature(env, ARM_FEATURE_M) && extract32(address, 29, 3) == 0x7;
}

static bool pmsav7_use_background_region(ARMCPU *cpu, ARMMMUIdx mmu_idx,
                                         bool is_user)
{
    /*
     * Return true if we should use the default memory map as a
     * "background" region if there are no hits against any MPU regions.
     */
    CPUARMState *env = &cpu->env;

    if (is_user) {
        return false;
    }

    if (arm_feature(env, ARM_FEATURE_M)) {
        return env->v7m.mpu_ctrl[regime_is_secure(env, mmu_idx)]
            & R_V7M_MPU_CTRL_PRIVDEFENA_MASK;
    } else {
        return regime_sctlr(env, mmu_idx) & SCTLR_BR;
    }
}

static bool get_phys_addr_pmsav7(CPUARMState *env, uint32_t address,
                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, int *prot,
                                 target_ulong *page_size,
                                 ARMMMUFaultInfo *fi)
{
    ARMCPU *cpu = env_archcpu(env);
    int n;
    bool is_user = regime_is_user(env, mmu_idx);

    *phys_ptr = address;
    *page_size = TARGET_PAGE_SIZE;
    *prot = 0;

    if (regime_translation_disabled(env, mmu_idx) ||
        m_is_ppb_region(env, address)) {
        /*
         * MPU disabled or M profile PPB access: use default memory map.
         * The other case which uses the default memory map in the
         * v7M ARM ARM pseudocode is exception vector reads from the vector
         * table. In QEMU those accesses are done in arm_v7m_load_vector(),
         * which always does a direct read using address_space_ldl(), rather
         * than going via this function, so we don't need to check that here.
         */
        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
    } else { /* MPU enabled */
        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
            /* region search */
            uint32_t base = env->pmsav7.drbar[n];
            uint32_t rsize = extract32(env->pmsav7.drsr[n], 1, 5);
            uint32_t rmask;
            bool srdis = false;

            if (!(env->pmsav7.drsr[n] & 0x1)) {
                continue;
            }

            if (!rsize) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "DRSR[%d]: Rsize field cannot be 0\n", n);
                continue;
            }
            rsize++;
            rmask = (1ull << rsize) - 1;

            if (base & rmask) {
                qemu_log_mask(LOG_GUEST_ERROR,
                              "DRBAR[%d]: 0x%" PRIx32 " misaligned "
                              "to DRSR region size, mask = 0x%" PRIx32 "\n",
                              n, base, rmask);
                continue;
            }

            if (address < base || address > base + rmask) {
                /*
                 * Address not in this region. We must check whether the
                 * region covers addresses in the same page as our address.
                 * In that case we must not report a size that covers the
                 * whole page for a subsequent hit against a different MPU
                 * region or the background region, because it would result in
                 * incorrect TLB hits for subsequent accesses to addresses that
                 * are in this MPU region.
                 */
                if (ranges_overlap(base, rmask,
                                   address & TARGET_PAGE_MASK,
                                   TARGET_PAGE_SIZE)) {
                    *page_size = 1;
                }
                continue;
            }

            /* Region matched */

            if (rsize >= 8) { /* no subregions for regions < 256 bytes */
                int i, snd;
                uint32_t srdis_mask;

                rsize -= 3; /* sub region size (power of 2) */
                snd = ((address - base) >> rsize) & 0x7;
                srdis = extract32(env->pmsav7.drsr[n], snd + 8, 1);

                srdis_mask = srdis ? 0x3 : 0x0;
                for (i = 2; i <= 8 && rsize < TARGET_PAGE_BITS; i *= 2) {
                    /*
                     * This will check in groups of 2, 4 and then 8, whether
                     * the subregion bits are consistent. rsize is incremented
                     * back up to give the region size, considering consistent
                     * adjacent subregions as one region. Stop testing if rsize
                     * is already big enough for an entire QEMU page.
                     */
                    int snd_rounded = snd & ~(i - 1);
                    uint32_t srdis_multi = extract32(env->pmsav7.drsr[n],
                                                     snd_rounded + 8, i);
                    if (srdis_mask ^ srdis_multi) {
                        break;
                    }
                    srdis_mask = (srdis_mask << i) | srdis_mask;
                    rsize++;
                }
            }
            if (srdis) {
                continue;
            }
            if (rsize < TARGET_PAGE_BITS) {
                *page_size = 1 << rsize;
            }
            break;
        }

        if (n == -1) { /* no hits */
            if (!pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
                /* background fault */
                fi->type = ARMFault_Background;
                return true;
            }
            get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
        } else { /* a MPU hit! */
            uint32_t ap = extract32(env->pmsav7.dracr[n], 8, 3);
            uint32_t xn = extract32(env->pmsav7.dracr[n], 12, 1);

