1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
|
/*
* QEMU ARM CPU -- internal functions and types
*
* Copyright (c) 2014 Linaro Ltd
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*
* This header defines functions, types, etc which need to be shared
* between different source files within target/arm/ but which are
* private to it and not required by the rest of QEMU.
*/
#ifndef TARGET_ARM_INTERNALS_H
#define TARGET_ARM_INTERNALS_H
#include "hw/registerfields.h"
#include "tcg/tcg-gvec-desc.h"
#include "syndrome.h"
#include "cpu-features.h"
/* register banks for CPU modes */
#define BANK_USRSYS 0
#define BANK_SVC 1
#define BANK_ABT 2
#define BANK_UND 3
#define BANK_IRQ 4
#define BANK_FIQ 5
#define BANK_HYP 6
#define BANK_MON 7
static inline bool excp_is_internal(int excp)
{
/* Return true if this exception number represents a QEMU-internal
* exception that will not be passed to the guest.
*/
return excp == EXCP_INTERRUPT
|| excp == EXCP_HLT
|| excp == EXCP_DEBUG
|| excp == EXCP_HALTED
|| excp == EXCP_EXCEPTION_EXIT
|| excp == EXCP_KERNEL_TRAP
|| excp == EXCP_SEMIHOST;
}
/* Scale factor for generic timers, ie number of ns per tick.
* This gives a 62.5MHz timer.
*/
#define GTIMER_SCALE 16
/* Bit definitions for the v7M CONTROL register */
FIELD(V7M_CONTROL, NPRIV, 0, 1)
FIELD(V7M_CONTROL, SPSEL, 1, 1)
FIELD(V7M_CONTROL, FPCA, 2, 1)
FIELD(V7M_CONTROL, SFPA, 3, 1)
/* Bit definitions for v7M exception return payload */
FIELD(V7M_EXCRET, ES, 0, 1)
FIELD(V7M_EXCRET, RES0, 1, 1)
FIELD(V7M_EXCRET, SPSEL, 2, 1)
FIELD(V7M_EXCRET, MODE, 3, 1)
FIELD(V7M_EXCRET, FTYPE, 4, 1)
FIELD(V7M_EXCRET, DCRS, 5, 1)
FIELD(V7M_EXCRET, S, 6, 1)
FIELD(V7M_EXCRET, RES1, 7, 25) /* including the must-be-1 prefix */
/* Minimum value which is a magic number for exception return */
#define EXC_RETURN_MIN_MAGIC 0xff000000
/* Minimum number which is a magic number for function or exception return
* when using v8M security extension
*/
#define FNC_RETURN_MIN_MAGIC 0xfefffffe
/* Bit definitions for DBGWCRn and DBGWCRn_EL1 */
FIELD(DBGWCR, E, 0, 1)
FIELD(DBGWCR, PAC, 1, 2)
FIELD(DBGWCR, LSC, 3, 2)
FIELD(DBGWCR, BAS, 5, 8)
FIELD(DBGWCR, HMC, 13, 1)
FIELD(DBGWCR, SSC, 14, 2)
FIELD(DBGWCR, LBN, 16, 4)
FIELD(DBGWCR, WT, 20, 1)
FIELD(DBGWCR, MASK, 24, 5)
FIELD(DBGWCR, SSCE, 29, 1)
/* We use a few fake FSR values for internal purposes in M profile.
* M profile cores don't have A/R format FSRs, but currently our
* get_phys_addr() code assumes A/R profile and reports failures via
* an A/R format FSR value. We then translate that into the proper
* M profile exception and FSR status bit in arm_v7m_cpu_do_interrupt().
* Mostly the FSR values we use for this are those defined for v7PMSA,
* since we share some of that codepath. A few kinds of fault are
* only for M profile and have no A/R equivalent, though, so we have
* to pick a value from the reserved range (which we never otherwise
* generate) to use for these.
* These values will never be visible to the guest.
*/
#define M_FAKE_FSR_NSC_EXEC 0xf /* NS executing in S&NSC memory */
#define M_FAKE_FSR_SFAULT 0xe /* SecureFault INVTRAN, INVEP or AUVIOL */
/**
* raise_exception: Raise the specified exception.
* Raise a guest exception with the specified value, syndrome register
* and target exception level. This should be called from helper functions,
* and never returns because we will longjump back up to the CPU main loop.
*/
G_NORETURN void raise_exception(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el);
/*
* Similarly, but also use unwinding to restore cpu state.
*/
G_NORETURN void raise_exception_ra(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el,
uintptr_t ra);
/*
* For AArch64, map a given EL to an index in the banked_spsr array.
* Note that this mapping and the AArch32 mapping defined in bank_number()
* must agree such that the AArch64<->AArch32 SPSRs have the architecturally
* mandated mapping between each other.
*/
static inline unsigned int aarch64_banked_spsr_index(unsigned int el)
{
static const unsigned int map[4] = {
[1] = BANK_SVC, /* EL1. */
[2] = BANK_HYP, /* EL2. */
[3] = BANK_MON, /* EL3. */
};
assert(el >= 1 && el <= 3);
return map[el];
}
/* Map CPU modes onto saved register banks. */
static inline int bank_number(int mode)
{
switch (mode) {
case ARM_CPU_MODE_USR:
case ARM_CPU_MODE_SYS:
return BANK_USRSYS;
case ARM_CPU_MODE_SVC:
return BANK_SVC;
case ARM_CPU_MODE_ABT:
return BANK_ABT;
case ARM_CPU_MODE_UND:
return BANK_UND;
case ARM_CPU_MODE_IRQ:
return BANK_IRQ;
case ARM_CPU_MODE_FIQ:
return BANK_FIQ;
case ARM_CPU_MODE_HYP:
return BANK_HYP;
case ARM_CPU_MODE_MON:
return BANK_MON;
}
g_assert_not_reached();
}
/**
* r14_bank_number: Map CPU mode onto register bank for r14
*
* Given an AArch32 CPU mode, return the index into the saved register
* banks to use for the R14 (LR) in that mode. This is the same as
* bank_number(), except for the special case of Hyp mode, where
* R14 is shared with USR and SYS, unlike its R13 and SPSR.
* This should be used as the index into env->banked_r14[], and
* bank_number() used for the index into env->banked_r13[] and
* env->banked_spsr[].
