aboutsummaryrefslogtreecommitdiff
path: root/target/arm/debug_helper.c
blob: dfc8b2a1a5d9b39985d240e8916f943a406f0aa8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
/*
 * ARM debug helpers.
 *
 * This code is licensed under the GNU GPL v2 or later.
 *
 * SPDX-License-Identifier: GPL-2.0-or-later
 */
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "cpu.h"
#include "internals.h"
#include "cpregs.h"
#include "exec/exec-all.h"
#include "exec/helper-proto.h"
#include "sysemu/tcg.h"

#ifdef CONFIG_TCG
/* Return the Exception Level targeted by debug exceptions. */
static int arm_debug_target_el(CPUARMState *env)
{
    bool secure = arm_is_secure(env);
    bool route_to_el2 = false;

    if (arm_is_el2_enabled(env)) {
        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
                       env->cp15.mdcr_el2 & MDCR_TDE;
    }

    if (route_to_el2) {
        return 2;
    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
               !arm_el_is_aa64(env, 3) && secure) {
        return 3;
    } else {
        return 1;
    }
}

/*
 * Raise an exception to the debug target el.
 * Modify syndrome to indicate when origin and target EL are the same.
 */
G_NORETURN static void
raise_exception_debug(CPUARMState *env, uint32_t excp, uint32_t syndrome)
{
    int debug_el = arm_debug_target_el(env);
    int cur_el = arm_current_el(env);

    /*
     * If singlestep is targeting a lower EL than the current one, then
     * DisasContext.ss_active must be false and we can never get here.
     * Similarly for watchpoint and breakpoint matches.
     */
    assert(debug_el >= cur_el);
    syndrome |= (debug_el == cur_el) << ARM_EL_EC_SHIFT;
    raise_exception(env, excp, syndrome, debug_el);
}

/* See AArch64.GenerateDebugExceptionsFrom() in ARM ARM pseudocode */
static bool aa64_generate_debug_exceptions(CPUARMState *env)
{
    int cur_el = arm_current_el(env);
    int debug_el;

    if (cur_el == 3) {
        return false;
    }

    /* MDCR_EL3.SDD disables debug events from Secure state */
    if (arm_is_secure_below_el3(env)
        && extract32(env->cp15.mdcr_el3, 16, 1)) {
        return false;
    }

    /*
     * Same EL to same EL debug exceptions need MDSCR_KDE enabled
     * while not masking the (D)ebug bit in DAIF.
     */
    debug_el = arm_debug_target_el(env);

    if (cur_el == debug_el) {
        return extract32(env->cp15.mdscr_el1, 13, 1)
            && !(env->daif & PSTATE_D);
    }

    /* Otherwise the debug target needs to be a higher EL */
    return debug_el > cur_el;
}

static bool aa32_generate_debug_exceptions(CPUARMState *env)
{
    int el = arm_current_el(env);

    if (el == 0 && arm_el_is_aa64(env, 1)) {
        return aa64_generate_debug_exceptions(env);
    }

    if (arm_is_secure(env)) {
        int spd;

        if (el == 0 && (env->cp15.sder & 1)) {
            /*
             * SDER.SUIDEN means debug exceptions from Secure EL0
             * are always enabled. Otherwise they are controlled by
             * SDCR.SPD like those from other Secure ELs.
             */
            return true;
        }

        spd = extract32(env->cp15.mdcr_el3, 14, 2);
        switch (spd) {
        case 1:
            /* SPD == 0b01 is reserved, but behaves as 0b00. */
        case 0:
            /*
             * For 0b00 we return true if external secure invasive debug
             * is enabled. On real hardware this is controlled by external
             * signals to the core. QEMU always permits debug, and behaves
             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
             */
            return true;
        case 2:
            return false;
        case 3:
            return true;
        }
    }

    return el != 2;
}

/*
 * Return true if debugging exceptions are currently enabled.
 * This corresponds to what in ARM ARM pseudocode would be
 *    if UsingAArch32() then
 *        return AArch32.GenerateDebugExceptions()
 *    else
 *        return AArch64.GenerateDebugExceptions()
 * We choose to push the if() down into this function for clarity,
 * since the pseudocode has it at all callsites except for the one in
 * CheckSoftwareStep(), where it is elided because both branches would
 * always return the same value.
 */
bool arm_generate_debug_exceptions(CPUARMState *env)
{
    if ((env->cp15.oslsr_el1 & 1) || (env->cp15.osdlr_el1 & 1)) {
        return false;
    }
    if (is_a64(env)) {
        return aa64_generate_debug_exceptions(env);
    } else {
        return aa32_generate_debug_exceptions(env);
    }
}