            if (m_is_system_region(env, address)) {
                /* System space is always execute never */
                xn = 1;
            }

            if (is_user) { /* User mode AP bit decoding */
                switch (ap) {
                case 0:
                case 1:
                case 5:
                    break; /* no access */
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 2:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
                case 7:
                    /* for v7M, same as 6; for R profile a reserved value */
                    if (arm_feature(env, ARM_FEATURE_M)) {
                        *prot |= PAGE_READ | PAGE_EXEC;
                        break;
                    }
                    /* fall through */
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
                                  "DRACR[%d]: Bad value for AP bits: 0x%"
                                  PRIx32 "\n", n, ap);
                }
            } else { /* Priv. mode AP bits decoding */
                switch (ap) {
                case 0:
                    break; /* no access */
                case 1:
                case 2:
                case 3:
                    *prot |= PAGE_WRITE;
                    /* fall through */
                case 5:
                case 6:
                    *prot |= PAGE_READ | PAGE_EXEC;
                    break;
                case 7:
                    /* for v7M, same as 6; for R profile a reserved value */
                    if (arm_feature(env, ARM_FEATURE_M)) {
                        *prot |= PAGE_READ | PAGE_EXEC;
                        break;
                    }
                    /* fall through */
                default:
                    qemu_log_mask(LOG_GUEST_ERROR,
                                  "DRACR[%d]: Bad value for AP bits: 0x%"
                                  PRIx32 "\n", n, ap);
                }
            }

            /* execute never */
            if (xn) {
                *prot &= ~PAGE_EXEC;
            }
        }
    }

    fi->type = ARMFault_Permission;
    fi->level = 1;
    return !(*prot & (1 << access_type));
}

bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
                       MMUAccessType access_type, ARMMMUIdx mmu_idx,
                       hwaddr *phys_ptr, MemTxAttrs *txattrs,
                       int *prot, bool *is_subpage,
                       ARMMMUFaultInfo *fi, uint32_t *mregion)
{
    /*
     * Perform a PMSAv8 MPU lookup (without also doing the SAU check
     * that a full phys-to-virt translation does).
     * mregion is (if not NULL) set to the region number which matched,
     * or -1 if no region number is returned (MPU off, address did not
     * hit a region, address hit in multiple regions).
     * We set is_subpage to true if the region hit doesn't cover the
     * entire TARGET_PAGE the address is within.
     */
    ARMCPU *cpu = env_archcpu(env);
    bool is_user = regime_is_user(env, mmu_idx);
    uint32_t secure = regime_is_secure(env, mmu_idx);
    int n;
    int matchregion = -1;
    bool hit = false;
    uint32_t addr_page_base = address & TARGET_PAGE_MASK;
    uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);

    *is_subpage = false;
    *phys_ptr = address;
    *prot = 0;
    if (mregion) {
        *mregion = -1;
    }

    /*
     * Unlike the ARM ARM pseudocode, we don't need to check whether this
     * was an exception vector read from the vector table (which is always
     * done using the default system address map), because those accesses
     * are done in arm_v7m_load_vector(), which always does a direct
     * read using address_space_ldl(), rather than going via this function.
     */
    if (regime_translation_disabled(env, mmu_idx)) { /* MPU disabled */
        hit = true;
    } else if (m_is_ppb_region(env, address)) {
        hit = true;
    } else {
        if (pmsav7_use_background_region(cpu, mmu_idx, is_user)) {
            hit = true;
        }

        for (n = (int)cpu->pmsav7_dregion - 1; n >= 0; n--) {
            /* region search */
            /*
             * Note that the base address is bits [31:5] from the register
             * with bits [4:0] all zeroes, but the limit address is bits
             * [31:5] from the register with bits [4:0] all ones.
             */
            uint32_t base = env->pmsav8.rbar[secure][n] & ~0x1f;
            uint32_t limit = env->pmsav8.rlar[secure][n] | 0x1f;

            if (!(env->pmsav8.rlar[secure][n] & 0x1)) {
                /* Region disabled */
                continue;
            }

            if (address < base || address > limit) {
                /*
                 * Address not in this region. We must check whether the
                 * region covers addresses in the same page as our address.
                 * In that case we must not report a size that covers the
                 * whole page for a subsequent hit against a different MPU
                 * region or the background region, because it would result in
                 * incorrect TLB hits for subsequent accesses to addresses that
                 * are in this MPU region.
                 */
                if (limit >= base &&
                    ranges_overlap(base, limit - base + 1,
                                   addr_page_base,
                                   TARGET_PAGE_SIZE)) {
                    *is_subpage = true;
                }
                continue;
            }