*/
static inline int r14_bank_number(int mode)
{
return (mode == ARM_CPU_MODE_HYP) ? BANK_USRSYS : bank_number(mode);
}
void arm_cpu_register_gdb_regs_for_features(ARMCPU *cpu);
void arm_translate_init(void);
void arm_restore_state_to_opc(CPUState *cs,
const TranslationBlock *tb,
const uint64_t *data);
#ifdef CONFIG_TCG
void arm_cpu_synchronize_from_tb(CPUState *cs, const TranslationBlock *tb);
#endif /* CONFIG_TCG */
typedef enum ARMFPRounding {
FPROUNDING_TIEEVEN,
FPROUNDING_POSINF,
FPROUNDING_NEGINF,
FPROUNDING_ZERO,
FPROUNDING_TIEAWAY,
FPROUNDING_ODD
} ARMFPRounding;
extern const FloatRoundMode arm_rmode_to_sf_map[6];
static inline FloatRoundMode arm_rmode_to_sf(ARMFPRounding rmode)
{
assert((unsigned)rmode < ARRAY_SIZE(arm_rmode_to_sf_map));
return arm_rmode_to_sf_map[rmode];
}
static inline void aarch64_save_sp(CPUARMState *env, int el)
{
if (env->pstate & PSTATE_SP) {
env->sp_el[el] = env->xregs[31];
} else {
env->sp_el[0] = env->xregs[31];
}
}
static inline void aarch64_restore_sp(CPUARMState *env, int el)
{
if (env->pstate & PSTATE_SP) {
env->xregs[31] = env->sp_el[el];
} else {
env->xregs[31] = env->sp_el[0];
}
}
static inline void update_spsel(CPUARMState *env, uint32_t imm)
{
unsigned int cur_el = arm_current_el(env);
/* Update PSTATE SPSel bit; this requires us to update the
* working stack pointer in xregs[31].
*/
if (!((imm ^ env->pstate) & PSTATE_SP)) {
return;
}
aarch64_save_sp(env, cur_el);
env->pstate = deposit32(env->pstate, 0, 1, imm);
/* We rely on illegal updates to SPsel from EL0 to get trapped
* at translation time.
*/
assert(cur_el >= 1 && cur_el <= 3);
aarch64_restore_sp(env, cur_el);
}
/*
* arm_pamax
* @cpu: ARMCPU
*
* Returns the implementation defined bit-width of physical addresses.
* The ARMv8 reference manuals refer to this as PAMax().
*/
unsigned int arm_pamax(ARMCPU *cpu);
/* Return true if extended addresses are enabled.
* This is always the case if our translation regime is 64 bit,
* but depends on TTBCR.EAE for 32 bit.
*/
static inline bool extended_addresses_enabled(CPUARMState *env)
{
uint64_t tcr = env->cp15.tcr_el[arm_is_secure(env) ? 3 : 1];
if (arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V8)) {
return true;
}
return arm_el_is_aa64(env, 1) ||
(arm_feature(env, ARM_FEATURE_LPAE) && (tcr & TTBCR_EAE));
}
/* Update a QEMU watchpoint based on the information the guest has set in the
* DBGWCR<n>_EL1 and DBGWVR<n>_EL1 registers.
*/
void hw_watchpoint_update(ARMCPU *cpu, int n);
/* Update the QEMU watchpoints for every guest watchpoint. This does a
* complete delete-and-reinstate of the QEMU watchpoint list and so is
* suitable for use after migration or on reset.
*/
void hw_watchpoint_update_all(ARMCPU *cpu);
/* Update a QEMU breakpoint based on the information the guest has set in the
* DBGBCR<n>_EL1 and DBGBVR<n>_EL1 registers.
*/
void hw_breakpoint_update(ARMCPU *cpu, int n);
/* Update the QEMU breakpoints for every guest breakpoint. This does a
* complete delete-and-reinstate of the QEMU breakpoint list and so is
* suitable for use after migration or on reset.
*/
void hw_breakpoint_update_all(ARMCPU *cpu);
/* Callback function for checking if a breakpoint should trigger. */
bool arm_debug_check_breakpoint(CPUState *cs);
/* Callback function for checking if a watchpoint should trigger. */
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp);
/* Adjust addresses (in BE32 mode) before testing against watchpoint
* addresses.
*/
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len);
/* Callback function for when a watchpoint or breakpoint triggers. */
void arm_debug_excp_handler(CPUState *cs);
#if defined(CONFIG_USER_ONLY) || !defined(CONFIG_TCG)
static inline bool arm_is_psci_call(ARMCPU *cpu, int excp_type)
{
return false;
}
static inline void arm_handle_psci_call(ARMCPU *cpu)
{
g_assert_not_reached();
}
#else
/* Return true if the r0/x0 value indicates that this SMC/HVC is a PSCI call. */
bool arm_is_psci_call(ARMCPU *cpu, int excp_type);
/* Actually handle a PSCI call */
void arm_handle_psci_call(ARMCPU *cpu);
#endif
/**
* arm_clear_exclusive: clear the exclusive monitor
* @env: CPU env
* Clear the CPU's exclusive monitor, like the guest CLREX instruction.
*/
static inline void arm_clear_exclusive(CPUARMState *env)
{
env->exclusive_addr = -1;
}
/**
* ARMFaultType: type of an ARM MMU fault
* This corresponds to the v8A pseudocode's Fault enumeration,
* with extensions for QEMU internal conditions.
*/
typedef enum ARMFaultType {
ARMFault_None,
ARMFault_AccessFlag,
ARMFault_Alignment,
ARMFault_Background,
ARMFault_Domain,
ARMFault_Permission,
ARMFault_Translation,
ARMFault_AddressSize,
ARMFault_SyncExternal,
ARMFault_SyncExternalOnWalk,
ARMFault_SyncParity,
ARMFault_SyncParityOnWalk,
ARMFault_AsyncParity,
ARMFault_AsyncExternal,
ARMFault_Debug,
ARMFault_TLBConflict,
ARMFault_UnsuppAtomicUpdate,
ARMFault_Lockdown,
ARMFault_Exclusive,
ARMFault_ICacheMaint,
ARMFault_QEMU_NSCExec, /* v8M: NS executing in S&NSC memory */
ARMFault_QEMU_SFault, /* v8M: SecureFault INVTRAN, INVEP or AUVIOL */
ARMFault_GPCFOnWalk,
ARMFault_GPCFOnOutput,
} ARMFaultType;
typedef enum ARMGPCF {
GPCF_None,
GPCF_AddressSize,
GPCF_Walk,
GPCF_EABT,
GPCF_Fail,
} ARMGPCF;
/**
* ARMMMUFaultInfo: Information describing an ARM MMU Fault
* @type: Type of fault
* @gpcf: Subtype of ARMFault_GPCFOn{Walk,Output}.