/*
 * Is single-stepping active? (Note that the "is EL_D AArch64?" check
 * implicitly means this always returns false in pre-v8 CPUs.)
 */
bool arm_singlestep_active(CPUARMState *env)
{
    return extract32(env->cp15.mdscr_el1, 0, 1)
        && arm_el_is_aa64(env, arm_debug_target_el(env))
        && arm_generate_debug_exceptions(env);
}

/* Return true if the linked breakpoint entry lbn passes its checks */
static bool linked_bp_matches(ARMCPU *cpu, int lbn)
{
    CPUARMState *env = &cpu->env;
    uint64_t bcr = env->cp15.dbgbcr[lbn];
    int brps = arm_num_brps(cpu);
    int ctx_cmps = arm_num_ctx_cmps(cpu);
    int bt;
    uint32_t contextidr;
    uint64_t hcr_el2;

    /*
     * Links to unimplemented or non-context aware breakpoints are
     * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
     * as if linked to an UNKNOWN context-aware breakpoint (in which
     * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
     * We choose the former.
     */
    if (lbn >= brps || lbn < (brps - ctx_cmps)) {
        return false;
    }

    bcr = env->cp15.dbgbcr[lbn];

    if (extract64(bcr, 0, 1) == 0) {
        /* Linked breakpoint disabled : generate no events */
        return false;
    }

    bt = extract64(bcr, 20, 4);
    hcr_el2 = arm_hcr_el2_eff(env);

    switch (bt) {
    case 3: /* linked context ID match */
        switch (arm_current_el(env)) {
        default:
            /* Context matches never fire in AArch64 EL3 */
            return false;
        case 2:
            if (!(hcr_el2 & HCR_E2H)) {
                /* Context matches never fire in EL2 without E2H enabled. */
                return false;
            }
            contextidr = env->cp15.contextidr_el[2];
            break;
        case 1:
            contextidr = env->cp15.contextidr_el[1];
            break;
        case 0:
            if ((hcr_el2 & (HCR_E2H | HCR_TGE)) == (HCR_E2H | HCR_TGE)) {
                contextidr = env->cp15.contextidr_el[2];
            } else {
                contextidr = env->cp15.contextidr_el[1];
            }
            break;
        }
        break;

    case 7:  /* linked contextidr_el1 match */
        contextidr = env->cp15.contextidr_el[1];
        break;
    case 13: /* linked contextidr_el2 match */
        contextidr = env->cp15.contextidr_el[2];
        break;

    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    case 15: /* linked full context ID match */
    default:
        /*
         * Links to Unlinked context breakpoints must generate no
         * events; we choose to do the same for reserved values too.
         */
        return false;
    }

    /*
     * We match the whole register even if this is AArch32 using the
     * short descriptor format (in which case it holds both PROCID and ASID),
     * since we don't implement the optional v7 context ID masking.
     */
    return contextidr == (uint32_t)env->cp15.dbgbvr[lbn];
}

static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
{
    CPUARMState *env = &cpu->env;
    uint64_t cr;
    int pac, hmc, ssc, wt, lbn;
    /*
     * Note that for watchpoints the check is against the CPU security
     * state, not the S/NS attribute on the offending data access.
     */
    bool is_secure = arm_is_secure(env);
    int access_el = arm_current_el(env);

    if (is_wp) {
        CPUWatchpoint *wp = env->cpu_watchpoint[n];

        if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
            return false;
        }
        cr = env->cp15.dbgwcr[n];
        if (wp->hitattrs.user) {
            /*
             * The LDRT/STRT/LDT/STT "unprivileged access" instructions should
             * match watchpoints as if they were accesses done at EL0, even if
             * the CPU is at EL1 or higher.
             */
            access_el = 0;
        }
    } else {
        uint64_t pc = is_a64(env) ? env->pc : env->regs[15];

        if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
            return false;
        }
        cr = env->cp15.dbgbcr[n];
    }
    /*
     * The WATCHPOINT_HIT flag guarantees us that the watchpoint is
     * enabled and that the address and access type match; for breakpoints
     * we know the address matched; check the remaining fields, including
     * linked breakpoints. We rely on WCR and BCR having the same layout
     * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
     * Note that some combinations of {PAC, HMC, SSC} are reserved and
     * must act either like some valid combination or as if the watchpoint
     * were disabled. We choose the former, and use this together with
     * the fact that EL3 must always be Secure and EL2 must always be
     * Non-Secure to simplify the code slightly compared to the full
     * table in the ARM ARM.
     */
    pac = FIELD_EX64(cr, DBGWCR, PAC);
    hmc = FIELD_EX64(cr, DBGWCR, HMC);
    ssc = FIELD_EX64(cr, DBGWCR, SSC);