            if (base > addr_page_base || limit < addr_page_limit) {
                *is_subpage = true;
            }

            if (matchregion != -1) {
                /*
                 * Multiple regions match -- always a failure (unlike
                 * PMSAv7 where highest-numbered-region wins)
                 */
                fi->type = ARMFault_Permission;
                fi->level = 1;
                return true;
            }

            matchregion = n;
            hit = true;
        }
    }

    if (!hit) {
        /* background fault */
        fi->type = ARMFault_Background;
        return true;
    }

    if (matchregion == -1) {
        /* hit using the background region */
        get_phys_addr_pmsav7_default(env, mmu_idx, address, prot);
    } else {
        uint32_t ap = extract32(env->pmsav8.rbar[secure][matchregion], 1, 2);
        uint32_t xn = extract32(env->pmsav8.rbar[secure][matchregion], 0, 1);
        bool pxn = false;

        if (arm_feature(env, ARM_FEATURE_V8_1M)) {
            pxn = extract32(env->pmsav8.rlar[secure][matchregion], 4, 1);
        }

        if (m_is_system_region(env, address)) {
            /* System space is always execute never */
            xn = 1;
        }

        *prot = simple_ap_to_rw_prot(env, mmu_idx, ap);
        if (*prot && !xn && !(pxn && !is_user)) {
            *prot |= PAGE_EXEC;
        }
        /*
         * We don't need to look the attribute up in the MAIR0/MAIR1
         * registers because that only tells us about cacheability.
         */
        if (mregion) {
            *mregion = matchregion;
        }
    }

    fi->type = ARMFault_Permission;
    fi->level = 1;
    return !(*prot & (1 << access_type));
}

static bool v8m_is_sau_exempt(CPUARMState *env,
                              uint32_t address, MMUAccessType access_type)
{
    /*
     * The architecture specifies that certain address ranges are
     * exempt from v8M SAU/IDAU checks.
     */
    return
        (access_type == MMU_INST_FETCH && m_is_system_region(env, address)) ||
        (address >= 0xe0000000 && address <= 0xe0002fff) ||
        (address >= 0xe000e000 && address <= 0xe000efff) ||
        (address >= 0xe002e000 && address <= 0xe002efff) ||
        (address >= 0xe0040000 && address <= 0xe0041fff) ||
        (address >= 0xe00ff000 && address <= 0xe00fffff);
}

void v8m_security_lookup(CPUARMState *env, uint32_t address,
                                MMUAccessType access_type, ARMMMUIdx mmu_idx,
                                V8M_SAttributes *sattrs)
{
    /*
     * Look up the security attributes for this address. Compare the
     * pseudocode SecurityCheck() function.
     * We assume the caller has zero-initialized *sattrs.
     */
    ARMCPU *cpu = env_archcpu(env);
    int r;
    bool idau_exempt = false, idau_ns = true, idau_nsc = true;
    int idau_region = IREGION_NOTVALID;
    uint32_t addr_page_base = address & TARGET_PAGE_MASK;
    uint32_t addr_page_limit = addr_page_base + (TARGET_PAGE_SIZE - 1);

    if (cpu->idau) {
        IDAUInterfaceClass *iic = IDAU_INTERFACE_GET_CLASS(cpu->idau);
        IDAUInterface *ii = IDAU_INTERFACE(cpu->idau);

        iic->check(ii, address, &idau_region, &idau_exempt, &idau_ns,
                   &idau_nsc);
    }

    if (access_type == MMU_INST_FETCH && extract32(address, 28, 4) == 0xf) {
        /* 0xf0000000..0xffffffff is always S for insn fetches */
        return;
    }

    if (idau_exempt || v8m_is_sau_exempt(env, address, access_type)) {
        sattrs->ns = !regime_is_secure(env, mmu_idx);
        return;
    }

    if (idau_region != IREGION_NOTVALID) {
        sattrs->irvalid = true;
        sattrs->iregion = idau_region;
    }

    switch (env->sau.ctrl & 3) {
    case 0: /* SAU.ENABLE == 0, SAU.ALLNS == 0 */
        break;
    case 2: /* SAU.ENABLE == 0, SAU.ALLNS == 1 */
        sattrs->ns = true;
        break;
    default: /* SAU.ENABLE == 1 */
        for (r = 0; r < cpu->sau_sregion; r++) {
            if (env->sau.rlar[r] & 1) {
                uint32_t base = env->sau.rbar[r] & ~0x1f;
                uint32_t limit = env->sau.rlar[r] | 0x1f;

