aboutsummaryrefslogtreecommitdiff
path: root/target/arm/hvf/hvf.c
blob: d75e504dcda23bee66d0ce0cf7e8685ccd1860a4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
/*
 * QEMU Hypervisor.framework support for Apple Silicon

 * Copyright 2020 Alexander Graf <agraf@csgraf.de>
 * Copyright 2020 Google LLC
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 *
 */

#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qemu/log.h"

#include "sysemu/runstate.h"
#include "sysemu/hvf.h"
#include "sysemu/hvf_int.h"
#include "sysemu/hw_accel.h"
#include "hvf_arm.h"
#include "cpregs.h"

#include <mach/mach_time.h>

#include "exec/address-spaces.h"
#include "hw/boards.h"
#include "hw/irq.h"
#include "qemu/main-loop.h"
#include "sysemu/cpus.h"
#include "arm-powerctl.h"
#include "target/arm/cpu.h"
#include "target/arm/internals.h"
#include "target/arm/multiprocessing.h"
#include "target/arm/gtimer.h"
#include "trace.h"
#include "migration/vmstate.h"

#include "gdbstub/enums.h"

#define MDSCR_EL1_SS_SHIFT  0
#define MDSCR_EL1_MDE_SHIFT 15

static const uint16_t dbgbcr_regs[] = {
    HV_SYS_REG_DBGBCR0_EL1,
    HV_SYS_REG_DBGBCR1_EL1,
    HV_SYS_REG_DBGBCR2_EL1,
    HV_SYS_REG_DBGBCR3_EL1,
    HV_SYS_REG_DBGBCR4_EL1,
    HV_SYS_REG_DBGBCR5_EL1,
    HV_SYS_REG_DBGBCR6_EL1,
    HV_SYS_REG_DBGBCR7_EL1,
    HV_SYS_REG_DBGBCR8_EL1,
    HV_SYS_REG_DBGBCR9_EL1,
    HV_SYS_REG_DBGBCR10_EL1,
    HV_SYS_REG_DBGBCR11_EL1,
    HV_SYS_REG_DBGBCR12_EL1,
    HV_SYS_REG_DBGBCR13_EL1,
    HV_SYS_REG_DBGBCR14_EL1,
    HV_SYS_REG_DBGBCR15_EL1,
};

static const uint16_t dbgbvr_regs[] = {
    HV_SYS_REG_DBGBVR0_EL1,
    HV_SYS_REG_DBGBVR1_EL1,
    HV_SYS_REG_DBGBVR2_EL1,
    HV_SYS_REG_DBGBVR3_EL1,
    HV_SYS_REG_DBGBVR4_EL1,
    HV_SYS_REG_DBGBVR5_EL1,
    HV_SYS_REG_DBGBVR6_EL1,
    HV_SYS_REG_DBGBVR7_EL1,
    HV_SYS_REG_DBGBVR8_EL1,
    HV_SYS_REG_DBGBVR9_EL1,
    HV_SYS_REG_DBGBVR10_EL1,
    HV_SYS_REG_DBGBVR11_EL1,
    HV_SYS_REG_DBGBVR12_EL1,
    HV_SYS_REG_DBGBVR13_EL1,
    HV_SYS_REG_DBGBVR14_EL1,
    HV_SYS_REG_DBGBVR15_EL1,
};

static const uint16_t dbgwcr_regs[] = {
    HV_SYS_REG_DBGWCR0_EL1,
    HV_SYS_REG_DBGWCR1_EL1,
    HV_SYS_REG_DBGWCR2_EL1,
    HV_SYS_REG_DBGWCR3_EL1,
    HV_SYS_REG_DBGWCR4_EL1,
    HV_SYS_REG_DBGWCR5_EL1,
    HV_SYS_REG_DBGWCR6_EL1,
    HV_SYS_REG_DBGWCR7_EL1,
    HV_SYS_REG_DBGWCR8_EL1,
    HV_SYS_REG_DBGWCR9_EL1,
    HV_SYS_REG_DBGWCR10_EL1,
    HV_SYS_REG_DBGWCR11_EL1,
    HV_SYS_REG_DBGWCR12_EL1,
    HV_SYS_REG_DBGWCR13_EL1,
    HV_SYS_REG_DBGWCR14_EL1,
    HV_SYS_REG_DBGWCR15_EL1,
};

static const uint16_t dbgwvr_regs[] = {
    HV_SYS_REG_DBGWVR0_EL1,
    HV_SYS_REG_DBGWVR1_EL1,
    HV_SYS_REG_DBGWVR2_EL1,
    HV_SYS_REG_DBGWVR3_EL1,
    HV_SYS_REG_DBGWVR4_EL1,
    HV_SYS_REG_DBGWVR5_EL1,
    HV_SYS_REG_DBGWVR6_EL1,
    HV_SYS_REG_DBGWVR7_EL1,
    HV_SYS_REG_DBGWVR8_EL1,
    HV_SYS_REG_DBGWVR9_EL1,
    HV_SYS_REG_DBGWVR10_EL1,
    HV_SYS_REG_DBGWVR11_EL1,
    HV_SYS_REG_DBGWVR12_EL1,
    HV_SYS_REG_DBGWVR13_EL1,
    HV_SYS_REG_DBGWVR14_EL1,
    HV_SYS_REG_DBGWVR15_EL1,
};

static inline int hvf_arm_num_brps(hv_vcpu_config_t config)
{
    uint64_t val;
    hv_return_t ret;
    ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
                                         &val);
    assert_hvf_ok(ret);
    return FIELD_EX64(val, ID_AA64DFR0, BRPS) + 1;
}

static inline int hvf_arm_num_wrps(hv_vcpu_config_t config)
{
    uint64_t val;
    hv_return_t ret;
    ret = hv_vcpu_config_get_feature_reg(config, HV_FEATURE_REG_ID_AA64DFR0_EL1,
                                         &val);
    assert_hvf_ok(ret);
    return FIELD_EX64(val, ID_AA64DFR0, WRPS) + 1;
}

void hvf_arm_init_debug(void)
{
    hv_vcpu_config_t config;
    config = hv_vcpu_config_create();

    max_hw_bps = hvf_arm_num_brps(config);
    hw_breakpoints =
        g_array_sized_new(true, true, sizeof(HWBreakpoint), max_hw_bps);

    max_hw_wps = hvf_arm_num_wrps(config);
    hw_watchpoints =
        g_array_sized_new(true, true, sizeof(HWWatchpoint), max_hw_wps);
}

#define HVF_SYSREG(crn, crm, op0, op1, op2) \
        ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP, crn, crm, op0, op1, op2)

#define SYSREG_OP0_SHIFT      20
#define SYSREG_OP0_MASK       0x3
#define SYSREG_OP0(sysreg)    ((sysreg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK)
#define SYSREG_OP1_SHIFT      14
#define SYSREG_OP1_MASK       0x7
#define SYSREG_OP1(sysreg)    ((sysreg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK)
#define SYSREG_CRN_SHIFT      10
#define SYSREG_CRN_MASK       0xf
#define SYSREG_CRN(sysreg)    ((sysreg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK)
#define SYSREG_CRM_SHIFT      1
#define SYSREG_CRM_MASK       0xf
#define SYSREG_CRM(sysreg)    ((sysreg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK)
#define SYSREG_OP2_SHIFT      17
#define SYSREG_OP2_MASK       0x7
#define SYSREG_OP2(sysreg)    ((sysreg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK)

#define SYSREG(op0, op1, crn, crm, op2) \
    ((op0 << SYSREG_OP0_SHIFT) | \
     (op1 << SYSREG_OP1_SHIFT) | \
     (crn << SYSREG_CRN_SHIFT) | \
     (crm << SYSREG_CRM_SHIFT) | \
     (op2 << SYSREG_OP2_SHIFT))
#define SYSREG_MASK \
    SYSREG(SYSREG_OP0_MASK, \
           SYSREG_OP1_MASK, \
           SYSREG_CRN_MASK, \
           SYSREG_CRM_MASK, \
           SYSREG_OP2_MASK)
#define SYSREG_OSLAR_EL1      SYSREG(2, 0, 1, 0, 4)
#define SYSREG_OSLSR_EL1      SYSREG(2, 0, 1, 1, 4)
#define SYSREG_OSDLR_EL1      SYSREG(2, 0, 1, 3, 4)
#define SYSREG_CNTPCT_EL0     SYSREG(3, 3, 14, 0, 1)
#define SYSREG_CNTP_CTL_EL0   SYSREG(3, 3, 14, 2, 1)
#define SYSREG_PMCR_EL0       SYSREG(3, 3, 9, 12, 0)
#define SYSREG_PMUSERENR_EL0  SYSREG(3, 3, 9, 14, 0)
#define SYSREG_PMCNTENSET_EL0 SYSREG(3, 3, 9, 12, 1)
#define SYSREG_PMCNTENCLR_EL0 SYSREG(3, 3, 9, 12, 2)
#define SYSREG_PMINTENCLR_EL1 SYSREG(3, 0, 9, 14, 2)
#define SYSREG_PMOVSCLR_EL0   SYSREG(3, 3, 9, 12, 3)
#define SYSREG_PMSWINC_EL0    SYSREG(3, 3, 9, 12, 4)
#define SYSREG_PMSELR_EL0     SYSREG(3, 3, 9, 12, 5)
#define SYSREG_PMCEID0_EL0    SYSREG(3, 3, 9, 12, 6)
#define SYSREG_PMCEID1_EL0    SYSREG(3, 3, 9, 12, 7)
#define SYSREG_PMCCNTR_EL0    SYSREG(3, 3, 9, 13, 0)
#define SYSREG_PMCCFILTR_EL0  SYSREG(3, 3, 14, 15, 7)

#define SYSREG_ICC_AP0R0_EL1     SYSREG(3, 0, 12, 8, 4)
#define SYSREG_ICC_AP0R1_EL1     SYSREG(3, 0, 12, 8, 5)
#define SYSREG_ICC_AP0R2_EL1     SYSREG(3, 0, 12, 8, 6)
#define SYSREG_ICC_AP0R3_EL1     SYSREG(3, 0, 12, 8, 7)
#define SYSREG_ICC_AP1R0_EL1     SYSREG(3, 0, 12, 9, 0)
#define SYSREG_ICC_AP1R1_EL1     SYSREG(3, 0, 12, 9, 1)
#define SYSREG_ICC_AP1R2_EL1     SYSREG(3, 0, 12, 9, 2)
#define SYSREG_ICC_AP1R3_EL1     SYSREG(3, 0, 12, 9, 3)
#define SYSREG_ICC_ASGI1R_EL1    SYSREG(3, 0, 12, 11, 6)
#define SYSREG_ICC_BPR0_EL1      SYSREG(3, 0, 12, 8, 3)
#define SYSREG_ICC_BPR1_EL1      SYSREG(3, 0, 12, 12, 3)
#define SYSREG_ICC_CTLR_EL1      SYSREG(3, 0, 12, 12, 4)
#define SYSREG_ICC_DIR_EL1       SYSREG(3, 0, 12, 11, 1)
#define SYSREG_ICC_EOIR0_EL1     SYSREG(3, 0, 12, 8, 1)
#define SYSREG_ICC_EOIR1_EL1     SYSREG(3, 0, 12, 12, 1)
#define SYSREG_ICC_HPPIR0_EL1    SYSREG(3, 0, 12, 8, 2)
#define SYSREG_ICC_HPPIR1_EL1    SYSREG(3, 0, 12, 12, 2)
#define SYSREG_ICC_IAR0_EL1      SYSREG(3, 0, 12, 8, 0)
#define SYSREG_ICC_IAR1_EL1      SYSREG(3, 0, 12, 12, 0)
#define SYSREG_ICC_IGRPEN0_EL1   SYSREG(3, 0, 12, 12, 6)
#define SYSREG_ICC_IGRPEN1_EL1   SYSREG(3, 0, 12, 12, 7)
#define SYSREG_ICC_PMR_EL1       SYSREG(3, 0, 4, 6, 0)
#define SYSREG_ICC_RPR_EL1       SYSREG(3, 0, 12, 11, 3)
#define SYSREG_ICC_SGI0R_EL1     SYSREG(3, 0, 12, 11, 7)
#define SYSREG_ICC_SGI1R_EL1     SYSREG(3, 0, 12, 11, 5)
#define SYSREG_ICC_SRE_EL1       SYSREG(3, 0, 12, 12, 5)