* @level: Table walk level (for translation, access flag and permission faults)
* @domain: Domain of the fault address (for non-LPAE CPUs only)
* @s2addr: Address that caused a fault at stage 2
* @paddr: physical address that caused a fault for gpc
* @paddr_space: physical address space that caused a fault for gpc
* @stage2: True if we faulted at stage 2
* @s1ptw: True if we faulted at stage 2 while doing a stage 1 page-table walk
* @s1ns: True if we faulted on a non-secure IPA while in secure state
* @ea: True if we should set the EA (external abort type) bit in syndrome
*/
typedef struct ARMMMUFaultInfo ARMMMUFaultInfo;
struct ARMMMUFaultInfo {
ARMFaultType type;
ARMGPCF gpcf;
target_ulong s2addr;
target_ulong paddr;
ARMSecuritySpace paddr_space;
int level;
int domain;
bool stage2;
bool s1ptw;
bool s1ns;
bool ea;
};
/**
* arm_fi_to_sfsc: Convert fault info struct to short-format FSC
* Compare pseudocode EncodeSDFSC(), though unlike that function
* we set up a whole FSR-format code including domain field and
* putting the high bit of the FSC into bit 10.
*/
static inline uint32_t arm_fi_to_sfsc(ARMMMUFaultInfo *fi)
{
uint32_t fsc;
switch (fi->type) {
case ARMFault_None:
return 0;
case ARMFault_AccessFlag:
fsc = fi->level == 1 ? 0x3 : 0x6;
break;
case ARMFault_Alignment:
fsc = 0x1;
break;
case ARMFault_Permission:
fsc = fi->level == 1 ? 0xd : 0xf;
break;
case ARMFault_Domain:
fsc = fi->level == 1 ? 0x9 : 0xb;
break;
case ARMFault_Translation:
fsc = fi->level == 1 ? 0x5 : 0x7;
break;
case ARMFault_SyncExternal:
fsc = 0x8 | (fi->ea << 12);
break;
case ARMFault_SyncExternalOnWalk:
fsc = fi->level == 1 ? 0xc : 0xe;
fsc |= (fi->ea << 12);
break;
case ARMFault_SyncParity:
fsc = 0x409;
break;
case ARMFault_SyncParityOnWalk:
fsc = fi->level == 1 ? 0x40c : 0x40e;
break;
case ARMFault_AsyncParity:
fsc = 0x408;
break;
case ARMFault_AsyncExternal:
fsc = 0x406 | (fi->ea << 12);
break;
case ARMFault_Debug:
fsc = 0x2;
break;
case ARMFault_TLBConflict:
fsc = 0x400;
break;
case ARMFault_Lockdown:
fsc = 0x404;
break;
case ARMFault_Exclusive:
fsc = 0x405;
break;
case ARMFault_ICacheMaint:
fsc = 0x4;
break;
case ARMFault_Background:
fsc = 0x0;
break;
case ARMFault_QEMU_NSCExec:
fsc = M_FAKE_FSR_NSC_EXEC;
break;
case ARMFault_QEMU_SFault:
fsc = M_FAKE_FSR_SFAULT;
break;
default:
/* Other faults can't occur in a context that requires a
* short-format status code.
*/
g_assert_not_reached();
}
fsc |= (fi->domain << 4);
return fsc;
}
/**
* arm_fi_to_lfsc: Convert fault info struct to long-format FSC
* Compare pseudocode EncodeLDFSC(), though unlike that function
* we fill in also the LPAE bit 9 of a DFSR format.
*/
static inline uint32_t arm_fi_to_lfsc(ARMMMUFaultInfo *fi)
{
uint32_t fsc;
switch (fi->type) {
case ARMFault_None:
return 0;
case ARMFault_AddressSize:
assert(fi->level >= -1 && fi->level <= 3);
if (fi->level < 0) {
fsc = 0b101001;
} else {
fsc = fi->level;
}
break;
case ARMFault_AccessFlag:
assert(fi->level >= 0 && fi->level <= 3);
fsc = 0b001000 | fi->level;
break;
case ARMFault_Permission:
assert(fi->level >= 0 && fi->level <= 3);
fsc = 0b001100 | fi->level;
break;
case ARMFault_Translation:
assert(fi->level >= -1 && fi->level <= 3);
if (fi->level < 0) {
fsc = 0b101011;
} else {
fsc = 0b000100 | fi->level;
}
break;
case ARMFault_SyncExternal:
fsc = 0x10 | (fi->ea << 12);
break;
case ARMFault_SyncExternalOnWalk:
assert(fi->level >= -1 && fi->level <= 3);
if (fi->level < 0) {
fsc = 0b010011;
} else {
fsc = 0b010100 | fi->level;
}
fsc |= fi->ea << 12;
break;
case ARMFault_SyncParity:
fsc = 0x18;
break;
case ARMFault_SyncParityOnWalk:
assert(fi->level >= -1 && fi->level <= 3);
if (fi->level < 0) {
fsc = 0b011011;
} else {
fsc = 0b011100 | fi->level;
}
break;
case ARMFault_AsyncParity:
fsc = 0x19;
break;
case ARMFault_AsyncExternal:
fsc = 0x11 | (fi->ea << 12);
break;
case ARMFault_Alignment:
fsc = 0x21;
break;
case ARMFault_Debug:
fsc = 0x22;
break;
case ARMFault_TLBConflict:
fsc = 0x30;
break;
case ARMFault_UnsuppAtomicUpdate:
fsc = 0x31;
break;
case ARMFault_Lockdown:
fsc = 0x34;
break;
case ARMFault_Exclusive:
fsc = 0x35;
break;
case ARMFault_GPCFOnWalk:
assert(fi->level >= -1 && fi->level <= 3);
if (fi->level < 0) {
fsc = 0b100011;
} else {
fsc = 0b100100 | fi->level;
}
break;
case ARMFault_GPCFOnOutput:
fsc = 0b101000;
break;
default:
/* Other faults can't occur in a context that requires a
* long-format status code.
*/
g_assert_not_reached();
}
fsc |= 1 << 9;
return fsc;
}
static inline bool arm_extabort_type(MemTxResult result)
{
/* The EA bit in syndromes and fault status registers is an
* IMPDEF classification of external aborts. ARM implementations
* usually use this to indicate AXI bus Decode error (0) or
* Slave error (1); in QEMU we follow that.