                if (base <= address && limit >= address) {
                    if (base > addr_page_base || limit < addr_page_limit) {
                        sattrs->subpage = true;
                    }
                    if (sattrs->srvalid) {
                        /*
                         * If we hit in more than one region then we must report
                         * as Secure, not NS-Callable, with no valid region
                         * number info.
                         */
                        sattrs->ns = false;
                        sattrs->nsc = false;
                        sattrs->sregion = 0;
                        sattrs->srvalid = false;
                        break;
                    } else {
                        if (env->sau.rlar[r] & 2) {
                            sattrs->nsc = true;
                        } else {
                            sattrs->ns = true;
                        }
                        sattrs->srvalid = true;
                        sattrs->sregion = r;
                    }
                } else {
                    /*
                     * Address not in this region. We must check whether the
                     * region covers addresses in the same page as our address.
                     * In that case we must not report a size that covers the
                     * whole page for a subsequent hit against a different MPU
                     * region or the background region, because it would result
                     * in incorrect TLB hits for subsequent accesses to
                     * addresses that are in this MPU region.
                     */
                    if (limit >= base &&
                        ranges_overlap(base, limit - base + 1,
                                       addr_page_base,
                                       TARGET_PAGE_SIZE)) {
                        sattrs->subpage = true;
                    }
                }
            }
        }
        break;
    }

    /*
     * The IDAU will override the SAU lookup results if it specifies
     * higher security than the SAU does.
     */
    if (!idau_ns) {
        if (sattrs->ns || (!idau_nsc && sattrs->nsc)) {
            sattrs->ns = false;
            sattrs->nsc = idau_nsc;
        }
    }
}

static bool get_phys_addr_pmsav8(CPUARMState *env, uint32_t address,
                                 MMUAccessType access_type, ARMMMUIdx mmu_idx,
                                 hwaddr *phys_ptr, MemTxAttrs *txattrs,
                                 int *prot, target_ulong *page_size,
                                 ARMMMUFaultInfo *fi)
{
    uint32_t secure = regime_is_secure(env, mmu_idx);
    V8M_SAttributes sattrs = {};
    bool ret;
    bool mpu_is_subpage;

    if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
        v8m_security_lookup(env, address, access_type, mmu_idx, &sattrs);
        if (access_type == MMU_INST_FETCH) {
            /*
             * Instruction fetches always use the MMU bank and the
             * transaction attribute determined by the fetch address,
             * regardless of CPU state. This is painful for QEMU
             * to handle, because it would mean we need to encode
             * into the mmu_idx not just the (user, negpri) information
             * for the current security state but also that for the
             * other security state, which would balloon the number
             * of mmu_idx values needed alarmingly.
             * Fortunately we can avoid this because it's not actually
             * possible to arbitrarily execute code from memory with
             * the wrong security attribute: it will always generate
             * an exception of some kind or another, apart from the
             * special case of an NS CPU executing an SG instruction
             * in S&NSC memory. So we always just fail the translation
             * here and sort things out in the exception handler
             * (including possibly emulating an SG instruction).
             */
            if (sattrs.ns != !secure) {
                if (sattrs.nsc) {
                    fi->type = ARMFault_QEMU_NSCExec;
                } else {
                    fi->type = ARMFault_QEMU_SFault;
                }
                *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
                *phys_ptr = address;
                *prot = 0;
                return true;
            }
        } else {
            /*
             * For data accesses we always use the MMU bank indicated
             * by the current CPU state, but the security attributes
             * might downgrade a secure access to nonsecure.
             */
            if (sattrs.ns) {
                txattrs->secure = false;
            } else if (!secure) {
                /*
                 * NS access to S memory must fault.
                 * Architecturally we should first check whether the
                 * MPU information for this address indicates that we
                 * are doing an unaligned access to Device memory, which
                 * should generate a UsageFault instead. QEMU does not
                 * currently check for that kind of unaligned access though.
                 * If we added it we would need to do so as a special case
                 * for M_FAKE_FSR_SFAULT in arm_v7m_cpu_do_interrupt().
                 */
                fi->type = ARMFault_QEMU_SFault;
                *page_size = sattrs.subpage ? 1 : TARGET_PAGE_SIZE;
                *phys_ptr = address;
                *prot = 0;
                return true;
            }
        }
    }

    ret = pmsav8_mpu_lookup(env, address, access_type, mmu_idx, phys_ptr,
                            txattrs, prot, &mpu_is_subpage, fi, NULL);
    *page_size = sattrs.subpage || mpu_is_subpage ? 1 : TARGET_PAGE_SIZE;
    return ret;
}