#define SYSREG_MDSCR_EL1      SYSREG(2, 0, 0, 2, 2)
#define SYSREG_DBGBVR0_EL1    SYSREG(2, 0, 0, 0, 4)
#define SYSREG_DBGBCR0_EL1    SYSREG(2, 0, 0, 0, 5)
#define SYSREG_DBGWVR0_EL1    SYSREG(2, 0, 0, 0, 6)
#define SYSREG_DBGWCR0_EL1    SYSREG(2, 0, 0, 0, 7)
#define SYSREG_DBGBVR1_EL1    SYSREG(2, 0, 0, 1, 4)
#define SYSREG_DBGBCR1_EL1    SYSREG(2, 0, 0, 1, 5)
#define SYSREG_DBGWVR1_EL1    SYSREG(2, 0, 0, 1, 6)
#define SYSREG_DBGWCR1_EL1    SYSREG(2, 0, 0, 1, 7)
#define SYSREG_DBGBVR2_EL1    SYSREG(2, 0, 0, 2, 4)
#define SYSREG_DBGBCR2_EL1    SYSREG(2, 0, 0, 2, 5)
#define SYSREG_DBGWVR2_EL1    SYSREG(2, 0, 0, 2, 6)
#define SYSREG_DBGWCR2_EL1    SYSREG(2, 0, 0, 2, 7)
#define SYSREG_DBGBVR3_EL1    SYSREG(2, 0, 0, 3, 4)
#define SYSREG_DBGBCR3_EL1    SYSREG(2, 0, 0, 3, 5)
#define SYSREG_DBGWVR3_EL1    SYSREG(2, 0, 0, 3, 6)
#define SYSREG_DBGWCR3_EL1    SYSREG(2, 0, 0, 3, 7)
#define SYSREG_DBGBVR4_EL1    SYSREG(2, 0, 0, 4, 4)
#define SYSREG_DBGBCR4_EL1    SYSREG(2, 0, 0, 4, 5)
#define SYSREG_DBGWVR4_EL1    SYSREG(2, 0, 0, 4, 6)
#define SYSREG_DBGWCR4_EL1    SYSREG(2, 0, 0, 4, 7)
#define SYSREG_DBGBVR5_EL1    SYSREG(2, 0, 0, 5, 4)
#define SYSREG_DBGBCR5_EL1    SYSREG(2, 0, 0, 5, 5)
#define SYSREG_DBGWVR5_EL1    SYSREG(2, 0, 0, 5, 6)
#define SYSREG_DBGWCR5_EL1    SYSREG(2, 0, 0, 5, 7)
#define SYSREG_DBGBVR6_EL1    SYSREG(2, 0, 0, 6, 4)
#define SYSREG_DBGBCR6_EL1    SYSREG(2, 0, 0, 6, 5)
#define SYSREG_DBGWVR6_EL1    SYSREG(2, 0, 0, 6, 6)
#define SYSREG_DBGWCR6_EL1    SYSREG(2, 0, 0, 6, 7)
#define SYSREG_DBGBVR7_EL1    SYSREG(2, 0, 0, 7, 4)
#define SYSREG_DBGBCR7_EL1    SYSREG(2, 0, 0, 7, 5)
#define SYSREG_DBGWVR7_EL1    SYSREG(2, 0, 0, 7, 6)
#define SYSREG_DBGWCR7_EL1    SYSREG(2, 0, 0, 7, 7)
#define SYSREG_DBGBVR8_EL1    SYSREG(2, 0, 0, 8, 4)
#define SYSREG_DBGBCR8_EL1    SYSREG(2, 0, 0, 8, 5)
#define SYSREG_DBGWVR8_EL1    SYSREG(2, 0, 0, 8, 6)
#define SYSREG_DBGWCR8_EL1    SYSREG(2, 0, 0, 8, 7)
#define SYSREG_DBGBVR9_EL1    SYSREG(2, 0, 0, 9, 4)
#define SYSREG_DBGBCR9_EL1    SYSREG(2, 0, 0, 9, 5)
#define SYSREG_DBGWVR9_EL1    SYSREG(2, 0, 0, 9, 6)
#define SYSREG_DBGWCR9_EL1    SYSREG(2, 0, 0, 9, 7)
#define SYSREG_DBGBVR10_EL1   SYSREG(2, 0, 0, 10, 4)
#define SYSREG_DBGBCR10_EL1   SYSREG(2, 0, 0, 10, 5)
#define SYSREG_DBGWVR10_EL1   SYSREG(2, 0, 0, 10, 6)
#define SYSREG_DBGWCR10_EL1   SYSREG(2, 0, 0, 10, 7)
#define SYSREG_DBGBVR11_EL1   SYSREG(2, 0, 0, 11, 4)
#define SYSREG_DBGBCR11_EL1   SYSREG(2, 0, 0, 11, 5)
#define SYSREG_DBGWVR11_EL1   SYSREG(2, 0, 0, 11, 6)
#define SYSREG_DBGWCR11_EL1   SYSREG(2, 0, 0, 11, 7)
#define SYSREG_DBGBVR12_EL1   SYSREG(2, 0, 0, 12, 4)
#define SYSREG_DBGBCR12_EL1   SYSREG(2, 0, 0, 12, 5)
#define SYSREG_DBGWVR12_EL1   SYSREG(2, 0, 0, 12, 6)
#define SYSREG_DBGWCR12_EL1   SYSREG(2, 0, 0, 12, 7)
#define SYSREG_DBGBVR13_EL1   SYSREG(2, 0, 0, 13, 4)
#define SYSREG_DBGBCR13_EL1   SYSREG(2, 0, 0, 13, 5)
#define SYSREG_DBGWVR13_EL1   SYSREG(2, 0, 0, 13, 6)
#define SYSREG_DBGWCR13_EL1   SYSREG(2, 0, 0, 13, 7)
#define SYSREG_DBGBVR14_EL1   SYSREG(2, 0, 0, 14, 4)
#define SYSREG_DBGBCR14_EL1   SYSREG(2, 0, 0, 14, 5)
#define SYSREG_DBGWVR14_EL1   SYSREG(2, 0, 0, 14, 6)
#define SYSREG_DBGWCR14_EL1   SYSREG(2, 0, 0, 14, 7)
#define SYSREG_DBGBVR15_EL1   SYSREG(2, 0, 0, 15, 4)
#define SYSREG_DBGBCR15_EL1   SYSREG(2, 0, 0, 15, 5)
#define SYSREG_DBGWVR15_EL1   SYSREG(2, 0, 0, 15, 6)
#define SYSREG_DBGWCR15_EL1   SYSREG(2, 0, 0, 15, 7)

#define WFX_IS_WFE (1 << 0)

#define TMR_CTL_ENABLE  (1 << 0)
#define TMR_CTL_IMASK   (1 << 1)
#define TMR_CTL_ISTATUS (1 << 2)

static void hvf_wfi(CPUState *cpu);

static uint32_t chosen_ipa_bit_size;

typedef struct HVFVTimer {
    /* Vtimer value during migration and paused state */
    uint64_t vtimer_val;
} HVFVTimer;

static HVFVTimer vtimer;

typedef struct ARMHostCPUFeatures {
    ARMISARegisters isar;
    uint64_t features;
    uint64_t midr;
    uint32_t reset_sctlr;
    const char *dtb_compatible;
} ARMHostCPUFeatures;

static ARMHostCPUFeatures arm_host_cpu_features;

struct hvf_reg_match {
    int reg;
    uint64_t offset;
};

static const struct hvf_reg_match hvf_reg_match[] = {
    { HV_REG_X0,   offsetof(CPUARMState, xregs[0]) },
    { HV_REG_X1,   offsetof(CPUARMState, xregs[1]) },
    { HV_REG_X2,   offsetof(CPUARMState, xregs[2]) },
    { HV_REG_X3,   offsetof(CPUARMState, xregs[3]) },
    { HV_REG_X4,   offsetof(CPUARMState, xregs[4]) },
    { HV_REG_X5,   offsetof(CPUARMState, xregs[5]) },
    { HV_REG_X6,   offsetof(CPUARMState, xregs[6]) },
    { HV_REG_X7,   offsetof(CPUARMState, xregs[7]) },
    { HV_REG_X8,   offsetof(CPUARMState, xregs[8]) },
    { HV_REG_X9,   offsetof(CPUARMState, xregs[9]) },
    { HV_REG_X10,  offsetof(CPUARMState, xregs[10]) },
    { HV_REG_X11,  offsetof(CPUARMState, xregs[11]) },
    { HV_REG_X12,  offsetof(CPUARMState, xregs[12]) },
    { HV_REG_X13,  offsetof(CPUARMState, xregs[13]) },
    { HV_REG_X14,  offsetof(CPUARMState, xregs[14]) },
    { HV_REG_X15,  offsetof(CPUARMState, xregs[15]) },
    { HV_REG_X16,  offsetof(CPUARMState, xregs[16]) },
    { HV_REG_X17,  offsetof(CPUARMState, xregs[17]) },
    { HV_REG_X18,  offsetof(CPUARMState, xregs[18]) },
    { HV_REG_X19,  offsetof(CPUARMState, xregs[19]) },
    { HV_REG_X20,  offsetof(CPUARMState, xregs[20]) },
    { HV_REG_X21,  offsetof(CPUARMState, xregs[21]) },
    { HV_REG_X22,  offsetof(CPUARMState, xregs[22]) },
    { HV_REG_X23,  offsetof(CPUARMState, xregs[23]) },
    { HV_REG_X24,  offsetof(CPUARMState, xregs[24]) },
    { HV_REG_X25,  offsetof(CPUARMState, xregs[25]) },
    { HV_REG_X26,  offsetof(CPUARMState, xregs[26]) },
    { HV_REG_X27,  offsetof(CPUARMState, xregs[27]) },
    { HV_REG_X28,  offsetof(CPUARMState, xregs[28]) },
    { HV_REG_X29,  offsetof(CPUARMState, xregs[29]) },
    { HV_REG_X30,  offsetof(CPUARMState, xregs[30]) },
    { HV_REG_PC,   offsetof(CPUARMState, pc) },
};

static const struct hvf_reg_match hvf_fpreg_match[] = {
    { HV_SIMD_FP_REG_Q0,  offsetof(CPUARMState, vfp.zregs[0]) },
    { HV_SIMD_FP_REG_Q1,  offsetof(CPUARMState, vfp.zregs[1]) },
    { HV_SIMD_FP_REG_Q2,  offsetof(CPUARMState, vfp.zregs[2]) },
    { HV_SIMD_FP_REG_Q3,  offsetof(CPUARMState, vfp.zregs[3]) },
    { HV_SIMD_FP_REG_Q4,  offsetof(CPUARMState, vfp.zregs[4]) },
    { HV_SIMD_FP_REG_Q5,  offsetof(CPUARMState, vfp.zregs[5]) },
    { HV_SIMD_FP_REG_Q6,  offsetof(CPUARMState, vfp.zregs[6]) },
    { HV_SIMD_FP_REG_Q7,  offsetof(CPUARMState, vfp.zregs[7]) },
    { HV_SIMD_FP_REG_Q8,  offsetof(CPUARMState, vfp.zregs[8]) },
    { HV_SIMD_FP_REG_Q9,  offsetof(CPUARMState, vfp.zregs[9]) },
    { HV_SIMD_FP_REG_Q10, offsetof(CPUARMState, vfp.zregs[10]) },
    { HV_SIMD_FP_REG_Q11, offsetof(CPUARMState, vfp.zregs[11]) },
    { HV_SIMD_FP_REG_Q12, offsetof(CPUARMState, vfp.zregs[12]) },
    { HV_SIMD_FP_REG_Q13, offsetof(CPUARMState, vfp.zregs[13]) },
    { HV_SIMD_FP_REG_Q14, offsetof(CPUARMState, vfp.zregs[14]) },
    { HV_SIMD_FP_REG_Q15, offsetof(CPUARMState, vfp.zregs[15]) },
    { HV_SIMD_FP_REG_Q16, offsetof(CPUARMState, vfp.zregs[16]) },
    { HV_SIMD_FP_REG_Q17, offsetof(CPUARMState, vfp.zregs[17]) },
    { HV_SIMD_FP_REG_Q18, offsetof(CPUARMState, vfp.zregs[18]) },
    { HV_SIMD_FP_REG_Q19, offsetof(CPUARMState, vfp.zregs[19]) },
    { HV_SIMD_FP_REG_Q20, offsetof(CPUARMState, vfp.zregs[20]) },
    { HV_SIMD_FP_REG_Q21, offsetof(CPUARMState, vfp.zregs[21]) },
    { HV_SIMD_FP_REG_Q22, offsetof(CPUARMState, vfp.zregs[22]) },
    { HV_SIMD_FP_REG_Q23, offsetof(CPUARMState, vfp.zregs[23]) },
    { HV_SIMD_FP_REG_Q24, offsetof(CPUARMState, vfp.zregs[24]) },
    { HV_SIMD_FP_REG_Q25, offsetof(CPUARMState, vfp.zregs[25]) },
    { HV_SIMD_FP_REG_Q26, offsetof(CPUARMState, vfp.zregs[26]) },
    { HV_SIMD_FP_REG_Q27, offsetof(CPUARMState, vfp.zregs[27]) },
    { HV_SIMD_FP_REG_Q28, offsetof(CPUARMState, vfp.zregs[28]) },
    { HV_SIMD_FP_REG_Q29, offsetof(CPUARMState, vfp.zregs[29]) },
    { HV_SIMD_FP_REG_Q30, offsetof(CPUARMState, vfp.zregs[30]) },
    { HV_SIMD_FP_REG_Q31, offsetof(CPUARMState, vfp.zregs[31]) },
};

struct hvf_sreg_match {
    int reg;
    uint32_t key;
    uint32_t cp_idx;
};

static struct hvf_sreg_match hvf_sreg_match[] = {
    { HV_SYS_REG_DBGBVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR0_EL1, HVF_SYSREG(0, 0, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR0_EL1, HVF_SYSREG(0, 0, 2, 0, 7) },