*/
return result != MEMTX_DECODE_ERROR;
}
#ifdef CONFIG_USER_ONLY
void arm_cpu_record_sigsegv(CPUState *cpu, vaddr addr,
MMUAccessType access_type,
bool maperr, uintptr_t ra);
void arm_cpu_record_sigbus(CPUState *cpu, vaddr addr,
MMUAccessType access_type, uintptr_t ra);
#else
bool arm_cpu_tlb_fill(CPUState *cs, vaddr address, int size,
MMUAccessType access_type, int mmu_idx,
bool probe, uintptr_t retaddr);
#endif
static inline int arm_to_core_mmu_idx(ARMMMUIdx mmu_idx)
{
return mmu_idx & ARM_MMU_IDX_COREIDX_MASK;
}
static inline ARMMMUIdx core_to_arm_mmu_idx(CPUARMState *env, int mmu_idx)
{
if (arm_feature(env, ARM_FEATURE_M)) {
return mmu_idx | ARM_MMU_IDX_M;
} else {
return mmu_idx | ARM_MMU_IDX_A;
}
}
static inline ARMMMUIdx core_to_aa64_mmu_idx(int mmu_idx)
{
/* AArch64 is always a-profile. */
return mmu_idx | ARM_MMU_IDX_A;
}
int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx);
/* Return the MMU index for a v7M CPU in the specified security state */
ARMMMUIdx arm_v7m_mmu_idx_for_secstate(CPUARMState *env, bool secstate);
/*
* Return true if the stage 1 translation regime is using LPAE
* format page tables
*/
bool arm_s1_regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx);
/* Raise a data fault alignment exception for the specified virtual address */
G_NORETURN void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr);
#ifndef CONFIG_USER_ONLY
/* arm_cpu_do_transaction_failed: handle a memory system error response
* (eg "no device/memory present at address") by raising an external abort
* exception
*/
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr);
#endif
/* Call any registered EL change hooks */
static inline void arm_call_pre_el_change_hook(ARMCPU *cpu)
{
ARMELChangeHook *hook, *next;
QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
hook->hook(cpu, hook->opaque);
}
}
static inline void arm_call_el_change_hook(ARMCPU *cpu)
{
ARMELChangeHook *hook, *next;
QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
hook->hook(cpu, hook->opaque);
}
}
/* Return true if this address translation regime has two ranges. */
static inline bool regime_has_2_ranges(ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_Stage1_E0:
case ARMMMUIdx_Stage1_E1:
case ARMMMUIdx_Stage1_E1_PAN:
case ARMMMUIdx_E10_0:
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
case ARMMMUIdx_E20_0:
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
return true;
default:
return false;
}
}
static inline bool regime_is_pan(CPUARMState *env, ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_Stage1_E1_PAN:
case ARMMMUIdx_E10_1_PAN:
case ARMMMUIdx_E20_2_PAN:
return true;
default:
return false;
}
}
static inline bool regime_is_stage2(ARMMMUIdx mmu_idx)
{
return mmu_idx == ARMMMUIdx_Stage2 || mmu_idx == ARMMMUIdx_Stage2_S;
}
/* Return the exception level which controls this address translation regime */
static inline uint32_t regime_el(CPUARMState *env, ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_E20_0:
case ARMMMUIdx_E20_2:
case ARMMMUIdx_E20_2_PAN:
case ARMMMUIdx_Stage2:
case ARMMMUIdx_Stage2_S:
case ARMMMUIdx_E2:
return 2;
case ARMMMUIdx_E3:
return 3;
case ARMMMUIdx_E10_0:
case ARMMMUIdx_Stage1_E0:
return arm_el_is_aa64(env, 3) || !arm_is_secure_below_el3(env) ? 1 : 3;
case ARMMMUIdx_Stage1_E1:
case ARMMMUIdx_Stage1_E1_PAN:
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
case ARMMMUIdx_MPrivNegPri:
case ARMMMUIdx_MUserNegPri:
case ARMMMUIdx_MPriv:
case ARMMMUIdx_MUser:
case ARMMMUIdx_MSPrivNegPri:
case ARMMMUIdx_MSUserNegPri:
case ARMMMUIdx_MSPriv:
case ARMMMUIdx_MSUser:
return 1;
default:
g_assert_not_reached();
}
}
static inline bool regime_is_user(CPUARMState *env, ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_E20_0:
case ARMMMUIdx_Stage1_E0:
case ARMMMUIdx_MUser:
case ARMMMUIdx_MSUser:
case ARMMMUIdx_MUserNegPri:
case ARMMMUIdx_MSUserNegPri:
return true;
default:
return false;
case ARMMMUIdx_E10_0:
case ARMMMUIdx_E10_1:
case ARMMMUIdx_E10_1_PAN:
g_assert_not_reached();
}
}
/* Return the SCTLR value which controls this address translation regime */
static inline uint64_t regime_sctlr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
return env->cp15.sctlr_el[regime_el(env, mmu_idx)];
}
/*
* These are the fields in VTCR_EL2 which affect both the Secure stage 2
* and the Non-Secure stage 2 translation regimes (and hence which are
* not present in VSTCR_EL2).
*/
#define VTCR_SHARED_FIELD_MASK \
(R_VTCR_IRGN0_MASK | R_VTCR_ORGN0_MASK | R_VTCR_SH0_MASK | \
R_VTCR_PS_MASK | R_VTCR_VS_MASK | R_VTCR_HA_MASK | R_VTCR_HD_MASK | \
R_VTCR_DS_MASK)
/* Return the value of the TCR controlling this translation regime */
static inline uint64_t regime_tcr(CPUARMState *env, ARMMMUIdx mmu_idx)
{
if (mmu_idx == ARMMMUIdx_Stage2) {
return env->cp15.vtcr_el2;
}
if (mmu_idx == ARMMMUIdx_Stage2_S) {
/*
* Secure stage 2 shares fields from VTCR_EL2. We merge those
* in with the VSTCR_EL2 value to synthesize a single VTCR_EL2 format
* value so the callers don't need to special case this.
*
* If a future architecture change defines bits in VSTCR_EL2 that
* overlap with these VTCR_EL2 fields we may need to revisit this.
*/
uint64_t v = env->cp15.vstcr_el2 & ~VTCR_SHARED_FIELD_MASK;
v |= env->cp15.vtcr_el2 & VTCR_SHARED_FIELD_MASK;
return v;
}
return env->cp15.tcr_el[regime_el(env, mmu_idx)];
}
/* Return true if the translation regime is using LPAE format page tables */
static inline bool regime_using_lpae_format(CPUARMState *env, ARMMMUIdx mmu_idx)
{
int el = regime_el(env, mmu_idx);
if (el == 2 || arm_el_is_aa64(env, el)) {
return true;
}
if (arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V8)) {
return true;
}
if (arm_feature(env, ARM_FEATURE_LPAE)
&& (regime_tcr(env, mmu_idx) & TTBCR_EAE)) {
return true;
}
return false;
}
/**
* arm_num_brps: Return number of implemented breakpoints.
* Note that the ID register BRPS field is "number of bps - 1",
* and we return the actual number of breakpoints.
*/
static inline int arm_num_brps(ARMCPU *cpu)
{
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, BRPS) + 1;
} else {
return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, BRPS) + 1;
}
}
/**
* arm_num_wrps: Return number of implemented watchpoints.
* Note that the ID register WRPS field is "number of wps - 1",
* and we return the actual number of watchpoints.
*/
static inline int arm_num_wrps(ARMCPU *cpu)
{
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, WRPS) + 1;
} else {
return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, WRPS) + 1;
}
}
/**
* arm_num_ctx_cmps: Return number of implemented context comparators.