/*
 * Translate from the 4-bit stage 2 representation of
 * memory attributes (without cache-allocation hints) to
 * the 8-bit representation of the stage 1 MAIR registers
 * (which includes allocation hints).
 *
 * ref: shared/translation/attrs/S2AttrDecode()
 *      .../S2ConvertAttrsHints()
 */
static uint8_t convert_stage2_attrs(CPUARMState *env, uint8_t s2attrs)
{
    uint8_t hiattr = extract32(s2attrs, 2, 2);
    uint8_t loattr = extract32(s2attrs, 0, 2);
    uint8_t hihint = 0, lohint = 0;

    if (hiattr != 0) { /* normal memory */
        if (arm_hcr_el2_eff(env) & HCR_CD) { /* cache disabled */
            hiattr = loattr = 1; /* non-cacheable */
        } else {
            if (hiattr != 1) { /* Write-through or write-back */
                hihint = 3; /* RW allocate */
            }
            if (loattr != 1) { /* Write-through or write-back */
                lohint = 3; /* RW allocate */
            }
        }
    }

    return (hiattr << 6) | (hihint << 4) | (loattr << 2) | lohint;
}

/*
 * Combine either inner or outer cacheability attributes for normal
 * memory, according to table D4-42 and pseudocode procedure
 * CombineS1S2AttrHints() of ARM DDI 0487B.b (the ARMv8 ARM).
 *
 * NB: only stage 1 includes allocation hints (RW bits), leading to
 * some asymmetry.
 */
static uint8_t combine_cacheattr_nibble(uint8_t s1, uint8_t s2)
{
    if (s1 == 4 || s2 == 4) {
        /* non-cacheable has precedence */
        return 4;
    } else if (extract32(s1, 2, 2) == 0 || extract32(s1, 2, 2) == 2) {
        /* stage 1 write-through takes precedence */
        return s1;
    } else if (extract32(s2, 2, 2) == 2) {
        /* stage 2 write-through takes precedence, but the allocation hint
         * is still taken from stage 1
         */
        return (2 << 2) | extract32(s1, 0, 2);
    } else { /* write-back */
        return s1;
    }
}

/*
 * Combine the memory type and cacheability attributes of
 * s1 and s2 for the HCR_EL2.FWB == 0 case, returning the
 * combined attributes in MAIR_EL1 format.
 */
static uint8_t combined_attrs_nofwb(CPUARMState *env,
                                    ARMCacheAttrs s1, ARMCacheAttrs s2)
{
    uint8_t s1lo, s2lo, s1hi, s2hi, s2_mair_attrs, ret_attrs;

    s2_mair_attrs = convert_stage2_attrs(env, s2.attrs);

    s1lo = extract32(s1.attrs, 0, 4);
    s2lo = extract32(s2_mair_attrs, 0, 4);
    s1hi = extract32(s1.attrs, 4, 4);
    s2hi = extract32(s2_mair_attrs, 4, 4);

    /* Combine memory type and cacheability attributes */
    if (s1hi == 0 || s2hi == 0) {
        /* Device has precedence over normal */
        if (s1lo == 0 || s2lo == 0) {
            /* nGnRnE has precedence over anything */
            ret_attrs = 0;
        } else if (s1lo == 4 || s2lo == 4) {
            /* non-Reordering has precedence over Reordering */
            ret_attrs = 4;  /* nGnRE */
        } else if (s1lo == 8 || s2lo == 8) {
            /* non-Gathering has precedence over Gathering */
            ret_attrs = 8;  /* nGRE */
        } else {
            ret_attrs = 0xc; /* GRE */
        }
    } else { /* Normal memory */
        /* Outer/inner cacheability combine independently */
        ret_attrs = combine_cacheattr_nibble(s1hi, s2hi) << 4
                  | combine_cacheattr_nibble(s1lo, s2lo);
    }
    return ret_attrs;
}

static uint8_t force_cacheattr_nibble_wb(uint8_t attr)
{
    /*
     * Given the 4 bits specifying the outer or inner cacheability
     * in MAIR format, return a value specifying Normal Write-Back,
     * with the allocation and transient hints taken from the input
     * if the input specified some kind of cacheable attribute.
     */
    if (attr == 0 || attr == 4) {
        /*
         * 0 == an UNPREDICTABLE encoding
         * 4 == Non-cacheable
         * Either way, force Write-Back RW allocate non-transient
         */
        return 0xf;
    }
    /* Change WriteThrough to WriteBack, keep allocation and transient hints */
    return attr | 4;
}