    { HV_SYS_REG_DBGBVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR1_EL1, HVF_SYSREG(0, 1, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR1_EL1, HVF_SYSREG(0, 1, 2, 0, 7) },

    { HV_SYS_REG_DBGBVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR2_EL1, HVF_SYSREG(0, 2, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR2_EL1, HVF_SYSREG(0, 2, 2, 0, 7) },

    { HV_SYS_REG_DBGBVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR3_EL1, HVF_SYSREG(0, 3, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR3_EL1, HVF_SYSREG(0, 3, 2, 0, 7) },

    { HV_SYS_REG_DBGBVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR4_EL1, HVF_SYSREG(0, 4, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR4_EL1, HVF_SYSREG(0, 4, 2, 0, 7) },

    { HV_SYS_REG_DBGBVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR5_EL1, HVF_SYSREG(0, 5, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR5_EL1, HVF_SYSREG(0, 5, 2, 0, 7) },

    { HV_SYS_REG_DBGBVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR6_EL1, HVF_SYSREG(0, 6, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR6_EL1, HVF_SYSREG(0, 6, 2, 0, 7) },

    { HV_SYS_REG_DBGBVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR7_EL1, HVF_SYSREG(0, 7, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR7_EL1, HVF_SYSREG(0, 7, 2, 0, 7) },

    { HV_SYS_REG_DBGBVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR8_EL1, HVF_SYSREG(0, 8, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR8_EL1, HVF_SYSREG(0, 8, 2, 0, 7) },

    { HV_SYS_REG_DBGBVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR9_EL1, HVF_SYSREG(0, 9, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR9_EL1, HVF_SYSREG(0, 9, 2, 0, 7) },

    { HV_SYS_REG_DBGBVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR10_EL1, HVF_SYSREG(0, 10, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR10_EL1, HVF_SYSREG(0, 10, 2, 0, 7) },

    { HV_SYS_REG_DBGBVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR11_EL1, HVF_SYSREG(0, 11, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR11_EL1, HVF_SYSREG(0, 11, 2, 0, 7) },

    { HV_SYS_REG_DBGBVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR12_EL1, HVF_SYSREG(0, 12, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR12_EL1, HVF_SYSREG(0, 12, 2, 0, 7) },

    { HV_SYS_REG_DBGBVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR13_EL1, HVF_SYSREG(0, 13, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR13_EL1, HVF_SYSREG(0, 13, 2, 0, 7) },

    { HV_SYS_REG_DBGBVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR14_EL1, HVF_SYSREG(0, 14, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR14_EL1, HVF_SYSREG(0, 14, 2, 0, 7) },

    { HV_SYS_REG_DBGBVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 4) },
    { HV_SYS_REG_DBGBCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 5) },
    { HV_SYS_REG_DBGWVR15_EL1, HVF_SYSREG(0, 15, 2, 0, 6) },
    { HV_SYS_REG_DBGWCR15_EL1, HVF_SYSREG(0, 15, 2, 0, 7) },

#ifdef SYNC_NO_RAW_REGS
    /*
     * The registers below are manually synced on init because they are
     * marked as NO_RAW. We still list them to make number space sync easier.
     */
    { HV_SYS_REG_MDCCINT_EL1, HVF_SYSREG(0, 2, 2, 0, 0) },
    { HV_SYS_REG_MIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 0) },
    { HV_SYS_REG_MPIDR_EL1, HVF_SYSREG(0, 0, 3, 0, 5) },
    { HV_SYS_REG_ID_AA64PFR0_EL1, HVF_SYSREG(0, 4, 3, 0, 0) },
#endif
    { HV_SYS_REG_ID_AA64PFR1_EL1, HVF_SYSREG(0, 4, 3, 0, 1) },
    { HV_SYS_REG_ID_AA64DFR0_EL1, HVF_SYSREG(0, 5, 3, 0, 0) },
    { HV_SYS_REG_ID_AA64DFR1_EL1, HVF_SYSREG(0, 5, 3, 0, 1) },
    { HV_SYS_REG_ID_AA64ISAR0_EL1, HVF_SYSREG(0, 6, 3, 0, 0) },
    { HV_SYS_REG_ID_AA64ISAR1_EL1, HVF_SYSREG(0, 6, 3, 0, 1) },
#ifdef SYNC_NO_MMFR0
    /* We keep the hardware MMFR0 around. HW limits are there anyway */
    { HV_SYS_REG_ID_AA64MMFR0_EL1, HVF_SYSREG(0, 7, 3, 0, 0) },
#endif
    { HV_SYS_REG_ID_AA64MMFR1_EL1, HVF_SYSREG(0, 7, 3, 0, 1) },
    { HV_SYS_REG_ID_AA64MMFR2_EL1, HVF_SYSREG(0, 7, 3, 0, 2) },
    /* Add ID_AA64MMFR3_EL1 here when HVF supports it */

    { HV_SYS_REG_MDSCR_EL1, HVF_SYSREG(0, 2, 2, 0, 2) },
    { HV_SYS_REG_SCTLR_EL1, HVF_SYSREG(1, 0, 3, 0, 0) },
    { HV_SYS_REG_CPACR_EL1, HVF_SYSREG(1, 0, 3, 0, 2) },
    { HV_SYS_REG_TTBR0_EL1, HVF_SYSREG(2, 0, 3, 0, 0) },
    { HV_SYS_REG_TTBR1_EL1, HVF_SYSREG(2, 0, 3, 0, 1) },
    { HV_SYS_REG_TCR_EL1, HVF_SYSREG(2, 0, 3, 0, 2) },

    { HV_SYS_REG_APIAKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 0) },
    { HV_SYS_REG_APIAKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 1) },
    { HV_SYS_REG_APIBKEYLO_EL1, HVF_SYSREG(2, 1, 3, 0, 2) },
    { HV_SYS_REG_APIBKEYHI_EL1, HVF_SYSREG(2, 1, 3, 0, 3) },
    { HV_SYS_REG_APDAKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 0) },
    { HV_SYS_REG_APDAKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 1) },
    { HV_SYS_REG_APDBKEYLO_EL1, HVF_SYSREG(2, 2, 3, 0, 2) },
    { HV_SYS_REG_APDBKEYHI_EL1, HVF_SYSREG(2, 2, 3, 0, 3) },
    { HV_SYS_REG_APGAKEYLO_EL1, HVF_SYSREG(2, 3, 3, 0, 0) },
    { HV_SYS_REG_APGAKEYHI_EL1, HVF_SYSREG(2, 3, 3, 0, 1) },

    { HV_SYS_REG_SPSR_EL1, HVF_SYSREG(4, 0, 3, 0, 0) },
    { HV_SYS_REG_ELR_EL1, HVF_SYSREG(4, 0, 3, 0, 1) },
    { HV_SYS_REG_SP_EL0, HVF_SYSREG(4, 1, 3, 0, 0) },
    { HV_SYS_REG_AFSR0_EL1, HVF_SYSREG(5, 1, 3, 0, 0) },
    { HV_SYS_REG_AFSR1_EL1, HVF_SYSREG(5, 1, 3, 0, 1) },
    { HV_SYS_REG_ESR_EL1, HVF_SYSREG(5, 2, 3, 0, 0) },
    { HV_SYS_REG_FAR_EL1, HVF_SYSREG(6, 0, 3, 0, 0) },
    { HV_SYS_REG_PAR_EL1, HVF_SYSREG(7, 4, 3, 0, 0) },
    { HV_SYS_REG_MAIR_EL1, HVF_SYSREG(10, 2, 3, 0, 0) },
    { HV_SYS_REG_AMAIR_EL1, HVF_SYSREG(10, 3, 3, 0, 0) },
    { HV_SYS_REG_VBAR_EL1, HVF_SYSREG(12, 0, 3, 0, 0) },
    { HV_SYS_REG_CONTEXTIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 1) },
    { HV_SYS_REG_TPIDR_EL1, HVF_SYSREG(13, 0, 3, 0, 4) },
    { HV_SYS_REG_CNTKCTL_EL1, HVF_SYSREG(14, 1, 3, 0, 0) },
    { HV_SYS_REG_CSSELR_EL1, HVF_SYSREG(0, 0, 3, 2, 0) },
    { HV_SYS_REG_TPIDR_EL0, HVF_SYSREG(13, 0, 3, 3, 2) },
    { HV_SYS_REG_TPIDRRO_EL0, HVF_SYSREG(13, 0, 3, 3, 3) },
    { HV_SYS_REG_CNTV_CTL_EL0, HVF_SYSREG(14, 3, 3, 3, 1) },
    { HV_SYS_REG_CNTV_CVAL_EL0, HVF_SYSREG(14, 3, 3, 3, 2) },
    { HV_SYS_REG_SP_EL1, HVF_SYSREG(4, 1, 3, 4, 0) },
};

int hvf_get_registers(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    hv_return_t ret;
    uint64_t val;
    hv_simd_fp_uchar16_t fpval;
    int i;

    for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
        ret = hv_vcpu_get_reg(cpu->accel->fd, hvf_reg_match[i].reg, &val);
        *(uint64_t *)((void *)env + hvf_reg_match[i].offset) = val;
        assert_hvf_ok(ret);
    }

    for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
        ret = hv_vcpu_get_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
                                      &fpval);
        memcpy((void *)env + hvf_fpreg_match[i].offset, &fpval, sizeof(fpval));
        assert_hvf_ok(ret);
    }

    val = 0;
    ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPCR, &val);
    assert_hvf_ok(ret);
    vfp_set_fpcr(env, val);

    val = 0;
    ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_FPSR, &val);
    assert_hvf_ok(ret);
    vfp_set_fpsr(env, val);

    ret = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_CPSR, &val);
    assert_hvf_ok(ret);
    pstate_write(env, val);

    for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
        if (hvf_sreg_match[i].cp_idx == -1) {
            continue;
        }