    switch (ssc) {
    case 0:
        break;
    case 1:
    case 3:
        if (is_secure) {
            return false;
        }
        break;
    case 2:
        if (!is_secure) {
            return false;
        }
        break;
    }

    switch (access_el) {
    case 3:
    case 2:
        if (!hmc) {
            return false;
        }
        break;
    case 1:
        if (extract32(pac, 0, 1) == 0) {
            return false;
        }
        break;
    case 0:
        if (extract32(pac, 1, 1) == 0) {
            return false;
        }
        break;
    default:
        g_assert_not_reached();
    }

    wt = FIELD_EX64(cr, DBGWCR, WT);
    lbn = FIELD_EX64(cr, DBGWCR, LBN);

    if (wt && !linked_bp_matches(cpu, lbn)) {
        return false;
    }

    return true;
}

static bool check_watchpoints(ARMCPU *cpu)
{
    CPUARMState *env = &cpu->env;
    int n;

    /*
     * If watchpoints are disabled globally or we can't take debug
     * exceptions here then watchpoint firings are ignored.
     */
    if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
        || !arm_generate_debug_exceptions(env)) {
        return false;
    }

    for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
        if (bp_wp_matches(cpu, n, true)) {
            return true;
        }
    }
    return false;
}

bool arm_debug_check_breakpoint(CPUState *cs)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    target_ulong pc;
    int n;

    /*
     * If breakpoints are disabled globally or we can't take debug
     * exceptions here then breakpoint firings are ignored.
     */
    if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
        || !arm_generate_debug_exceptions(env)) {
        return false;
    }

    /*
     * Single-step exceptions have priority over breakpoint exceptions.
     * If single-step state is active-pending, suppress the bp.
     */
    if (arm_singlestep_active(env) && !(env->pstate & PSTATE_SS)) {
        return false;
    }

    /*
     * PC alignment faults have priority over breakpoint exceptions.
     */
    pc = is_a64(env) ? env->pc : env->regs[15];
    if ((is_a64(env) || !env->thumb) && (pc & 3) != 0) {
        return false;
    }

    /*
     * Instruction aborts have priority over breakpoint exceptions.
     * TODO: We would need to look up the page for PC and verify that
     * it is present and executable.
     */

    for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
        if (bp_wp_matches(cpu, n, false)) {
            return true;
        }
    }
    return false;
}

bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
{
    /*
     * Called by core code when a CPU watchpoint fires; need to check if this
     * is also an architectural watchpoint match.
     */
    ARMCPU *cpu = ARM_CPU(cs);

    return check_watchpoints(cpu);
}

/*
 * Return the FSR value for a debug exception (watchpoint, hardware
 * breakpoint or BKPT insn) targeting the specified exception level.
 */
static uint32_t arm_debug_exception_fsr(CPUARMState *env)
{
    ARMMMUFaultInfo fi = { .type = ARMFault_Debug };
    int target_el = arm_debug_target_el(env);
    bool using_lpae = false;

    if (target_el == 2 || arm_el_is_aa64(env, target_el)) {
        using_lpae = true;
    } else if (arm_feature(env, ARM_FEATURE_PMSA) &&
               arm_feature(env, ARM_FEATURE_V8)) {
        using_lpae = true;
    } else {
        if (arm_feature(env, ARM_FEATURE_LPAE) &&
            (env->cp15.tcr_el[target_el] & TTBCR_EAE)) {
            using_lpae = true;
        }
    }

    if (using_lpae) {
        return arm_fi_to_lfsc(&fi);
    } else {
        return arm_fi_to_sfsc(&fi);
    }
}

void arm_debug_excp_handler(CPUState *cs)
{
    /*
     * Called by core code when a watchpoint or breakpoint fires;
     * need to check which one and raise the appropriate exception.
     */
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;
    CPUWatchpoint *wp_hit = cs->watchpoint_hit;

    if (wp_hit) {
        if (wp_hit->flags & BP_CPU) {
            bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;

            cs->watchpoint_hit = NULL;

            env->exception.fsr = arm_debug_exception_fsr(env);
            env->exception.vaddress = wp_hit->hitaddr;
            raise_exception_debug(env, EXCP_DATA_ABORT,
                                  syn_watchpoint(0, 0, wnr));
        }
    } else {
        uint64_t pc = is_a64(env) ? env->pc : env->regs[15];

        /*
         * (1) GDB breakpoints should be handled first.
         * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
         * since singlestep is also done by generating a debug internal
         * exception.
         */
        if (cpu_breakpoint_test(cs, pc, BP_GDB)
            || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
            return;
        }

        env->exception.fsr = arm_debug_exception_fsr(env);
        /*
         * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
         * values to the guest that it shouldn't be able to see at its
         * exception/security level.
         */
        env->exception.vaddress = 0;
        raise_exception_debug(env, EXCP_PREFETCH_ABORT, syn_breakpoint(0));
    }
}