/*
 * Combine the memory type and cacheability attributes of
 * s1 and s2 for the HCR_EL2.FWB == 1 case, returning the
 * combined attributes in MAIR_EL1 format.
 */
static uint8_t combined_attrs_fwb(CPUARMState *env,
                                  ARMCacheAttrs s1, ARMCacheAttrs s2)
{
    switch (s2.attrs) {
    case 7:
        /* Use stage 1 attributes */
        return s1.attrs;
    case 6:
        /*
         * Force Normal Write-Back. Note that if S1 is Normal cacheable
         * then we take the allocation hints from it; otherwise it is
         * RW allocate, non-transient.
         */
        if ((s1.attrs & 0xf0) == 0) {
            /* S1 is Device */
            return 0xff;
        }
        /* Need to check the Inner and Outer nibbles separately */
        return force_cacheattr_nibble_wb(s1.attrs & 0xf) |
            force_cacheattr_nibble_wb(s1.attrs >> 4) << 4;
    case 5:
        /* If S1 attrs are Device, use them; otherwise Normal Non-cacheable */
        if ((s1.attrs & 0xf0) == 0) {
            return s1.attrs;
        }
        return 0x44;
    case 0 ... 3:
        /* Force Device, of subtype specified by S2 */
        return s2.attrs << 2;
    default:
        /*
         * RESERVED values (including RES0 descriptor bit [5] being nonzero);
         * arbitrarily force Device.
         */
        return 0;
    }
}

/*
 * Combine S1 and S2 cacheability/shareability attributes, per D4.5.4
 * and CombineS1S2Desc()
 *
 * @env:     CPUARMState
 * @s1:      Attributes from stage 1 walk
 * @s2:      Attributes from stage 2 walk
 */
static ARMCacheAttrs combine_cacheattrs(CPUARMState *env,
                                        ARMCacheAttrs s1, ARMCacheAttrs s2)
{
    ARMCacheAttrs ret;
    bool tagged = false;

    assert(s2.is_s2_format && !s1.is_s2_format);
    ret.is_s2_format = false;

    if (s1.attrs == 0xf0) {
        tagged = true;
        s1.attrs = 0xff;
    }

    /* Combine shareability attributes (table D4-43) */
    if (s1.shareability == 2 || s2.shareability == 2) {
        /* if either are outer-shareable, the result is outer-shareable */
        ret.shareability = 2;
    } else if (s1.shareability == 3 || s2.shareability == 3) {
        /* if either are inner-shareable, the result is inner-shareable */
        ret.shareability = 3;
    } else {
        /* both non-shareable */
        ret.shareability = 0;
    }

    /* Combine memory type and cacheability attributes */
    if (arm_hcr_el2_eff(env) & HCR_FWB) {
        ret.attrs = combined_attrs_fwb(env, s1, s2);
    } else {
        ret.attrs = combined_attrs_nofwb(env, s1, s2);
    }

    /*
     * Any location for which the resultant memory type is any
     * type of Device memory is always treated as Outer Shareable.
     * Any location for which the resultant memory type is Normal
     * Inner Non-cacheable, Outer Non-cacheable is always treated
     * as Outer Shareable.
     * TODO: FEAT_XS adds another value (0x40) also meaning iNCoNC
     */
    if ((ret.attrs & 0xf0) == 0 || ret.attrs == 0x44) {
        ret.shareability = 2;
    }

    /* TODO: CombineS1S2Desc does not consider transient, only WB, RWA. */
    if (tagged && ret.attrs == 0xff) {
        ret.attrs = 0xf0;
    }

    return ret;
}

/**
 * get_phys_addr - get the physical address for this virtual address
 *
 * Find the physical address corresponding to the given virtual address,
 * by doing a translation table walk on MMU based systems or using the
 * MPU state on MPU based systems.
 *
 * Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
 * prot and page_size may not be filled in, and the populated fsr value provides
 * information on why the translation aborted, in the format of a
 * DFSR/IFSR fault register, with the following caveats:
 *  * we honour the short vs long DFSR format differences.
 *  * the WnR bit is never set (the caller must do this).
 *  * for PSMAv5 based systems we don't bother to return a full FSR format
 *    value.
 *
 * @env: CPUARMState
 * @address: virtual address to get physical address for
 * @access_type: 0 for read, 1 for write, 2 for execute
 * @mmu_idx: MMU index indicating required translation regime
 * @phys_ptr: set to the physical address corresponding to the virtual address
 * @attrs: set to the memory transaction attributes to use
 * @prot: set to the permissions for the page containing phys_ptr
 * @page_size: set to the size of the page containing phys_ptr
 * @fi: set to fault info if the translation fails
 * @cacheattrs: (if non-NULL) set to the cacheability/shareability attributes
 */
bool get_phys_addr(CPUARMState *env, target_ulong address,
                   MMUAccessType access_type, ARMMMUIdx mmu_idx,
                   hwaddr *phys_ptr, MemTxAttrs *attrs, int *prot,
                   target_ulong *page_size,
                   ARMMMUFaultInfo *fi, ARMCacheAttrs *cacheattrs)
{
    ARMMMUIdx s1_mmu_idx = stage_1_mmu_idx(mmu_idx);

    if (mmu_idx != s1_mmu_idx) {
        /*
         * Call ourselves recursively to do the stage 1 and then stage 2
         * translations if mmu_idx is a two-stage regime.
         */
        if (arm_feature(env, ARM_FEATURE_EL2)) {
            hwaddr ipa;
            int s2_prot;
            int ret;
            bool ipa_secure;
            ARMCacheAttrs cacheattrs2 = {};
            ARMMMUIdx s2_mmu_idx;
            bool is_el0;

            ret = get_phys_addr(env, address, access_type, s1_mmu_idx, &ipa,
                                attrs, prot, page_size, fi, cacheattrs);