* Note that the ID register CTX_CMPS field is "number of cmps - 1",
* and we return the actual number of comparators.
*/
static inline int arm_num_ctx_cmps(ARMCPU *cpu)
{
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
return FIELD_EX64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS) + 1;
} else {
return FIELD_EX32(cpu->isar.dbgdidr, DBGDIDR, CTX_CMPS) + 1;
}
}
/**
* v7m_using_psp: Return true if using process stack pointer
* Return true if the CPU is currently using the process stack
* pointer, or false if it is using the main stack pointer.
*/
static inline bool v7m_using_psp(CPUARMState *env)
{
/* Handler mode always uses the main stack; for thread mode
* the CONTROL.SPSEL bit determines the answer.
* Note that in v7M it is not possible to be in Handler mode with
* CONTROL.SPSEL non-zero, but in v8M it is, so we must check both.
*/
return !arm_v7m_is_handler_mode(env) &&
env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_SPSEL_MASK;
}
/**
* v7m_sp_limit: Return SP limit for current CPU state
* Return the SP limit value for the current CPU security state
* and stack pointer.
*/
static inline uint32_t v7m_sp_limit(CPUARMState *env)
{
if (v7m_using_psp(env)) {
return env->v7m.psplim[env->v7m.secure];
} else {
return env->v7m.msplim[env->v7m.secure];
}
}
/**
* v7m_cpacr_pass:
* Return true if the v7M CPACR permits access to the FPU for the specified
* security state and privilege level.
*/
static inline bool v7m_cpacr_pass(CPUARMState *env,
bool is_secure, bool is_priv)
{
switch (extract32(env->v7m.cpacr[is_secure], 20, 2)) {
case 0:
case 2: /* UNPREDICTABLE: we treat like 0 */
return false;
case 1:
return is_priv;
case 3:
return true;
default:
g_assert_not_reached();
}
}
/**
* aarch32_mode_name(): Return name of the AArch32 CPU mode
* @psr: Program Status Register indicating CPU mode
*
* Returns, for debug logging purposes, a printable representation
* of the AArch32 CPU mode ("svc", "usr", etc) as indicated by
* the low bits of the specified PSR.
*/
static inline const char *aarch32_mode_name(uint32_t psr)
{
static const char cpu_mode_names[16][4] = {
"usr", "fiq", "irq", "svc", "???", "???", "mon", "abt",
"???", "???", "hyp", "und", "???", "???", "???", "sys"
};
return cpu_mode_names[psr & 0xf];
}
/**
* arm_cpu_update_virq: Update CPU_INTERRUPT_VIRQ bit in cs->interrupt_request
*
* Update the CPU_INTERRUPT_VIRQ bit in cs->interrupt_request, following
* a change to either the input VIRQ line from the GIC or the HCR_EL2.VI bit.
* Must be called with the iothread lock held.
*/
void arm_cpu_update_virq(ARMCPU *cpu);
/**
* arm_cpu_update_vfiq: Update CPU_INTERRUPT_VFIQ bit in cs->interrupt_request
*
* Update the CPU_INTERRUPT_VFIQ bit in cs->interrupt_request, following
* a change to either the input VFIQ line from the GIC or the HCR_EL2.VF bit.
* Must be called with the iothread lock held.
*/
void arm_cpu_update_vfiq(ARMCPU *cpu);
/**
* arm_cpu_update_vserr: Update CPU_INTERRUPT_VSERR bit
*
* Update the CPU_INTERRUPT_VSERR bit in cs->interrupt_request,
* following a change to the HCR_EL2.VSE bit.
*/
void arm_cpu_update_vserr(ARMCPU *cpu);
/**
* arm_mmu_idx_el:
* @env: The cpu environment
* @el: The EL to use.
*
* Return the full ARMMMUIdx for the translation regime for EL.
*/
ARMMMUIdx arm_mmu_idx_el(CPUARMState *env, int el);
/**
* arm_mmu_idx:
* @env: The cpu environment
*
* Return the full ARMMMUIdx for the current translation regime.
*/
ARMMMUIdx arm_mmu_idx(CPUARMState *env);
/**
* arm_stage1_mmu_idx:
* @env: The cpu environment
*
* Return the ARMMMUIdx for the stage1 traversal for the current regime.
*/
#ifdef CONFIG_USER_ONLY
static inline ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx)
{
return ARMMMUIdx_Stage1_E0;
}
static inline ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env)
{
return ARMMMUIdx_Stage1_E0;
}
#else
ARMMMUIdx stage_1_mmu_idx(ARMMMUIdx mmu_idx);
ARMMMUIdx arm_stage1_mmu_idx(CPUARMState *env);
#endif
/**
* arm_mmu_idx_is_stage1_of_2:
* @mmu_idx: The ARMMMUIdx to test
*
* Return true if @mmu_idx is a NOTLB mmu_idx that is the
* first stage of a two stage regime.
*/
static inline bool arm_mmu_idx_is_stage1_of_2(ARMMMUIdx mmu_idx)
{
switch (mmu_idx) {
case ARMMMUIdx_Stage1_E0:
case ARMMMUIdx_Stage1_E1:
case ARMMMUIdx_Stage1_E1_PAN:
return true;
default:
return false;
}
}
static inline uint32_t aarch32_cpsr_valid_mask(uint64_t features,
const ARMISARegisters *id)
{
uint32_t valid = CPSR_M | CPSR_AIF | CPSR_IL | CPSR_NZCV;
if ((features >> ARM_FEATURE_V4T) & 1) {
valid |= CPSR_T;
}
if ((features >> ARM_FEATURE_V5) & 1) {
valid |= CPSR_Q; /* V5TE in reality*/
}
if ((features >> ARM_FEATURE_V6) & 1) {
valid |= CPSR_E | CPSR_GE;
}
if ((features >> ARM_FEATURE_THUMB2) & 1) {
valid |= CPSR_IT;
}
if (isar_feature_aa32_jazelle(id)) {
valid |= CPSR_J;
}
if (isar_feature_aa32_pan(id)) {
valid |= CPSR_PAN;
}
if (isar_feature_aa32_dit(id)) {
valid |= CPSR_DIT;
}
if (isar_feature_aa32_ssbs(id)) {
valid |= CPSR_SSBS;
}
return valid;
}
static inline uint32_t aarch64_pstate_valid_mask(const ARMISARegisters *id)
{
uint32_t valid;
valid = PSTATE_M | PSTATE_DAIF | PSTATE_IL | PSTATE_SS | PSTATE_NZCV;
if (isar_feature_aa64_bti(id)) {
valid |= PSTATE_BTYPE;
}
if (isar_feature_aa64_pan(id)) {
valid |= PSTATE_PAN;
}
if (isar_feature_aa64_uao(id)) {
valid |= PSTATE_UAO;
}
if (isar_feature_aa64_dit(id)) {
valid |= PSTATE_DIT;
}
if (isar_feature_aa64_ssbs(id)) {
valid |= PSTATE_SSBS;
}
if (isar_feature_aa64_mte(id)) {
valid |= PSTATE_TCO;
}
return valid;
}
/* Granule size (i.e. page size) */
typedef enum ARMGranuleSize {
/* Same order as TG0 encoding */
Gran4K,
Gran64K,
Gran16K,
GranInvalid,
} ARMGranuleSize;
/**
* arm_granule_bits: Return address size of the granule in bits
*
* Return the address size of the granule in bits. This corresponds
* to the pseudocode TGxGranuleBits().