        if (cpu->accel->guest_debug_enabled) {
            /* Handle debug registers */
            switch (hvf_sreg_match[i].reg) {
            case HV_SYS_REG_DBGBVR0_EL1:
            case HV_SYS_REG_DBGBCR0_EL1:
            case HV_SYS_REG_DBGWVR0_EL1:
            case HV_SYS_REG_DBGWCR0_EL1:
            case HV_SYS_REG_DBGBVR1_EL1:
            case HV_SYS_REG_DBGBCR1_EL1:
            case HV_SYS_REG_DBGWVR1_EL1:
            case HV_SYS_REG_DBGWCR1_EL1:
            case HV_SYS_REG_DBGBVR2_EL1:
            case HV_SYS_REG_DBGBCR2_EL1:
            case HV_SYS_REG_DBGWVR2_EL1:
            case HV_SYS_REG_DBGWCR2_EL1:
            case HV_SYS_REG_DBGBVR3_EL1:
            case HV_SYS_REG_DBGBCR3_EL1:
            case HV_SYS_REG_DBGWVR3_EL1:
            case HV_SYS_REG_DBGWCR3_EL1:
            case HV_SYS_REG_DBGBVR4_EL1:
            case HV_SYS_REG_DBGBCR4_EL1:
            case HV_SYS_REG_DBGWVR4_EL1:
            case HV_SYS_REG_DBGWCR4_EL1:
            case HV_SYS_REG_DBGBVR5_EL1:
            case HV_SYS_REG_DBGBCR5_EL1:
            case HV_SYS_REG_DBGWVR5_EL1:
            case HV_SYS_REG_DBGWCR5_EL1:
            case HV_SYS_REG_DBGBVR6_EL1:
            case HV_SYS_REG_DBGBCR6_EL1:
            case HV_SYS_REG_DBGWVR6_EL1:
            case HV_SYS_REG_DBGWCR6_EL1:
            case HV_SYS_REG_DBGBVR7_EL1:
            case HV_SYS_REG_DBGBCR7_EL1:
            case HV_SYS_REG_DBGWVR7_EL1:
            case HV_SYS_REG_DBGWCR7_EL1:
            case HV_SYS_REG_DBGBVR8_EL1:
            case HV_SYS_REG_DBGBCR8_EL1:
            case HV_SYS_REG_DBGWVR8_EL1:
            case HV_SYS_REG_DBGWCR8_EL1:
            case HV_SYS_REG_DBGBVR9_EL1:
            case HV_SYS_REG_DBGBCR9_EL1:
            case HV_SYS_REG_DBGWVR9_EL1:
            case HV_SYS_REG_DBGWCR9_EL1:
            case HV_SYS_REG_DBGBVR10_EL1:
            case HV_SYS_REG_DBGBCR10_EL1:
            case HV_SYS_REG_DBGWVR10_EL1:
            case HV_SYS_REG_DBGWCR10_EL1:
            case HV_SYS_REG_DBGBVR11_EL1:
            case HV_SYS_REG_DBGBCR11_EL1:
            case HV_SYS_REG_DBGWVR11_EL1:
            case HV_SYS_REG_DBGWCR11_EL1:
            case HV_SYS_REG_DBGBVR12_EL1:
            case HV_SYS_REG_DBGBCR12_EL1:
            case HV_SYS_REG_DBGWVR12_EL1:
            case HV_SYS_REG_DBGWCR12_EL1:
            case HV_SYS_REG_DBGBVR13_EL1:
            case HV_SYS_REG_DBGBCR13_EL1:
            case HV_SYS_REG_DBGWVR13_EL1:
            case HV_SYS_REG_DBGWCR13_EL1:
            case HV_SYS_REG_DBGBVR14_EL1:
            case HV_SYS_REG_DBGBCR14_EL1:
            case HV_SYS_REG_DBGWVR14_EL1:
            case HV_SYS_REG_DBGWCR14_EL1:
            case HV_SYS_REG_DBGBVR15_EL1:
            case HV_SYS_REG_DBGBCR15_EL1:
            case HV_SYS_REG_DBGWVR15_EL1:
            case HV_SYS_REG_DBGWCR15_EL1: {
                /*
                 * If the guest is being debugged, the vCPU's debug registers
                 * are holding the gdbstub's view of the registers (set in
                 * hvf_arch_update_guest_debug()).
                 * Since the environment is used to store only the guest's view
                 * of the registers, don't update it with the values from the
                 * vCPU but simply keep the values from the previous
                 * environment.
                 */
                const ARMCPRegInfo *ri;
                ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_sreg_match[i].key);
                val = read_raw_cp_reg(env, ri);

                arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
                continue;
            }
            }
        }

        ret = hv_vcpu_get_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, &val);
        assert_hvf_ok(ret);

        arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx] = val;
    }
    assert(write_list_to_cpustate(arm_cpu));

    aarch64_restore_sp(env, arm_current_el(env));

    return 0;
}

int hvf_put_registers(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    hv_return_t ret;
    uint64_t val;
    hv_simd_fp_uchar16_t fpval;
    int i;

    for (i = 0; i < ARRAY_SIZE(hvf_reg_match); i++) {
        val = *(uint64_t *)((void *)env + hvf_reg_match[i].offset);
        ret = hv_vcpu_set_reg(cpu->accel->fd, hvf_reg_match[i].reg, val);
        assert_hvf_ok(ret);
    }

    for (i = 0; i < ARRAY_SIZE(hvf_fpreg_match); i++) {
        memcpy(&fpval, (void *)env + hvf_fpreg_match[i].offset, sizeof(fpval));
        ret = hv_vcpu_set_simd_fp_reg(cpu->accel->fd, hvf_fpreg_match[i].reg,
                                      fpval);
        assert_hvf_ok(ret);
    }

    ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPCR, vfp_get_fpcr(env));
    assert_hvf_ok(ret);

    ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_FPSR, vfp_get_fpsr(env));
    assert_hvf_ok(ret);

    ret = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_CPSR, pstate_read(env));
    assert_hvf_ok(ret);

    aarch64_save_sp(env, arm_current_el(env));

    assert(write_cpustate_to_list(arm_cpu, false));
    for (i = 0; i < ARRAY_SIZE(hvf_sreg_match); i++) {
        if (hvf_sreg_match[i].cp_idx == -1) {
            continue;
        }

        if (cpu->accel->guest_debug_enabled) {
            /* Handle debug registers */
            switch (hvf_sreg_match[i].reg) {
            case HV_SYS_REG_DBGBVR0_EL1:
            case HV_SYS_REG_DBGBCR0_EL1:
            case HV_SYS_REG_DBGWVR0_EL1:
            case HV_SYS_REG_DBGWCR0_EL1:
            case HV_SYS_REG_DBGBVR1_EL1:
            case HV_SYS_REG_DBGBCR1_EL1:
            case HV_SYS_REG_DBGWVR1_EL1:
            case HV_SYS_REG_DBGWCR1_EL1:
            case HV_SYS_REG_DBGBVR2_EL1:
            case HV_SYS_REG_DBGBCR2_EL1:
            case HV_SYS_REG_DBGWVR2_EL1:
            case HV_SYS_REG_DBGWCR2_EL1:
            case HV_SYS_REG_DBGBVR3_EL1:
            case HV_SYS_REG_DBGBCR3_EL1:
            case HV_SYS_REG_DBGWVR3_EL1:
            case HV_SYS_REG_DBGWCR3_EL1:
            case HV_SYS_REG_DBGBVR4_EL1:
            case HV_SYS_REG_DBGBCR4_EL1:
            case HV_SYS_REG_DBGWVR4_EL1:
            case HV_SYS_REG_DBGWCR4_EL1:
            case HV_SYS_REG_DBGBVR5_EL1:
            case HV_SYS_REG_DBGBCR5_EL1:
            case HV_SYS_REG_DBGWVR5_EL1:
            case HV_SYS_REG_DBGWCR5_EL1:
            case HV_SYS_REG_DBGBVR6_EL1:
            case HV_SYS_REG_DBGBCR6_EL1:
            case HV_SYS_REG_DBGWVR6_EL1:
            case HV_SYS_REG_DBGWCR6_EL1:
            case HV_SYS_REG_DBGBVR7_EL1:
            case HV_SYS_REG_DBGBCR7_EL1:
            case HV_SYS_REG_DBGWVR7_EL1:
            case HV_SYS_REG_DBGWCR7_EL1:
            case HV_SYS_REG_DBGBVR8_EL1:
            case HV_SYS_REG_DBGBCR8_EL1:
            case HV_SYS_REG_DBGWVR8_EL1:
            case HV_SYS_REG_DBGWCR8_EL1:
            case HV_SYS_REG_DBGBVR9_EL1:
            case HV_SYS_REG_DBGBCR9_EL1:
            case HV_SYS_REG_DBGWVR9_EL1:
            case HV_SYS_REG_DBGWCR9_EL1:
            case HV_SYS_REG_DBGBVR10_EL1:
            case HV_SYS_REG_DBGBCR10_EL1:
            case HV_SYS_REG_DBGWVR10_EL1:
            case HV_SYS_REG_DBGWCR10_EL1:
            case HV_SYS_REG_DBGBVR11_EL1:
            case HV_SYS_REG_DBGBCR11_EL1:
            case HV_SYS_REG_DBGWVR11_EL1:
            case HV_SYS_REG_DBGWCR11_EL1:
            case HV_SYS_REG_DBGBVR12_EL1:
            case HV_SYS_REG_DBGBCR12_EL1:
            case HV_SYS_REG_DBGWVR12_EL1:
            case HV_SYS_REG_DBGWCR12_EL1:
            case HV_SYS_REG_DBGBVR13_EL1:
            case HV_SYS_REG_DBGBCR13_EL1:
            case HV_SYS_REG_DBGWVR13_EL1:
            case HV_SYS_REG_DBGWCR13_EL1:
            case HV_SYS_REG_DBGBVR14_EL1:
            case HV_SYS_REG_DBGBCR14_EL1:
            case HV_SYS_REG_DBGWVR14_EL1:
            case HV_SYS_REG_DBGWCR14_EL1:
            case HV_SYS_REG_DBGBVR15_EL1:
            case HV_SYS_REG_DBGBCR15_EL1:
            case HV_SYS_REG_DBGWVR15_EL1:
            case HV_SYS_REG_DBGWCR15_EL1:
                /*
                 * If the guest is being debugged, the vCPU's debug registers
                 * are already holding the gdbstub's view of the registers (set
                 * in hvf_arch_update_guest_debug()).
                 */
                continue;
            }
        }

        val = arm_cpu->cpreg_values[hvf_sreg_match[i].cp_idx];
        ret = hv_vcpu_set_sys_reg(cpu->accel->fd, hvf_sreg_match[i].reg, val);
        assert_hvf_ok(ret);
    }

    ret = hv_vcpu_set_vtimer_offset(cpu->accel->fd, hvf_state->vtimer_offset);
    assert_hvf_ok(ret);

    return 0;
}

static void flush_cpu_state(CPUState *cpu)
{
    if (cpu->accel->dirty) {
        hvf_put_registers(cpu);
        cpu->accel->dirty = false;
    }
}

static void hvf_set_reg(CPUState *cpu, int rt, uint64_t val)
{
    hv_return_t r;

    flush_cpu_state(cpu);

    if (rt < 31) {
        r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_X0 + rt, val);
        assert_hvf_ok(r);
    }
}

static uint64_t hvf_get_reg(CPUState *cpu, int rt)
{
    uint64_t val = 0;
    hv_return_t r;

    flush_cpu_state(cpu);

    if (rt < 31) {
        r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_X0 + rt, &val);
        assert_hvf_ok(r);
    }

    return val;
}

static void clamp_id_aa64mmfr0_parange_to_ipa_size(uint64_t *id_aa64mmfr0)
{
    uint32_t ipa_size = chosen_ipa_bit_size ?
            chosen_ipa_bit_size : hvf_arm_get_max_ipa_bit_size();

    /* Clamp down the PARange to the IPA size the kernel supports. */
    uint8_t index = round_down_to_parange_index(ipa_size);
    *id_aa64mmfr0 = (*id_aa64mmfr0 & ~R_ID_AA64MMFR0_PARANGE_MASK) | index;
}

static bool hvf_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
{
    ARMISARegisters host_isar = {};
    const struct isar_regs {
        int reg;
        uint64_t *val;
    } regs[] = {
        { HV_SYS_REG_ID_AA64PFR0_EL1, &host_isar.id_aa64pfr0 },
        { HV_SYS_REG_ID_AA64PFR1_EL1, &host_isar.id_aa64pfr1 },
        { HV_SYS_REG_ID_AA64DFR0_EL1, &host_isar.id_aa64dfr0 },
        { HV_SYS_REG_ID_AA64DFR1_EL1, &host_isar.id_aa64dfr1 },
        { HV_SYS_REG_ID_AA64ISAR0_EL1, &host_isar.id_aa64isar0 },
        { HV_SYS_REG_ID_AA64ISAR1_EL1, &host_isar.id_aa64isar1 },
        /* Add ID_AA64ISAR2_EL1 here when HVF supports it */
        { HV_SYS_REG_ID_AA64MMFR0_EL1, &host_isar.id_aa64mmfr0 },
        { HV_SYS_REG_ID_AA64MMFR1_EL1, &host_isar.id_aa64mmfr1 },
        { HV_SYS_REG_ID_AA64MMFR2_EL1, &host_isar.id_aa64mmfr2 },
        /* Add ID_AA64MMFR3_EL1 here when HVF supports it */
    };
    hv_vcpu_t fd;
    hv_return_t r = HV_SUCCESS;
    hv_vcpu_exit_t *exit;
    int i;

    ahcf->dtb_compatible = "arm,arm-v8";
    ahcf->features = (1ULL << ARM_FEATURE_V8) |
                     (1ULL << ARM_FEATURE_NEON) |
                     (1ULL << ARM_FEATURE_AARCH64) |
                     (1ULL << ARM_FEATURE_PMU) |
                     (1ULL << ARM_FEATURE_GENERIC_TIMER);