            /* If S1 fails or S2 is disabled, return early.  */
            if (ret || regime_translation_disabled(env, ARMMMUIdx_Stage2)) {
                *phys_ptr = ipa;
                return ret;
            }

            ipa_secure = attrs->secure;
            if (arm_is_secure_below_el3(env)) {
                if (ipa_secure) {
                    attrs->secure = !(env->cp15.vstcr_el2.raw_tcr & VSTCR_SW);
                } else {
                    attrs->secure = !(env->cp15.vtcr_el2.raw_tcr & VTCR_NSW);
                }
            } else {
                assert(!ipa_secure);
            }

            s2_mmu_idx = attrs->secure ? ARMMMUIdx_Stage2_S : ARMMMUIdx_Stage2;
            is_el0 = mmu_idx == ARMMMUIdx_E10_0 || mmu_idx == ARMMMUIdx_SE10_0;

            /* S1 is done. Now do S2 translation.  */
            ret = get_phys_addr_lpae(env, ipa, access_type, s2_mmu_idx, is_el0,
                                     phys_ptr, attrs, &s2_prot,
                                     page_size, fi, &cacheattrs2);
            fi->s2addr = ipa;
            /* Combine the S1 and S2 perms.  */
            *prot &= s2_prot;

            /* If S2 fails, return early.  */
            if (ret) {
                return ret;
            }

            /* Combine the S1 and S2 cache attributes. */
            if (arm_hcr_el2_eff(env) & HCR_DC) {
                /*
                 * HCR.DC forces the first stage attributes to
                 *  Normal Non-Shareable,
                 *  Inner Write-Back Read-Allocate Write-Allocate,
                 *  Outer Write-Back Read-Allocate Write-Allocate.
                 * Do not overwrite Tagged within attrs.
                 */
                if (cacheattrs->attrs != 0xf0) {
                    cacheattrs->attrs = 0xff;
                }
                cacheattrs->shareability = 0;
            }
            *cacheattrs = combine_cacheattrs(env, *cacheattrs, cacheattrs2);

            /* Check if IPA translates to secure or non-secure PA space. */
            if (arm_is_secure_below_el3(env)) {
                if (ipa_secure) {
                    attrs->secure =
                        !(env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW));
                } else {
                    attrs->secure =
                        !((env->cp15.vtcr_el2.raw_tcr & (VTCR_NSA | VTCR_NSW))
                        || (env->cp15.vstcr_el2.raw_tcr & (VSTCR_SA | VSTCR_SW)));
                }
            }
            return 0;
        } else {
            /*
             * For non-EL2 CPUs a stage1+stage2 translation is just stage 1.
             */
            mmu_idx = stage_1_mmu_idx(mmu_idx);
        }
    }

    /*
     * The page table entries may downgrade secure to non-secure, but
     * cannot upgrade an non-secure translation regime's attributes
     * to secure.
     */
    attrs->secure = regime_is_secure(env, mmu_idx);
    attrs->user = regime_is_user(env, mmu_idx);

    /*
     * Fast Context Switch Extension. This doesn't exist at all in v8.
     * In v7 and earlier it affects all stage 1 translations.
     */
    if (address < 0x02000000 && mmu_idx != ARMMMUIdx_Stage2
        && !arm_feature(env, ARM_FEATURE_V8)) {
        if (regime_el(env, mmu_idx) == 3) {
            address += env->cp15.fcseidr_s;
        } else {
            address += env->cp15.fcseidr_ns;
        }
    }

    if (arm_feature(env, ARM_FEATURE_PMSA)) {
        bool ret;
        *page_size = TARGET_PAGE_SIZE;