*/
static inline int arm_granule_bits(ARMGranuleSize gran)
{
switch (gran) {
case Gran64K:
return 16;
case Gran16K:
return 14;
case Gran4K:
return 12;
default:
g_assert_not_reached();
}
}
/*
* Parameters of a given virtual address, as extracted from the
* translation control register (TCR) for a given regime.
*/
typedef struct ARMVAParameters {
unsigned tsz : 8;
unsigned ps : 3;
unsigned sh : 2;
unsigned select : 1;
bool tbi : 1;
bool epd : 1;
bool hpd : 1;
bool tsz_oob : 1; /* tsz has been clamped to legal range */
bool ds : 1;
bool ha : 1;
bool hd : 1;
ARMGranuleSize gran : 2;
} ARMVAParameters;
/**
* aa64_va_parameters: Return parameters for an AArch64 virtual address
* @env: CPU
* @va: virtual address to look up
* @mmu_idx: determines translation regime to use
* @data: true if this is a data access
* @el1_is_aa32: true if we are asking about stage 2 when EL1 is AArch32
* (ignored if @mmu_idx is for a stage 1 regime; only affects tsz/tsz_oob)
*/
ARMVAParameters aa64_va_parameters(CPUARMState *env, uint64_t va,
ARMMMUIdx mmu_idx, bool data,
bool el1_is_aa32);
int aa64_va_parameter_tbi(uint64_t tcr, ARMMMUIdx mmu_idx);
int aa64_va_parameter_tbid(uint64_t tcr, ARMMMUIdx mmu_idx);
int aa64_va_parameter_tcma(uint64_t tcr, ARMMMUIdx mmu_idx);
/* Determine if allocation tags are available. */
static inline bool allocation_tag_access_enabled(CPUARMState *env, int el,
uint64_t sctlr)
{
if (el < 3
&& arm_feature(env, ARM_FEATURE_EL3)
&& !(env->cp15.scr_el3 & SCR_ATA)) {
return false;
}
if (el < 2 && arm_is_el2_enabled(env)) {
uint64_t hcr = arm_hcr_el2_eff(env);
if (!(hcr & HCR_ATA) && (!(hcr & HCR_E2H) || !(hcr & HCR_TGE))) {
return false;
}
}
sctlr &= (el == 0 ? SCTLR_ATA0 : SCTLR_ATA);
return sctlr != 0;
}
#ifndef CONFIG_USER_ONLY
/* Security attributes for an address, as returned by v8m_security_lookup. */
typedef struct V8M_SAttributes {
bool subpage; /* true if these attrs don't cover the whole TARGET_PAGE */
bool ns;
bool nsc;
uint8_t sregion;
bool srvalid;
uint8_t iregion;
bool irvalid;
} V8M_SAttributes;
void v8m_security_lookup(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
bool secure, V8M_SAttributes *sattrs);
/* Cacheability and shareability attributes for a memory access */
typedef struct ARMCacheAttrs {
/*
* If is_s2_format is true, attrs is the S2 descriptor bits [5:2]
* Otherwise, attrs is the same as the MAIR_EL1 8-bit format
*/
unsigned int attrs:8;
unsigned int shareability:2; /* as in the SH field of the VMSAv8-64 PTEs */
bool is_s2_format:1;
bool guarded:1; /* guarded bit of the v8-64 PTE */
} ARMCacheAttrs;
/* Fields that are valid upon success. */
typedef struct GetPhysAddrResult {
CPUTLBEntryFull f;
ARMCacheAttrs cacheattrs;
} GetPhysAddrResult;
/**
* get_phys_addr: get the physical address for a virtual address
* @env: CPUARMState
* @address: virtual address to get physical address for
* @access_type: 0 for read, 1 for write, 2 for execute
* @mmu_idx: MMU index indicating required translation regime
* @result: set on translation success.
* @fi: set to fault info if the translation fails
*
* Find the physical address corresponding to the given virtual address,
* by doing a translation table walk on MMU based systems or using the
* MPU state on MPU based systems.
*
* Returns false if the translation was successful. Otherwise, phys_ptr, attrs,
* prot and page_size may not be filled in, and the populated fsr value provides
* information on why the translation aborted, in the format of a
* DFSR/IFSR fault register, with the following caveats:
* * we honour the short vs long DFSR format differences.
* * the WnR bit is never set (the caller must do this).
* * for PSMAv5 based systems we don't bother to return a full FSR format
* value.
*/
bool get_phys_addr(CPUARMState *env, target_ulong address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
GetPhysAddrResult *result, ARMMMUFaultInfo *fi)
__attribute__((nonnull));
/**
* get_phys_addr_with_space_nogpc: get the physical address for a virtual
* address
* @env: CPUARMState
* @address: virtual address to get physical address for
* @access_type: 0 for read, 1 for write, 2 for execute
* @mmu_idx: MMU index indicating required translation regime
* @space: security space for the access
* @result: set on translation success.
* @fi: set to fault info if the translation fails
*
* Similar to get_phys_addr, but use the given security space and don't perform
* a Granule Protection Check on the resulting address.
*/
bool get_phys_addr_with_space_nogpc(CPUARMState *env, target_ulong address,
MMUAccessType access_type,
ARMMMUIdx mmu_idx, ARMSecuritySpace space,
GetPhysAddrResult *result,
ARMMMUFaultInfo *fi)
__attribute__((nonnull));
bool pmsav8_mpu_lookup(CPUARMState *env, uint32_t address,
MMUAccessType access_type, ARMMMUIdx mmu_idx,
bool is_secure, GetPhysAddrResult *result,
ARMMMUFaultInfo *fi, uint32_t *mregion);
void arm_log_exception(CPUState *cs);
#endif /* !CONFIG_USER_ONLY */
/*
* SVE predicates are 1/8 the size of SVE vectors, and cannot use
* the same simd_desc() encoding due to restrictions on size.
* Use these instead.