    /* We set up a small vcpu to extract host registers */

    if (hv_vcpu_create(&fd, &exit, NULL) != HV_SUCCESS) {
        return false;
    }

    for (i = 0; i < ARRAY_SIZE(regs); i++) {
        r |= hv_vcpu_get_sys_reg(fd, regs[i].reg, regs[i].val);
    }
    r |= hv_vcpu_get_sys_reg(fd, HV_SYS_REG_MIDR_EL1, &ahcf->midr);
    r |= hv_vcpu_destroy(fd);

    clamp_id_aa64mmfr0_parange_to_ipa_size(&host_isar.id_aa64mmfr0);

    ahcf->isar = host_isar;

    /*
     * A scratch vCPU returns SCTLR 0, so let's fill our default with the M1
     * boot SCTLR from https://github.com/AsahiLinux/m1n1/issues/97
     */
    ahcf->reset_sctlr = 0x30100180;
    /*
     * SPAN is disabled by default when SCTLR.SPAN=1. To improve compatibility,
     * let's disable it on boot and then allow guest software to turn it on by
     * setting it to 0.
     */
    ahcf->reset_sctlr |= 0x00800000;

    /* Make sure we don't advertise AArch32 support for EL0/EL1 */
    if ((host_isar.id_aa64pfr0 & 0xff) != 0x11) {
        return false;
    }

    return r == HV_SUCCESS;
}

uint32_t hvf_arm_get_default_ipa_bit_size(void)
{
    uint32_t default_ipa_size;
    hv_return_t ret = hv_vm_config_get_default_ipa_size(&default_ipa_size);
    assert_hvf_ok(ret);

    return default_ipa_size;
}

uint32_t hvf_arm_get_max_ipa_bit_size(void)
{
    uint32_t max_ipa_size;
    hv_return_t ret = hv_vm_config_get_max_ipa_size(&max_ipa_size);
    assert_hvf_ok(ret);

    /*
     * We clamp any IPA size we want to back the VM with to a valid PARange
     * value so the guest doesn't try and map memory outside of the valid range.
     * This logic just clamps the passed in IPA bit size to the first valid
     * PARange value <= to it.
     */
    return round_down_to_parange_bit_size(max_ipa_size);
}

void hvf_arm_set_cpu_features_from_host(ARMCPU *cpu)
{
    if (!arm_host_cpu_features.dtb_compatible) {
        if (!hvf_enabled() ||
            !hvf_arm_get_host_cpu_features(&arm_host_cpu_features)) {
            /*
             * We can't report this error yet, so flag that we need to
             * in arm_cpu_realizefn().
             */
            cpu->host_cpu_probe_failed = true;
            return;
        }
    }

    cpu->dtb_compatible = arm_host_cpu_features.dtb_compatible;
    cpu->isar = arm_host_cpu_features.isar;
    cpu->env.features = arm_host_cpu_features.features;
    cpu->midr = arm_host_cpu_features.midr;
    cpu->reset_sctlr = arm_host_cpu_features.reset_sctlr;
}

void hvf_arch_vcpu_destroy(CPUState *cpu)
{
}

hv_return_t hvf_arch_vm_create(MachineState *ms, uint32_t pa_range)
{
    hv_return_t ret;
    hv_vm_config_t config = hv_vm_config_create();

    ret = hv_vm_config_set_ipa_size(config, pa_range);
    if (ret != HV_SUCCESS) {
        goto cleanup;
    }
    chosen_ipa_bit_size = pa_range;

    ret = hv_vm_create(config);

cleanup:
    os_release(config);

    return ret;
}

int hvf_arch_init_vcpu(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    uint32_t sregs_match_len = ARRAY_SIZE(hvf_sreg_match);
    uint32_t sregs_cnt = 0;
    uint64_t pfr;
    hv_return_t ret;
    int i;

    env->aarch64 = true;
    asm volatile("mrs %0, cntfrq_el0" : "=r"(arm_cpu->gt_cntfrq_hz));

    /* Allocate enough space for our sysreg sync */
    arm_cpu->cpreg_indexes = g_renew(uint64_t, arm_cpu->cpreg_indexes,
                                     sregs_match_len);
    arm_cpu->cpreg_values = g_renew(uint64_t, arm_cpu->cpreg_values,
                                    sregs_match_len);
    arm_cpu->cpreg_vmstate_indexes = g_renew(uint64_t,
                                             arm_cpu->cpreg_vmstate_indexes,
                                             sregs_match_len);
    arm_cpu->cpreg_vmstate_values = g_renew(uint64_t,
                                            arm_cpu->cpreg_vmstate_values,
                                            sregs_match_len);

    memset(arm_cpu->cpreg_values, 0, sregs_match_len * sizeof(uint64_t));

    /* Populate cp list for all known sysregs */
    for (i = 0; i < sregs_match_len; i++) {
        const ARMCPRegInfo *ri;
        uint32_t key = hvf_sreg_match[i].key;

        ri = get_arm_cp_reginfo(arm_cpu->cp_regs, key);
        if (ri) {
            assert(!(ri->type & ARM_CP_NO_RAW));
            hvf_sreg_match[i].cp_idx = sregs_cnt;
            arm_cpu->cpreg_indexes[sregs_cnt++] = cpreg_to_kvm_id(key);
        } else {
            hvf_sreg_match[i].cp_idx = -1;
        }
    }
    arm_cpu->cpreg_array_len = sregs_cnt;
    arm_cpu->cpreg_vmstate_array_len = sregs_cnt;

    assert(write_cpustate_to_list(arm_cpu, false));

    /* Set CP_NO_RAW system registers on init */
    ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MIDR_EL1,
                              arm_cpu->midr);
    assert_hvf_ok(ret);

    ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_MPIDR_EL1,
                              arm_cpu->mp_affinity);
    assert_hvf_ok(ret);

    ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, &pfr);
    assert_hvf_ok(ret);
    pfr |= env->gicv3state ? (1 << 24) : 0;
    ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64PFR0_EL1, pfr);
    assert_hvf_ok(ret);

    /* We're limited to underlying hardware caps, override internal versions */
    ret = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
                              &arm_cpu->isar.id_aa64mmfr0);
    assert_hvf_ok(ret);

    clamp_id_aa64mmfr0_parange_to_ipa_size(&arm_cpu->isar.id_aa64mmfr0);
    ret = hv_vcpu_set_sys_reg(cpu->accel->fd, HV_SYS_REG_ID_AA64MMFR0_EL1,
                              arm_cpu->isar.id_aa64mmfr0);
    assert_hvf_ok(ret);

    return 0;
}

void hvf_kick_vcpu_thread(CPUState *cpu)
{
    cpus_kick_thread(cpu);
    hv_vcpus_exit(&cpu->accel->fd, 1);
}

static void hvf_raise_exception(CPUState *cpu, uint32_t excp,
                                uint32_t syndrome)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;

    cpu->exception_index = excp;
    env->exception.target_el = 1;
    env->exception.syndrome = syndrome;

    arm_cpu_do_interrupt(cpu);
}

static void hvf_psci_cpu_off(ARMCPU *arm_cpu)
{
    int32_t ret = arm_set_cpu_off(arm_cpu_mp_affinity(arm_cpu));
    assert(ret == QEMU_ARM_POWERCTL_RET_SUCCESS);
}

/*
 * Handle a PSCI call.
 *
 * Returns 0 on success
 *         -1 when the PSCI call is unknown,
 */
static bool hvf_handle_psci_call(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    uint64_t param[4] = {
        env->xregs[0],
        env->xregs[1],
        env->xregs[2],
        env->xregs[3]
    };
    uint64_t context_id, mpidr;
    bool target_aarch64 = true;
    CPUState *target_cpu_state;
    ARMCPU *target_cpu;
    target_ulong entry;
    int target_el = 1;
    int32_t ret = 0;

    trace_hvf_psci_call(param[0], param[1], param[2], param[3],
                        arm_cpu_mp_affinity(arm_cpu));

    switch (param[0]) {
    case QEMU_PSCI_0_2_FN_PSCI_VERSION:
        ret = QEMU_PSCI_VERSION_1_1;
        break;
    case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
        ret = QEMU_PSCI_0_2_RET_TOS_MIGRATION_NOT_REQUIRED; /* No trusted OS */
        break;
    case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
    case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
        mpidr = param[1];

        switch (param[2]) {
        case 0:
            target_cpu_state = arm_get_cpu_by_id(mpidr);
            if (!target_cpu_state) {
                ret = QEMU_PSCI_RET_INVALID_PARAMS;
                break;
            }
            target_cpu = ARM_CPU(target_cpu_state);

            ret = target_cpu->power_state;
            break;
        default:
            /* Everything above affinity level 0 is always on. */
            ret = 0;
        }
        break;
    case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
        qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
        /*
         * QEMU reset and shutdown are async requests, but PSCI
         * mandates that we never return from the reset/shutdown
         * call, so power the CPU off now so it doesn't execute
         * anything further.
         */
        hvf_psci_cpu_off(arm_cpu);
        break;
    case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
        qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
        hvf_psci_cpu_off(arm_cpu);
        break;
    case QEMU_PSCI_0_1_FN_CPU_ON:
    case QEMU_PSCI_0_2_FN_CPU_ON:
    case QEMU_PSCI_0_2_FN64_CPU_ON:
        mpidr = param[1];
        entry = param[2];
        context_id = param[3];
        ret = arm_set_cpu_on(mpidr, entry, context_id,
                             target_el, target_aarch64);
        break;
    case QEMU_PSCI_0_1_FN_CPU_OFF:
    case QEMU_PSCI_0_2_FN_CPU_OFF:
        hvf_psci_cpu_off(arm_cpu);
        break;
    case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
    case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
    case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
        /* Affinity levels are not supported in QEMU */
        if (param[1] & 0xfffe0000) {
            ret = QEMU_PSCI_RET_INVALID_PARAMS;
            break;
        }
        /* Powerdown is not supported, we always go into WFI */
        env->xregs[0] = 0;
        hvf_wfi(cpu);
        break;
    case QEMU_PSCI_0_1_FN_MIGRATE:
    case QEMU_PSCI_0_2_FN_MIGRATE:
        ret = QEMU_PSCI_RET_NOT_SUPPORTED;
        break;
    case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
        switch (param[1]) {
        case QEMU_PSCI_0_2_FN_PSCI_VERSION:
        case QEMU_PSCI_0_2_FN_MIGRATE_INFO_TYPE:
        case QEMU_PSCI_0_2_FN_AFFINITY_INFO:
        case QEMU_PSCI_0_2_FN64_AFFINITY_INFO:
        case QEMU_PSCI_0_2_FN_SYSTEM_RESET:
        case QEMU_PSCI_0_2_FN_SYSTEM_OFF:
        case QEMU_PSCI_0_1_FN_CPU_ON:
        case QEMU_PSCI_0_2_FN_CPU_ON:
        case QEMU_PSCI_0_2_FN64_CPU_ON:
        case QEMU_PSCI_0_1_FN_CPU_OFF:
        case QEMU_PSCI_0_2_FN_CPU_OFF:
        case QEMU_PSCI_0_1_FN_CPU_SUSPEND:
        case QEMU_PSCI_0_2_FN_CPU_SUSPEND:
        case QEMU_PSCI_0_2_FN64_CPU_SUSPEND:
        case QEMU_PSCI_1_0_FN_PSCI_FEATURES:
            ret = 0;
            break;
        case QEMU_PSCI_0_1_FN_MIGRATE:
        case QEMU_PSCI_0_2_FN_MIGRATE:
        default:
            ret = QEMU_PSCI_RET_NOT_SUPPORTED;
        }
        break;
    default:
        return false;
    }

    env->xregs[0] = ret;
    return true;
}

static bool is_id_sysreg(uint32_t reg)
{
    return SYSREG_OP0(reg) == 3 &&
           SYSREG_OP1(reg) == 0 &&
           SYSREG_CRN(reg) == 0 &&
           SYSREG_CRM(reg) >= 1 &&
           SYSREG_CRM(reg) < 8;
}

static uint32_t hvf_reg2cp_reg(uint32_t reg)
{
    return ENCODE_AA64_CP_REG(CP_REG_ARM64_SYSREG_CP,
                              (reg >> SYSREG_CRN_SHIFT) & SYSREG_CRN_MASK,
                              (reg >> SYSREG_CRM_SHIFT) & SYSREG_CRM_MASK,
                              (reg >> SYSREG_OP0_SHIFT) & SYSREG_OP0_MASK,
                              (reg >> SYSREG_OP1_SHIFT) & SYSREG_OP1_MASK,
                              (reg >> SYSREG_OP2_SHIFT) & SYSREG_OP2_MASK);
}

static bool hvf_sysreg_read_cp(CPUState *cpu, uint32_t reg, uint64_t *val)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    const ARMCPRegInfo *ri;

    ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));
    if (ri) {
        if (ri->accessfn) {
            if (ri->accessfn(env, ri, true) != CP_ACCESS_OK) {
                return false;
            }
        }
        if (ri->type & ARM_CP_CONST) {
            *val = ri->resetvalue;
        } else if (ri->readfn) {
            *val = ri->readfn(env, ri);
        } else {
            *val = CPREG_FIELD64(env, ri);
        }
        trace_hvf_vgic_read(ri->name, *val);
        return true;
    }

    return false;
}

static int hvf_sysreg_read(CPUState *cpu, uint32_t reg, uint64_t *val)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;

    if (arm_feature(env, ARM_FEATURE_PMU)) {
        switch (reg) {
        case SYSREG_PMCR_EL0:
            *val = env->cp15.c9_pmcr;
            return 0;
        case SYSREG_PMCCNTR_EL0:
            pmu_op_start(env);
            *val = env->cp15.c15_ccnt;
            pmu_op_finish(env);
            return 0;
        case SYSREG_PMCNTENCLR_EL0:
            *val = env->cp15.c9_pmcnten;
            return 0;
        case SYSREG_PMOVSCLR_EL0:
            *val = env->cp15.c9_pmovsr;
            return 0;
        case SYSREG_PMSELR_EL0:
            *val = env->cp15.c9_pmselr;
            return 0;
        case SYSREG_PMINTENCLR_EL1:
            *val = env->cp15.c9_pminten;
            return 0;
        case SYSREG_PMCCFILTR_EL0:
            *val = env->cp15.pmccfiltr_el0;
            return 0;
        case SYSREG_PMCNTENSET_EL0:
            *val = env->cp15.c9_pmcnten;
            return 0;
        case SYSREG_PMUSERENR_EL0:
            *val = env->cp15.c9_pmuserenr;
            return 0;
        case SYSREG_PMCEID0_EL0:
        case SYSREG_PMCEID1_EL0:
            /* We can't really count anything yet, declare all events invalid */
            *val = 0;
            return 0;
        }
    }

    switch (reg) {
    case SYSREG_CNTPCT_EL0:
        *val = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) /
              gt_cntfrq_period_ns(arm_cpu);
        return 0;
    case SYSREG_OSLSR_EL1:
        *val = env->cp15.oslsr_el1;
        return 0;
    case SYSREG_OSDLR_EL1:
        /* Dummy register */
        return 0;
    case SYSREG_ICC_AP0R0_EL1:
    case SYSREG_ICC_AP0R1_EL1:
    case SYSREG_ICC_AP0R2_EL1:
    case SYSREG_ICC_AP0R3_EL1:
    case SYSREG_ICC_AP1R0_EL1:
    case SYSREG_ICC_AP1R1_EL1:
    case SYSREG_ICC_AP1R2_EL1:
    case SYSREG_ICC_AP1R3_EL1:
    case SYSREG_ICC_ASGI1R_EL1:
    case SYSREG_ICC_BPR0_EL1:
    case SYSREG_ICC_BPR1_EL1:
    case SYSREG_ICC_DIR_EL1:
    case SYSREG_ICC_EOIR0_EL1:
    case SYSREG_ICC_EOIR1_EL1:
    case SYSREG_ICC_HPPIR0_EL1:
    case SYSREG_ICC_HPPIR1_EL1:
    case SYSREG_ICC_IAR0_EL1:
    case SYSREG_ICC_IAR1_EL1:
    case SYSREG_ICC_IGRPEN0_EL1:
    case SYSREG_ICC_IGRPEN1_EL1:
    case SYSREG_ICC_PMR_EL1:
    case SYSREG_ICC_SGI0R_EL1:
    case SYSREG_ICC_SGI1R_EL1:
    case SYSREG_ICC_SRE_EL1:
    case SYSREG_ICC_CTLR_EL1:
        /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
        if (hvf_sysreg_read_cp(cpu, reg, val)) {
            return 0;
        }
        break;
    case SYSREG_DBGBVR0_EL1:
    case SYSREG_DBGBVR1_EL1:
    case SYSREG_DBGBVR2_EL1:
    case SYSREG_DBGBVR3_EL1:
    case SYSREG_DBGBVR4_EL1:
    case SYSREG_DBGBVR5_EL1:
    case SYSREG_DBGBVR6_EL1:
    case SYSREG_DBGBVR7_EL1:
    case SYSREG_DBGBVR8_EL1:
    case SYSREG_DBGBVR9_EL1:
    case SYSREG_DBGBVR10_EL1:
    case SYSREG_DBGBVR11_EL1:
    case SYSREG_DBGBVR12_EL1:
    case SYSREG_DBGBVR13_EL1:
    case SYSREG_DBGBVR14_EL1:
    case SYSREG_DBGBVR15_EL1:
        *val = env->cp15.dbgbvr[SYSREG_CRM(reg)];
        return 0;
    case SYSREG_DBGBCR0_EL1:
    case SYSREG_DBGBCR1_EL1:
    case SYSREG_DBGBCR2_EL1:
    case SYSREG_DBGBCR3_EL1:
    case SYSREG_DBGBCR4_EL1:
    case SYSREG_DBGBCR5_EL1:
    case SYSREG_DBGBCR6_EL1:
    case SYSREG_DBGBCR7_EL1:
    case SYSREG_DBGBCR8_EL1:
    case SYSREG_DBGBCR9_EL1:
    case SYSREG_DBGBCR10_EL1:
    case SYSREG_DBGBCR11_EL1:
    case SYSREG_DBGBCR12_EL1:
    case SYSREG_DBGBCR13_EL1:
    case SYSREG_DBGBCR14_EL1:
    case SYSREG_DBGBCR15_EL1:
        *val = env->cp15.dbgbcr[SYSREG_CRM(reg)];
        return 0;
    case SYSREG_DBGWVR0_EL1:
    case SYSREG_DBGWVR1_EL1:
    case SYSREG_DBGWVR2_EL1:
    case SYSREG_DBGWVR3_EL1:
    case SYSREG_DBGWVR4_EL1:
    case SYSREG_DBGWVR5_EL1:
    case SYSREG_DBGWVR6_EL1:
    case SYSREG_DBGWVR7_EL1:
    case SYSREG_DBGWVR8_EL1:
    case SYSREG_DBGWVR9_EL1:
    case SYSREG_DBGWVR10_EL1:
    case SYSREG_DBGWVR11_EL1:
    case SYSREG_DBGWVR12_EL1:
    case SYSREG_DBGWVR13_EL1:
    case SYSREG_DBGWVR14_EL1:
    case SYSREG_DBGWVR15_EL1:
        *val = env->cp15.dbgwvr[SYSREG_CRM(reg)];
        return 0;
    case SYSREG_DBGWCR0_EL1:
    case SYSREG_DBGWCR1_EL1:
    case SYSREG_DBGWCR2_EL1:
    case SYSREG_DBGWCR3_EL1:
    case SYSREG_DBGWCR4_EL1:
    case SYSREG_DBGWCR5_EL1:
    case SYSREG_DBGWCR6_EL1:
    case SYSREG_DBGWCR7_EL1:
    case SYSREG_DBGWCR8_EL1:
    case SYSREG_DBGWCR9_EL1:
    case SYSREG_DBGWCR10_EL1:
    case SYSREG_DBGWCR11_EL1:
    case SYSREG_DBGWCR12_EL1:
    case SYSREG_DBGWCR13_EL1:
    case SYSREG_DBGWCR14_EL1:
    case SYSREG_DBGWCR15_EL1:
        *val = env->cp15.dbgwcr[SYSREG_CRM(reg)];
        return 0;
    default:
        if (is_id_sysreg(reg)) {
            /* ID system registers read as RES0 */
            *val = 0;
            return 0;
        }
    }

    cpu_synchronize_state(cpu);
    trace_hvf_unhandled_sysreg_read(env->pc, reg,
                                    SYSREG_OP0(reg),
                                    SYSREG_OP1(reg),
                                    SYSREG_CRN(reg),
                                    SYSREG_CRM(reg),
                                    SYSREG_OP2(reg));
    hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
    return 1;
}

static void pmu_update_irq(CPUARMState *env)
{
    ARMCPU *cpu = env_archcpu(env);
    qemu_set_irq(cpu->pmu_interrupt, (env->cp15.c9_pmcr & PMCRE) &&
            (env->cp15.c9_pminten & env->cp15.c9_pmovsr));
}

static bool pmu_event_supported(uint16_t number)
{
    return false;
}

/* Returns true if the counter (pass 31 for PMCCNTR) should count events using
 * the current EL, security state, and register configuration.
 */
static bool pmu_counter_enabled(CPUARMState *env, uint8_t counter)
{
    uint64_t filter;
    bool enabled, filtered = true;
    int el = arm_current_el(env);

    enabled = (env->cp15.c9_pmcr & PMCRE) &&
              (env->cp15.c9_pmcnten & (1 << counter));

    if (counter == 31) {
        filter = env->cp15.pmccfiltr_el0;
    } else {
        filter = env->cp15.c14_pmevtyper[counter];
    }

    if (el == 0) {
        filtered = filter & PMXEVTYPER_U;
    } else if (el == 1) {
        filtered = filter & PMXEVTYPER_P;
    }

    if (counter != 31) {
        /*
         * If not checking PMCCNTR, ensure the counter is setup to an event we
         * support
         */
        uint16_t event = filter & PMXEVTYPER_EVTCOUNT;
        if (!pmu_event_supported(event)) {
            return false;
        }
    }

    return enabled && !filtered;
}

static void pmswinc_write(CPUARMState *env, uint64_t value)
{
    unsigned int i;
    for (i = 0; i < pmu_num_counters(env); i++) {
        /* Increment a counter's count iff: */
        if ((value & (1 << i)) && /* counter's bit is set */
                /* counter is enabled and not filtered */
                pmu_counter_enabled(env, i) &&
                /* counter is SW_INCR */
                (env->cp15.c14_pmevtyper[i] & PMXEVTYPER_EVTCOUNT) == 0x0) {
            /*
             * Detect if this write causes an overflow since we can't predict
             * PMSWINC overflows like we can for other events
             */
            uint32_t new_pmswinc = env->cp15.c14_pmevcntr[i] + 1;

            if (env->cp15.c14_pmevcntr[i] & ~new_pmswinc & INT32_MIN) {
                env->cp15.c9_pmovsr |= (1 << i);
                pmu_update_irq(env);
            }

            env->cp15.c14_pmevcntr[i] = new_pmswinc;
        }
    }
}

static bool hvf_sysreg_write_cp(CPUState *cpu, uint32_t reg, uint64_t val)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    const ARMCPRegInfo *ri;

    ri = get_arm_cp_reginfo(arm_cpu->cp_regs, hvf_reg2cp_reg(reg));

    if (ri) {
        if (ri->accessfn) {
            if (ri->accessfn(env, ri, false) != CP_ACCESS_OK) {
                return false;
            }
        }
        if (ri->writefn) {
            ri->writefn(env, ri, val);
        } else {
            CPREG_FIELD64(env, ri) = val;
        }

        trace_hvf_vgic_write(ri->name, val);
        return true;
    }

    return false;
}

static int hvf_sysreg_write(CPUState *cpu, uint32_t reg, uint64_t val)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;

    trace_hvf_sysreg_write(reg,
                           SYSREG_OP0(reg),
                           SYSREG_OP1(reg),
                           SYSREG_CRN(reg),
                           SYSREG_CRM(reg),
                           SYSREG_OP2(reg),
                           val);

    if (arm_feature(env, ARM_FEATURE_PMU)) {
        switch (reg) {
        case SYSREG_PMCCNTR_EL0:
            pmu_op_start(env);
            env->cp15.c15_ccnt = val;
            pmu_op_finish(env);
            return 0;
        case SYSREG_PMCR_EL0:
            pmu_op_start(env);

            if (val & PMCRC) {
                /* The counter has been reset */
                env->cp15.c15_ccnt = 0;
            }

            if (val & PMCRP) {
                unsigned int i;
                for (i = 0; i < pmu_num_counters(env); i++) {
                    env->cp15.c14_pmevcntr[i] = 0;
                }
            }

            env->cp15.c9_pmcr &= ~PMCR_WRITABLE_MASK;
            env->cp15.c9_pmcr |= (val & PMCR_WRITABLE_MASK);