        if (arm_feature(env, ARM_FEATURE_V8)) {
            /* PMSAv8 */
            ret = get_phys_addr_pmsav8(env, address, access_type, mmu_idx,
                                       phys_ptr, attrs, prot, page_size, fi);
        } else if (arm_feature(env, ARM_FEATURE_V7)) {
            /* PMSAv7 */
            ret = get_phys_addr_pmsav7(env, address, access_type, mmu_idx,
                                       phys_ptr, prot, page_size, fi);
        } else {
            /* Pre-v7 MPU */
            ret = get_phys_addr_pmsav5(env, address, access_type, mmu_idx,
                                       phys_ptr, prot, fi);
        }
        qemu_log_mask(CPU_LOG_MMU, "PMSA MPU lookup for %s at 0x%08" PRIx32
                      " mmu_idx %u -> %s (prot %c%c%c)\n",
                      access_type == MMU_DATA_LOAD ? "reading" :
                      (access_type == MMU_DATA_STORE ? "writing" : "execute"),
                      (uint32_t)address, mmu_idx,
                      ret ? "Miss" : "Hit",
                      *prot & PAGE_READ ? 'r' : '-',
                      *prot & PAGE_WRITE ? 'w' : '-',
                      *prot & PAGE_EXEC ? 'x' : '-');

        return ret;
    }

    /* Definitely a real MMU, not an MPU */

    if (regime_translation_disabled(env, mmu_idx)) {
        uint64_t hcr;
        uint8_t memattr;

        /*
         * MMU disabled.  S1 addresses within aa64 translation regimes are
         * still checked for bounds -- see AArch64.TranslateAddressS1Off.
         */
        if (mmu_idx != ARMMMUIdx_Stage2 && mmu_idx != ARMMMUIdx_Stage2_S) {
            int r_el = regime_el(env, mmu_idx);
            if (arm_el_is_aa64(env, r_el)) {
                int pamax = arm_pamax(env_archcpu(env));
                uint64_t tcr = env->cp15.tcr_el[r_el].raw_tcr;
                int addrtop, tbi;

                tbi = aa64_va_parameter_tbi(tcr, mmu_idx);
                if (access_type == MMU_INST_FETCH) {
                    tbi &= ~aa64_va_parameter_tbid(tcr, mmu_idx);
                }
                tbi = (tbi >> extract64(address, 55, 1)) & 1;
                addrtop = (tbi ? 55 : 63);

                if (extract64(address, pamax, addrtop - pamax + 1) != 0) {
                    fi->type = ARMFault_AddressSize;
                    fi->level = 0;
                    fi->stage2 = false;
                    return 1;
                }

                /*
                 * When TBI is disabled, we've just validated that all of the
                 * bits above PAMax are zero, so logically we only need to
                 * clear the top byte for TBI.  But it's clearer to follow
                 * the pseudocode set of addrdesc.paddress.
                 */
                address = extract64(address, 0, 52);
            }
        }
        *phys_ptr = address;
        *prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
        *page_size = TARGET_PAGE_SIZE;

        /* Fill in cacheattr a-la AArch64.TranslateAddressS1Off. */
        hcr = arm_hcr_el2_eff(env);
        cacheattrs->shareability = 0;
        cacheattrs->is_s2_format = false;
        if (hcr & HCR_DC) {
            if (hcr & HCR_DCT) {
                memattr = 0xf0;  /* Tagged, Normal, WB, RWA */
            } else {
                memattr = 0xff;  /* Normal, WB, RWA */
            }
        } else if (access_type == MMU_INST_FETCH) {
            if (regime_sctlr(env, mmu_idx) & SCTLR_I) {
                memattr = 0xee;  /* Normal, WT, RA, NT */
            } else {
                memattr = 0x44;  /* Normal, NC, No */
            }
            cacheattrs->shareability = 2; /* outer sharable */
        } else {
            memattr = 0x00;      /* Device, nGnRnE */
        }
        cacheattrs->attrs = memattr;
        return 0;
    }

    if (regime_using_lpae_format(env, mmu_idx)) {
        return get_phys_addr_lpae(env, address, access_type, mmu_idx, false,
                                  phys_ptr, attrs, prot, page_size,
                                  fi, cacheattrs);
    } else if (regime_sctlr(env, mmu_idx) & SCTLR_XP) {
        return get_phys_addr_v6(env, address, access_type, mmu_idx,
                                phys_ptr, attrs, prot, page_size, fi);
    } else {
        return get_phys_addr_v5(env, address, access_type, mmu_idx,
                                    phys_ptr, prot, page_size, fi);
    }
}

hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cs, vaddr addr,
                                         MemTxAttrs *attrs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    hwaddr phys_addr;
    target_ulong page_size;
    int prot;
    bool ret;
    ARMMMUFaultInfo fi = {};
    ARMMMUIdx mmu_idx = arm_mmu_idx(env);
    ARMCacheAttrs cacheattrs = {};

    *attrs = (MemTxAttrs) {};

    ret = get_phys_addr(env, addr, MMU_DATA_LOAD, mmu_idx, &phys_addr,
                        attrs, &prot, &page_size, &fi, &cacheattrs);

    if (ret) {
        return -1;
    }
    return phys_addr;
}