*/
FIELD(PREDDESC, OPRSZ, 0, 6)
FIELD(PREDDESC, ESZ, 6, 2)
FIELD(PREDDESC, DATA, 8, 24)
/*
* The SVE simd_data field, for memory ops, contains either
* rd (5 bits) or a shift count (2 bits).
*/
#define SVE_MTEDESC_SHIFT 5
/* Bits within a descriptor passed to the helper_mte_check* functions. */
FIELD(MTEDESC, MIDX, 0, 4)
FIELD(MTEDESC, TBI, 4, 2)
FIELD(MTEDESC, TCMA, 6, 2)
FIELD(MTEDESC, WRITE, 8, 1)
FIELD(MTEDESC, ALIGN, 9, 3)
FIELD(MTEDESC, SIZEM1, 12, SIMD_DATA_BITS - 12) /* size - 1 */
bool mte_probe(CPUARMState *env, uint32_t desc, uint64_t ptr);
uint64_t mte_check(CPUARMState *env, uint32_t desc, uint64_t ptr, uintptr_t ra);
/**
* mte_mops_probe: Check where the next MTE failure is for a FEAT_MOPS operation
* @env: CPU env
* @ptr: start address of memory region (dirty pointer)
* @size: length of region (guaranteed not to cross a page boundary)
* @desc: MTEDESC descriptor word (0 means no MTE checks)
* Returns: the size of the region that can be copied without hitting
* an MTE tag failure
*
* Note that we assume that the caller has already checked the TBI
* and TCMA bits with mte_checks_needed() and an MTE check is definitely
* required.
*/
uint64_t mte_mops_probe(CPUARMState *env, uint64_t ptr, uint64_t size,
uint32_t desc);
/**
* mte_mops_probe_rev: Check where the next MTE failure is for a FEAT_MOPS
* operation going in the reverse direction
* @env: CPU env
* @ptr: *end* address of memory region (dirty pointer)
* @size: length of region (guaranteed not to cross a page boundary)
* @desc: MTEDESC descriptor word (0 means no MTE checks)
* Returns: the size of the region that can be copied without hitting
* an MTE tag failure
*
* Note that we assume that the caller has already checked the TBI
* and TCMA bits with mte_checks_needed() and an MTE check is definitely
* required.
*/
uint64_t mte_mops_probe_rev(CPUARMState *env, uint64_t ptr, uint64_t size,
uint32_t desc);
/**
* mte_check_fail: Record an MTE tag check failure
* @env: CPU env
* @desc: MTEDESC descriptor word
* @dirty_ptr: Failing dirty address
* @ra: TCG retaddr
*
* This may never return (if the MTE tag checks are configured to fault).
*/
void mte_check_fail(CPUARMState *env, uint32_t desc,
uint64_t dirty_ptr, uintptr_t ra);
/**
* mte_mops_set_tags: Set MTE tags for a portion of a FEAT_MOPS operation
* @env: CPU env
* @dirty_ptr: Start address of memory region (dirty pointer)
* @size: length of region (guaranteed not to cross page boundary)
* @desc: MTEDESC descriptor word
*/
void mte_mops_set_tags(CPUARMState *env, uint64_t dirty_ptr, uint64_t size,
uint32_t desc);
static inline int allocation_tag_from_addr(uint64_t ptr)
{
return extract64(ptr, 56, 4);
}
static inline uint64_t address_with_allocation_tag(uint64_t ptr, int rtag)
{
return deposit64(ptr, 56, 4, rtag);
}
/* Return true if tbi bits mean that the access is checked. */
static inline bool tbi_check(uint32_t desc, int bit55)
{
return (desc >> (R_MTEDESC_TBI_SHIFT + bit55)) & 1;
}
/* Return true if tcma bits mean that the access is unchecked. */
static inline bool tcma_check(uint32_t desc, int bit55, int ptr_tag)
{
/*
* We had extracted bit55 and ptr_tag for other reasons, so fold
* (ptr<59:55> == 00000 || ptr<59:55> == 11111) into a single test.
*/
bool match = ((ptr_tag + bit55) & 0xf) == 0;
bool tcma = (desc >> (R_MTEDESC_TCMA_SHIFT + bit55)) & 1;
return tcma && match;
}
/*
* For TBI, ideally, we would do nothing. Proper behaviour on fault is
* for the tag to be present in the FAR_ELx register. But for user-only
* mode, we do not have a TLB with which to implement this, so we must
* remove the top byte.
*/
static inline uint64_t useronly_clean_ptr(uint64_t ptr)
{
#ifdef CONFIG_USER_ONLY
/* TBI0 is known to be enabled, while TBI1 is disabled. */
ptr &= sextract64(ptr, 0, 56);
#endif
return ptr;
}
static inline uint64_t useronly_maybe_clean_ptr(uint32_t desc, uint64_t ptr)
{
#ifdef CONFIG_USER_ONLY
int64_t clean_ptr = sextract64(ptr, 0, 56);
if (tbi_check(desc, clean_ptr < 0)) {
ptr = clean_ptr;
}
#endif
return ptr;
}
/* Values for M-profile PSR.ECI for MVE insns */
enum MVEECIState {
ECI_NONE = 0, /* No completed beats */
ECI_A0 = 1, /* Completed: A0 */
ECI_A0A1 = 2, /* Completed: A0, A1 */
/* 3 is reserved */
ECI_A0A1A2 = 4, /* Completed: A0, A1, A2 */
ECI_A0A1A2B0 = 5, /* Completed: A0, A1, A2, B0 */
/* All other values reserved */
};
/* Definitions for the PMU registers */
#define PMCRN_MASK 0xf800
#define PMCRN_SHIFT 11
#define PMCRLP 0x80
#define PMCRLC 0x40
#define PMCRDP 0x20
#define PMCRX 0x10
#define PMCRD 0x8
#define PMCRC 0x4
#define PMCRP 0x2
#define PMCRE 0x1
/*
* Mask of PMCR bits writable by guest (not including WO bits like C, P,
* which can be written as 1 to trigger behaviour but which stay RAZ).