            pmu_op_finish(env);
            return 0;
        case SYSREG_PMUSERENR_EL0:
            env->cp15.c9_pmuserenr = val & 0xf;
            return 0;
        case SYSREG_PMCNTENSET_EL0:
            env->cp15.c9_pmcnten |= (val & pmu_counter_mask(env));
            return 0;
        case SYSREG_PMCNTENCLR_EL0:
            env->cp15.c9_pmcnten &= ~(val & pmu_counter_mask(env));
            return 0;
        case SYSREG_PMINTENCLR_EL1:
            pmu_op_start(env);
            env->cp15.c9_pminten |= val;
            pmu_op_finish(env);
            return 0;
        case SYSREG_PMOVSCLR_EL0:
            pmu_op_start(env);
            env->cp15.c9_pmovsr &= ~val;
            pmu_op_finish(env);
            return 0;
        case SYSREG_PMSWINC_EL0:
            pmu_op_start(env);
            pmswinc_write(env, val);
            pmu_op_finish(env);
            return 0;
        case SYSREG_PMSELR_EL0:
            env->cp15.c9_pmselr = val & 0x1f;
            return 0;
        case SYSREG_PMCCFILTR_EL0:
            pmu_op_start(env);
            env->cp15.pmccfiltr_el0 = val & PMCCFILTR_EL0;
            pmu_op_finish(env);
            return 0;
        }
    }

    switch (reg) {
    case SYSREG_OSLAR_EL1:
        env->cp15.oslsr_el1 = val & 1;
        return 0;
    case SYSREG_CNTP_CTL_EL0:
        /*
         * Guests should not rely on the physical counter, but macOS emits
         * disable writes to it. Let it do so, but ignore the requests.
         */
        qemu_log_mask(LOG_UNIMP, "Unsupported write to CNTP_CTL_EL0\n");
        return 0;
    case SYSREG_OSDLR_EL1:
        /* Dummy register */
        return 0;
    case SYSREG_ICC_AP0R0_EL1:
    case SYSREG_ICC_AP0R1_EL1:
    case SYSREG_ICC_AP0R2_EL1:
    case SYSREG_ICC_AP0R3_EL1:
    case SYSREG_ICC_AP1R0_EL1:
    case SYSREG_ICC_AP1R1_EL1:
    case SYSREG_ICC_AP1R2_EL1:
    case SYSREG_ICC_AP1R3_EL1:
    case SYSREG_ICC_ASGI1R_EL1:
    case SYSREG_ICC_BPR0_EL1:
    case SYSREG_ICC_BPR1_EL1:
    case SYSREG_ICC_CTLR_EL1:
    case SYSREG_ICC_DIR_EL1:
    case SYSREG_ICC_EOIR0_EL1:
    case SYSREG_ICC_EOIR1_EL1:
    case SYSREG_ICC_HPPIR0_EL1:
    case SYSREG_ICC_HPPIR1_EL1:
    case SYSREG_ICC_IAR0_EL1:
    case SYSREG_ICC_IAR1_EL1:
    case SYSREG_ICC_IGRPEN0_EL1:
    case SYSREG_ICC_IGRPEN1_EL1:
    case SYSREG_ICC_PMR_EL1:
    case SYSREG_ICC_SGI0R_EL1:
    case SYSREG_ICC_SGI1R_EL1:
    case SYSREG_ICC_SRE_EL1:
        /* Call the TCG sysreg handler. This is only safe for GICv3 regs. */
        if (hvf_sysreg_write_cp(cpu, reg, val)) {
            return 0;
        }
        break;
    case SYSREG_MDSCR_EL1:
        env->cp15.mdscr_el1 = val;
        return 0;
    case SYSREG_DBGBVR0_EL1:
    case SYSREG_DBGBVR1_EL1:
    case SYSREG_DBGBVR2_EL1:
    case SYSREG_DBGBVR3_EL1:
    case SYSREG_DBGBVR4_EL1:
    case SYSREG_DBGBVR5_EL1:
    case SYSREG_DBGBVR6_EL1:
    case SYSREG_DBGBVR7_EL1:
    case SYSREG_DBGBVR8_EL1:
    case SYSREG_DBGBVR9_EL1:
    case SYSREG_DBGBVR10_EL1:
    case SYSREG_DBGBVR11_EL1:
    case SYSREG_DBGBVR12_EL1:
    case SYSREG_DBGBVR13_EL1:
    case SYSREG_DBGBVR14_EL1:
    case SYSREG_DBGBVR15_EL1:
        env->cp15.dbgbvr[SYSREG_CRM(reg)] = val;
        return 0;
    case SYSREG_DBGBCR0_EL1:
    case SYSREG_DBGBCR1_EL1:
    case SYSREG_DBGBCR2_EL1:
    case SYSREG_DBGBCR3_EL1:
    case SYSREG_DBGBCR4_EL1:
    case SYSREG_DBGBCR5_EL1:
    case SYSREG_DBGBCR6_EL1:
    case SYSREG_DBGBCR7_EL1:
    case SYSREG_DBGBCR8_EL1:
    case SYSREG_DBGBCR9_EL1:
    case SYSREG_DBGBCR10_EL1:
    case SYSREG_DBGBCR11_EL1:
    case SYSREG_DBGBCR12_EL1:
    case SYSREG_DBGBCR13_EL1:
    case SYSREG_DBGBCR14_EL1:
    case SYSREG_DBGBCR15_EL1:
        env->cp15.dbgbcr[SYSREG_CRM(reg)] = val;
        return 0;
    case SYSREG_DBGWVR0_EL1:
    case SYSREG_DBGWVR1_EL1:
    case SYSREG_DBGWVR2_EL1:
    case SYSREG_DBGWVR3_EL1:
    case SYSREG_DBGWVR4_EL1:
    case SYSREG_DBGWVR5_EL1:
    case SYSREG_DBGWVR6_EL1:
    case SYSREG_DBGWVR7_EL1:
    case SYSREG_DBGWVR8_EL1:
    case SYSREG_DBGWVR9_EL1:
    case SYSREG_DBGWVR10_EL1:
    case SYSREG_DBGWVR11_EL1:
    case SYSREG_DBGWVR12_EL1:
    case SYSREG_DBGWVR13_EL1:
    case SYSREG_DBGWVR14_EL1:
    case SYSREG_DBGWVR15_EL1:
        env->cp15.dbgwvr[SYSREG_CRM(reg)] = val;
        return 0;
    case SYSREG_DBGWCR0_EL1:
    case SYSREG_DBGWCR1_EL1:
    case SYSREG_DBGWCR2_EL1:
    case SYSREG_DBGWCR3_EL1:
    case SYSREG_DBGWCR4_EL1:
    case SYSREG_DBGWCR5_EL1:
    case SYSREG_DBGWCR6_EL1:
    case SYSREG_DBGWCR7_EL1:
    case SYSREG_DBGWCR8_EL1:
    case SYSREG_DBGWCR9_EL1:
    case SYSREG_DBGWCR10_EL1:
    case SYSREG_DBGWCR11_EL1:
    case SYSREG_DBGWCR12_EL1:
    case SYSREG_DBGWCR13_EL1:
    case SYSREG_DBGWCR14_EL1:
    case SYSREG_DBGWCR15_EL1:
        env->cp15.dbgwcr[SYSREG_CRM(reg)] = val;
        return 0;
    }

    cpu_synchronize_state(cpu);
    trace_hvf_unhandled_sysreg_write(env->pc, reg,
                                     SYSREG_OP0(reg),
                                     SYSREG_OP1(reg),
                                     SYSREG_CRN(reg),
                                     SYSREG_CRM(reg),
                                     SYSREG_OP2(reg));
    hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
    return 1;
}

static int hvf_inject_interrupts(CPUState *cpu)
{
    if (cpu->interrupt_request & CPU_INTERRUPT_FIQ) {
        trace_hvf_inject_fiq();
        hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_FIQ,
                                      true);
    }

    if (cpu->interrupt_request & CPU_INTERRUPT_HARD) {
        trace_hvf_inject_irq();
        hv_vcpu_set_pending_interrupt(cpu->accel->fd, HV_INTERRUPT_TYPE_IRQ,
                                      true);
    }

    return 0;
}

static uint64_t hvf_vtimer_val_raw(void)
{
    /*
     * mach_absolute_time() returns the vtimer value without the VM
     * offset that we define. Add our own offset on top.
     */
    return mach_absolute_time() - hvf_state->vtimer_offset;
}

static uint64_t hvf_vtimer_val(void)
{
    if (!runstate_is_running()) {
        /* VM is paused, the vtimer value is in vtimer.vtimer_val */
        return vtimer.vtimer_val;
    }

    return hvf_vtimer_val_raw();
}

static void hvf_wait_for_ipi(CPUState *cpu, struct timespec *ts)
{
    /*
     * Use pselect to sleep so that other threads can IPI us while we're
     * sleeping.
     */
    qatomic_set_mb(&cpu->thread_kicked, false);
    bql_unlock();
    pselect(0, 0, 0, 0, ts, &cpu->accel->unblock_ipi_mask);
    bql_lock();
}

static void hvf_wfi(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    struct timespec ts;
    hv_return_t r;
    uint64_t ctl;
    uint64_t cval;
    int64_t ticks_to_sleep;
    uint64_t seconds;
    uint64_t nanos;
    uint32_t cntfrq;

    if (cpu->interrupt_request & (CPU_INTERRUPT_HARD | CPU_INTERRUPT_FIQ)) {
        /* Interrupt pending, no need to wait */
        return;
    }

    r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
    assert_hvf_ok(r);

    if (!(ctl & 1) || (ctl & 2)) {
        /* Timer disabled or masked, just wait for an IPI. */
        hvf_wait_for_ipi(cpu, NULL);
        return;
    }

    r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CVAL_EL0, &cval);
    assert_hvf_ok(r);

    ticks_to_sleep = cval - hvf_vtimer_val();
    if (ticks_to_sleep < 0) {
        return;
    }

    cntfrq = gt_cntfrq_period_ns(arm_cpu);
    seconds = muldiv64(ticks_to_sleep, cntfrq, NANOSECONDS_PER_SECOND);
    ticks_to_sleep -= muldiv64(seconds, NANOSECONDS_PER_SECOND, cntfrq);
    nanos = ticks_to_sleep * cntfrq;

    /*
     * Don't sleep for less than the time a context switch would take,
     * so that we can satisfy fast timer requests on the same CPU.
     * Measurements on M1 show the sweet spot to be ~2ms.
     */
    if (!seconds && nanos < (2 * SCALE_MS)) {
        return;
    }

    ts = (struct timespec) { seconds, nanos };
    hvf_wait_for_ipi(cpu, &ts);
}

static void hvf_sync_vtimer(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    hv_return_t r;
    uint64_t ctl;
    bool irq_state;

    if (!cpu->accel->vtimer_masked) {
        /* We will get notified on vtimer changes by hvf, nothing to do */
        return;
    }

    r = hv_vcpu_get_sys_reg(cpu->accel->fd, HV_SYS_REG_CNTV_CTL_EL0, &ctl);
    assert_hvf_ok(r);

    irq_state = (ctl & (TMR_CTL_ENABLE | TMR_CTL_IMASK | TMR_CTL_ISTATUS)) ==
                (TMR_CTL_ENABLE | TMR_CTL_ISTATUS);
    qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], irq_state);

    if (!irq_state) {
        /* Timer no longer asserting, we can unmask it */
        hv_vcpu_set_vtimer_mask(cpu->accel->fd, false);
        cpu->accel->vtimer_masked = false;
    }
}

int hvf_vcpu_exec(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    int ret;
    hv_vcpu_exit_t *hvf_exit = cpu->accel->exit;
    hv_return_t r;
    bool advance_pc = false;

    if (!(cpu->singlestep_enabled & SSTEP_NOIRQ) &&
        hvf_inject_interrupts(cpu)) {
        return EXCP_INTERRUPT;
    }

    if (cpu->halted) {
        return EXCP_HLT;
    }

    flush_cpu_state(cpu);

    bql_unlock();
    assert_hvf_ok(hv_vcpu_run(cpu->accel->fd));

    /* handle VMEXIT */
    uint64_t exit_reason = hvf_exit->reason;
    uint64_t syndrome = hvf_exit->exception.syndrome;
    uint32_t ec = syn_get_ec(syndrome);

    ret = 0;
    bql_lock();
    switch (exit_reason) {
    case HV_EXIT_REASON_EXCEPTION:
        /* This is the main one, handle below. */
        break;
    case HV_EXIT_REASON_VTIMER_ACTIVATED:
        qemu_set_irq(arm_cpu->gt_timer_outputs[GTIMER_VIRT], 1);
        cpu->accel->vtimer_masked = true;
        return 0;
    case HV_EXIT_REASON_CANCELED:
        /* we got kicked, no exit to process */
        return 0;
    default:
        g_assert_not_reached();
    }

    hvf_sync_vtimer(cpu);

    switch (ec) {
    case EC_SOFTWARESTEP: {
        ret = EXCP_DEBUG;

        if (!cpu->singlestep_enabled) {
            error_report("EC_SOFTWARESTEP but single-stepping not enabled");
        }
        break;
    }
    case EC_AA64_BKPT: {
        ret = EXCP_DEBUG;

        cpu_synchronize_state(cpu);

        if (!hvf_find_sw_breakpoint(cpu, env->pc)) {
            /* Re-inject into the guest */
            ret = 0;
            hvf_raise_exception(cpu, EXCP_BKPT, syn_aa64_bkpt(0));
        }
        break;
    }
    case EC_BREAKPOINT: {
        ret = EXCP_DEBUG;

        cpu_synchronize_state(cpu);

        if (!find_hw_breakpoint(cpu, env->pc)) {
            error_report("EC_BREAKPOINT but unknown hw breakpoint");
        }
        break;
    }
    case EC_WATCHPOINT: {
        ret = EXCP_DEBUG;

        cpu_synchronize_state(cpu);

        CPUWatchpoint *wp =
            find_hw_watchpoint(cpu, hvf_exit->exception.virtual_address);
        if (!wp) {
            error_report("EXCP_DEBUG but unknown hw watchpoint");
        }
        cpu->watchpoint_hit = wp;
        break;
    }
    case EC_DATAABORT: {
        bool isv = syndrome & ARM_EL_ISV;
        bool iswrite = (syndrome >> 6) & 1;
        bool s1ptw = (syndrome >> 7) & 1;
        uint32_t sas = (syndrome >> 22) & 3;
        uint32_t len = 1 << sas;
        uint32_t srt = (syndrome >> 16) & 0x1f;
        uint32_t cm = (syndrome >> 8) & 0x1;
        uint64_t val = 0;

        trace_hvf_data_abort(env->pc, hvf_exit->exception.virtual_address,
                             hvf_exit->exception.physical_address, isv,
                             iswrite, s1ptw, len, srt);

        if (cm) {
            /* We don't cache MMIO regions */
            advance_pc = true;
            break;
        }

        assert(isv);

        if (iswrite) {
            val = hvf_get_reg(cpu, srt);
            address_space_write(&address_space_memory,
                                hvf_exit->exception.physical_address,
                                MEMTXATTRS_UNSPECIFIED, &val, len);
        } else {
            address_space_read(&address_space_memory,
                               hvf_exit->exception.physical_address,
                               MEMTXATTRS_UNSPECIFIED, &val, len);
            hvf_set_reg(cpu, srt, val);
        }

        advance_pc = true;
        break;
    }
    case EC_SYSTEMREGISTERTRAP: {
        bool isread = (syndrome >> 0) & 1;
        uint32_t rt = (syndrome >> 5) & 0x1f;
        uint32_t reg = syndrome & SYSREG_MASK;
        uint64_t val;
        int sysreg_ret = 0;

        if (isread) {
            sysreg_ret = hvf_sysreg_read(cpu, reg, &val);
            if (!sysreg_ret) {
                trace_hvf_sysreg_read(reg,
                                      SYSREG_OP0(reg),
                                      SYSREG_OP1(reg),
                                      SYSREG_CRN(reg),
                                      SYSREG_CRM(reg),
                                      SYSREG_OP2(reg),
                                      val);
                hvf_set_reg(cpu, rt, val);
            }
        } else {
            val = hvf_get_reg(cpu, rt);
            sysreg_ret = hvf_sysreg_write(cpu, reg, val);
        }

        advance_pc = !sysreg_ret;
        break;
    }
    case EC_WFX_TRAP:
        advance_pc = true;
        if (!(syndrome & WFX_IS_WFE)) {
            hvf_wfi(cpu);
        }
        break;
    case EC_AA64_HVC:
        cpu_synchronize_state(cpu);
        if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_HVC) {
            if (!hvf_handle_psci_call(cpu)) {
                trace_hvf_unknown_hvc(env->xregs[0]);
                /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
                env->xregs[0] = -1;
            }
        } else {
            trace_hvf_unknown_hvc(env->xregs[0]);
            hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
        }
        break;
    case EC_AA64_SMC:
        cpu_synchronize_state(cpu);
        if (arm_cpu->psci_conduit == QEMU_PSCI_CONDUIT_SMC) {
            advance_pc = true;

            if (!hvf_handle_psci_call(cpu)) {
                trace_hvf_unknown_smc(env->xregs[0]);
                /* SMCCC 1.3 section 5.2 says every unknown SMCCC call returns -1 */
                env->xregs[0] = -1;
            }
        } else {
            trace_hvf_unknown_smc(env->xregs[0]);
            hvf_raise_exception(cpu, EXCP_UDEF, syn_uncategorized());
        }
        break;
    default:
        cpu_synchronize_state(cpu);
        trace_hvf_exit(syndrome, ec, env->pc);
        error_report("0x%llx: unhandled exception ec=0x%x", env->pc, ec);
    }

    if (advance_pc) {
        uint64_t pc;

        flush_cpu_state(cpu);

        r = hv_vcpu_get_reg(cpu->accel->fd, HV_REG_PC, &pc);
        assert_hvf_ok(r);
        pc += 4;
        r = hv_vcpu_set_reg(cpu->accel->fd, HV_REG_PC, pc);
        assert_hvf_ok(r);

        /* Handle single-stepping over instructions which trigger a VM exit */
        if (cpu->singlestep_enabled) {
            ret = EXCP_DEBUG;
        }
    }

    return ret;
}

static const VMStateDescription vmstate_hvf_vtimer = {
    .name = "hvf-vtimer",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (const VMStateField[]) {
        VMSTATE_UINT64(vtimer_val, HVFVTimer),
        VMSTATE_END_OF_LIST()
    },
};

static void hvf_vm_state_change(void *opaque, bool running, RunState state)
{
    HVFVTimer *s = opaque;

    if (running) {
        /* Update vtimer offset on all CPUs */
        hvf_state->vtimer_offset = mach_absolute_time() - s->vtimer_val;
        cpu_synchronize_all_states();
    } else {
        /* Remember vtimer value on every pause */
        s->vtimer_val = hvf_vtimer_val_raw();
    }
}

int hvf_arch_init(void)
{
    hvf_state->vtimer_offset = mach_absolute_time();
    vmstate_register(NULL, 0, &vmstate_hvf_vtimer, &vtimer);
    qemu_add_vm_change_state_handler(hvf_vm_state_change, &vtimer);

    hvf_arm_init_debug();

    return 0;
}

static const uint32_t brk_insn = 0xd4200000;

int hvf_arch_insert_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
{
    if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
        cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
        return -EINVAL;
    }
    return 0;
}

int hvf_arch_remove_sw_breakpoint(CPUState *cpu, struct hvf_sw_breakpoint *bp)
{
    static uint32_t brk;

    if (cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&brk, 4, 0) ||
        brk != brk_insn ||
        cpu_memory_rw_debug(cpu, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
        return -EINVAL;
    }
    return 0;
}

int hvf_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
{
    switch (type) {
    case GDB_BREAKPOINT_HW:
        return insert_hw_breakpoint(addr);
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_ACCESS:
        return insert_hw_watchpoint(addr, len, type);
    default:
        return -ENOSYS;
    }
}

int hvf_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
{
    switch (type) {
    case GDB_BREAKPOINT_HW:
        return delete_hw_breakpoint(addr);
    case GDB_WATCHPOINT_READ:
    case GDB_WATCHPOINT_WRITE:
    case GDB_WATCHPOINT_ACCESS:
        return delete_hw_watchpoint(addr, len, type);
    default:
        return -ENOSYS;
    }
}

void hvf_arch_remove_all_hw_breakpoints(void)
{
    if (cur_hw_wps > 0) {
        g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
    }
    if (cur_hw_bps > 0) {
        g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
    }
}

/*
 * Update the vCPU with the gdbstub's view of debug registers. This view
 * consists of all hardware breakpoints and watchpoints inserted so far while
 * debugging the guest.
 */
static void hvf_put_gdbstub_debug_registers(CPUState *cpu)
{
    hv_return_t r = HV_SUCCESS;
    int i;

    for (i = 0; i < cur_hw_bps; i++) {
        HWBreakpoint *bp = get_hw_bp(i);
        r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], bp->bcr);
        assert_hvf_ok(r);
        r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], bp->bvr);
        assert_hvf_ok(r);
    }
    for (i = cur_hw_bps; i < max_hw_bps; i++) {
        r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i], 0);
        assert_hvf_ok(r);
        r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i], 0);
        assert_hvf_ok(r);
    }

    for (i = 0; i < cur_hw_wps; i++) {
        HWWatchpoint *wp = get_hw_wp(i);
        r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], wp->wcr);
        assert_hvf_ok(r);
        r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], wp->wvr);
        assert_hvf_ok(r);
    }
    for (i = cur_hw_wps; i < max_hw_wps; i++) {
        r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i], 0);
        assert_hvf_ok(r);
        r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i], 0);
        assert_hvf_ok(r);
    }
}

/*
 * Update the vCPU with the guest's view of debug registers. This view is kept
 * in the environment at all times.
 */
static void hvf_put_guest_debug_registers(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;
    hv_return_t r = HV_SUCCESS;
    int i;

    for (i = 0; i < max_hw_bps; i++) {
        r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbcr_regs[i],
                                env->cp15.dbgbcr[i]);
        assert_hvf_ok(r);
        r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgbvr_regs[i],
                                env->cp15.dbgbvr[i]);
        assert_hvf_ok(r);
    }

    for (i = 0; i < max_hw_wps; i++) {
        r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwcr_regs[i],
                                env->cp15.dbgwcr[i]);
        assert_hvf_ok(r);
        r = hv_vcpu_set_sys_reg(cpu->accel->fd, dbgwvr_regs[i],
                                env->cp15.dbgwvr[i]);
        assert_hvf_ok(r);
    }
}

static inline bool hvf_arm_hw_debug_active(CPUState *cpu)
{
    return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
}

static void hvf_arch_set_traps(void)
{
    CPUState *cpu;
    bool should_enable_traps = false;
    hv_return_t r = HV_SUCCESS;

    /* Check whether guest debugging is enabled for at least one vCPU; if it
     * is, enable exiting the guest on all vCPUs */
    CPU_FOREACH(cpu) {
        should_enable_traps |= cpu->accel->guest_debug_enabled;
    }
    CPU_FOREACH(cpu) {
        /* Set whether debug exceptions exit the guest */
        r = hv_vcpu_set_trap_debug_exceptions(cpu->accel->fd,
                                              should_enable_traps);
        assert_hvf_ok(r);

        /* Set whether accesses to debug registers exit the guest */
        r = hv_vcpu_set_trap_debug_reg_accesses(cpu->accel->fd,
                                                should_enable_traps);
        assert_hvf_ok(r);
    }
}

void hvf_arch_update_guest_debug(CPUState *cpu)
{
    ARMCPU *arm_cpu = ARM_CPU(cpu);
    CPUARMState *env = &arm_cpu->env;

    /* Check whether guest debugging is enabled */
    cpu->accel->guest_debug_enabled = cpu->singlestep_enabled ||
                                    hvf_sw_breakpoints_active(cpu) ||
                                    hvf_arm_hw_debug_active(cpu);

    /* Update debug registers */
    if (cpu->accel->guest_debug_enabled) {
        hvf_put_gdbstub_debug_registers(cpu);
    } else {
        hvf_put_guest_debug_registers(cpu);
    }

    cpu_synchronize_state(cpu);

    /* Enable/disable single-stepping */
    if (cpu->singlestep_enabled) {
        env->cp15.mdscr_el1 =
            deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 1);
        pstate_write(env, pstate_read(env) | PSTATE_SS);
    } else {
        env->cp15.mdscr_el1 =
            deposit64(env->cp15.mdscr_el1, MDSCR_EL1_SS_SHIFT, 1, 0);
    }

    /* Enable/disable Breakpoint exceptions */
    if (hvf_arm_hw_debug_active(cpu)) {
        env->cp15.mdscr_el1 =
            deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 1);
    } else {
        env->cp15.mdscr_el1 =
            deposit64(env->cp15.mdscr_el1, MDSCR_EL1_MDE_SHIFT, 1, 0);
    }

    hvf_arch_set_traps();
}

bool hvf_arch_supports_guest_debug(void)
{
    return true;
}