*/
#define PMCR_WRITABLE_MASK (PMCRLP | PMCRLC | PMCRDP | PMCRX | PMCRD | PMCRE)
#define PMXEVTYPER_P 0x80000000
#define PMXEVTYPER_U 0x40000000
#define PMXEVTYPER_NSK 0x20000000
#define PMXEVTYPER_NSU 0x10000000
#define PMXEVTYPER_NSH 0x08000000
#define PMXEVTYPER_M 0x04000000
#define PMXEVTYPER_MT 0x02000000
#define PMXEVTYPER_EVTCOUNT 0x0000ffff
#define PMXEVTYPER_MASK (PMXEVTYPER_P | PMXEVTYPER_U | PMXEVTYPER_NSK | \
PMXEVTYPER_NSU | PMXEVTYPER_NSH | \
PMXEVTYPER_M | PMXEVTYPER_MT | \
PMXEVTYPER_EVTCOUNT)
#define PMCCFILTR 0xf8000000
#define PMCCFILTR_M PMXEVTYPER_M
#define PMCCFILTR_EL0 (PMCCFILTR | PMCCFILTR_M)
static inline uint32_t pmu_num_counters(CPUARMState *env)
{
ARMCPU *cpu = env_archcpu(env);
return (cpu->isar.reset_pmcr_el0 & PMCRN_MASK) >> PMCRN_SHIFT;
}
/* Bits allowed to be set/cleared for PMCNTEN* and PMINTEN* */
static inline uint64_t pmu_counter_mask(CPUARMState *env)
{
return (1ULL << 31) | ((1ULL << pmu_num_counters(env)) - 1);
}
#ifdef TARGET_AARCH64
int arm_gen_dynamic_svereg_xml(CPUState *cpu, int base_reg);
int aarch64_gdb_get_sve_reg(CPUARMState *env, GByteArray *buf, int reg);
int aarch64_gdb_set_sve_reg(CPUARMState *env, uint8_t *buf, int reg);
int aarch64_gdb_get_fpu_reg(CPUARMState *env, GByteArray *buf, int reg);
int aarch64_gdb_set_fpu_reg(CPUARMState *env, uint8_t *buf, int reg);
int aarch64_gdb_get_pauth_reg(CPUARMState *env, GByteArray *buf, int reg);
int aarch64_gdb_set_pauth_reg(CPUARMState *env, uint8_t *buf, int reg);
void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp);
void arm_cpu_sme_finalize(ARMCPU *cpu, Error **errp);
void arm_cpu_pauth_finalize(ARMCPU *cpu, Error **errp);
void arm_cpu_lpa2_finalize(ARMCPU *cpu, Error **errp);
void aarch64_max_tcg_initfn(Object *obj);
void aarch64_add_pauth_properties(Object *obj);
void aarch64_add_sve_properties(Object *obj);
void aarch64_add_sme_properties(Object *obj);
#endif
/* Read the CONTROL register as the MRS instruction would. */
uint32_t arm_v7m_mrs_control(CPUARMState *env, uint32_t secure);
/*
* Return a pointer to the location where we currently store the
* stack pointer for the requested security state and thread mode.
* This pointer will become invalid if the CPU state is updated
* such that the stack pointers are switched around (eg changing
* the SPSEL control bit).
*/
uint32_t *arm_v7m_get_sp_ptr(CPUARMState *env, bool secure,
bool threadmode, bool spsel);
bool el_is_in_host(CPUARMState *env, int el);
void aa32_max_features(ARMCPU *cpu);
int exception_target_el(CPUARMState *env);
bool arm_singlestep_active(CPUARMState *env);
bool arm_generate_debug_exceptions(CPUARMState *env);
/**
* pauth_ptr_mask:
* @param: parameters defining the MMU setup
*
* Return a mask of the address bits that contain the authentication code,
* given the MMU config defined by @param.
*/
static inline uint64_t pauth_ptr_mask(ARMVAParameters param)
{
int bot_pac_bit = 64 - param.tsz;
int top_pac_bit = 64 - 8 * param.tbi;
return MAKE_64BIT_MASK(bot_pac_bit, top_pac_bit - bot_pac_bit);
}
/* Add the cpreg definitions for debug related system registers */
void define_debug_regs(ARMCPU *cpu);
/* Effective value of MDCR_EL2 */
static inline uint64_t arm_mdcr_el2_eff(CPUARMState *env)
{
return arm_is_el2_enabled(env) ? env->cp15.mdcr_el2 : 0;
}
/* Powers of 2 for sve_vq_map et al. */
#define SVE_VQ_POW2_MAP \
((1 << (1 - 1)) | (1 << (2 - 1)) | \
(1 << (4 - 1)) | (1 << (8 - 1)) | (1 << (16 - 1)))
/*
* Return true if it is possible to take a fine-grained-trap to EL2.
*/
static inline bool arm_fgt_active(CPUARMState *env, int el)
{
/*
* The Arm ARM only requires the "{E2H,TGE} != {1,1}" test for traps
* that can affect EL0, but it is harmless to do the test also for
* traps on registers that are only accessible at EL1 because if the test
* returns true then we can't be executing at EL1 anyway.
* FGT traps only happen when EL2 is enabled and EL1 is AArch64;
* traps from AArch32 only happen for the EL0 is AArch32 case.
*/
return cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
el < 2 && arm_is_el2_enabled(env) &&
arm_el_is_aa64(env, 1) &&
(arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE) &&
(!arm_feature(env, ARM_FEATURE_EL3) || (env->cp15.scr_el3 & SCR_FGTEN));
}
void assert_hflags_rebuild_correctly(CPUARMState *env);
/*
* Although the ARM implementation of hardware assisted debugging
* allows for different breakpoints per-core, the current GDB
* interface treats them as a global pool of registers (which seems to
* be the case for x86, ppc and s390). As a result we store one copy
* of registers which is used for all active cores.
*
* Write access is serialised by virtue of the GDB protocol which
* updates things. Read access (i.e. when the values are copied to the
* vCPU) is also gated by GDB's run control.
*
* This is not unreasonable as most of the time debugging kernels you
* never know which core will eventually execute your function.
*/
typedef struct {
uint64_t bcr;
uint64_t bvr;
} HWBreakpoint;
/*
* The watchpoint registers can cover more area than the requested
* watchpoint so we need to store the additional information
* somewhere. We also need to supply a CPUWatchpoint to the GDB stub
* when the watchpoint is hit.
*/
typedef struct {
uint64_t wcr;
uint64_t wvr;
CPUWatchpoint details;
} HWWatchpoint;
/* Maximum and current break/watch point counts */
extern int max_hw_bps, max_hw_wps;
extern GArray *hw_breakpoints, *hw_watchpoints;
#define cur_hw_wps (hw_watchpoints->len)
#define cur_hw_bps (hw_breakpoints->len)
#define get_hw_bp(i) (&g_array_index(hw_breakpoints, HWBreakpoint, i))
#define get_hw_wp(i) (&g_array_index(hw_watchpoints, HWWatchpoint, i))
bool find_hw_breakpoint(CPUState *cpu, target_ulong pc);
int insert_hw_breakpoint(target_ulong pc);
int delete_hw_breakpoint(target_ulong pc);
bool check_watchpoint_in_range(int i, target_ulong addr);
CPUWatchpoint *find_hw_watchpoint(CPUState *cpu, target_ulong addr);
int insert_hw_watchpoint(target_ulong addr, target_ulong len, int type);
int delete_hw_watchpoint(target_ulong addr, target_ulong len, int type);
#endif
|