/*
 * Raise an EXCP_BKPT with the specified syndrome register value,
 * targeting the correct exception level for debug exceptions.
 */
void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
{
    int debug_el = arm_debug_target_el(env);
    int cur_el = arm_current_el(env);

    /* FSR will only be used if the debug target EL is AArch32. */
    env->exception.fsr = arm_debug_exception_fsr(env);
    /*
     * FAR is UNKNOWN: clear vaddress to avoid potentially exposing
     * values to the guest that it shouldn't be able to see at its
     * exception/security level.
     */
    env->exception.vaddress = 0;
    /*
     * Other kinds of architectural debug exception are ignored if
     * they target an exception level below the current one (in QEMU
     * this is checked by arm_generate_debug_exceptions()). Breakpoint
     * instructions are special because they always generate an exception
     * to somewhere: if they can't go to the configured debug exception
     * level they are taken to the current exception level.
     */
    if (debug_el < cur_el) {
        debug_el = cur_el;
    }
    raise_exception(env, EXCP_BKPT, syndrome, debug_el);
}

void HELPER(exception_swstep)(CPUARMState *env, uint32_t syndrome)
{
    raise_exception_debug(env, EXCP_UDEF, syndrome);
}

void hw_watchpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    vaddr len = 0;
    vaddr wvr = env->cp15.dbgwvr[n];
    uint64_t wcr = env->cp15.dbgwcr[n];
    int mask;
    int flags = BP_CPU | BP_STOP_BEFORE_ACCESS;

    if (env->cpu_watchpoint[n]) {
        cpu_watchpoint_remove_by_ref(CPU(cpu), env->cpu_watchpoint[n]);
        env->cpu_watchpoint[n] = NULL;
    }

    if (!FIELD_EX64(wcr, DBGWCR, E)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    switch (FIELD_EX64(wcr, DBGWCR, LSC)) {
    case 0:
        /* LSC 00 is reserved and must behave as if the wp is disabled */
        return;
    case 1:
        flags |= BP_MEM_READ;
        break;
    case 2:
        flags |= BP_MEM_WRITE;
        break;
    case 3:
        flags |= BP_MEM_ACCESS;
        break;
    }

    /*
     * Attempts to use both MASK and BAS fields simultaneously are
     * CONSTRAINED UNPREDICTABLE; we opt to ignore BAS in this case,
     * thus generating a watchpoint for every byte in the masked region.
     */
    mask = FIELD_EX64(wcr, DBGWCR, MASK);
    if (mask == 1 || mask == 2) {
        /*
         * Reserved values of MASK; we must act as if the mask value was
         * some non-reserved value, or as if the watchpoint were disabled.
         * We choose the latter.
         */
        return;
    } else if (mask) {
        /* Watchpoint covers an aligned area up to 2GB in size */
        len = 1ULL << mask;
        /*
         * If masked bits in WVR are not zero it's CONSTRAINED UNPREDICTABLE
         * whether the watchpoint fires when the unmasked bits match; we opt
         * to generate the exceptions.
         */
        wvr &= ~(len - 1);
    } else {
        /* Watchpoint covers bytes defined by the byte address select bits */
        int bas = FIELD_EX64(wcr, DBGWCR, BAS);
        int basstart;

        if (extract64(wvr, 2, 1)) {
            /*
             * Deprecated case of an only 4-aligned address. BAS[7:4] are
             * ignored, and BAS[3:0] define which bytes to watch.
             */
            bas &= 0xf;
        }

        if (bas == 0) {
            /* This must act as if the watchpoint is disabled */
            return;
        }

        /*
         * The BAS bits are supposed to be programmed to indicate a contiguous
         * range of bytes. Otherwise it is CONSTRAINED UNPREDICTABLE whether
         * we fire for each byte in the word/doubleword addressed by the WVR.
         * We choose to ignore any non-zero bits after the first range of 1s.
         */
        basstart = ctz32(bas);
        len = cto32(bas >> basstart);
        wvr += basstart;
    }

    cpu_watchpoint_insert(CPU(cpu), wvr, len, flags,
                          &env->cpu_watchpoint[n]);
}

void hw_watchpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /*
     * Completely clear out existing QEMU watchpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_watchpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_watchpoint, 0, sizeof(env->cpu_watchpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_watchpoint); i++) {
        hw_watchpoint_update(cpu, i);
    }
}

void hw_breakpoint_update(ARMCPU *cpu, int n)
{
    CPUARMState *env = &cpu->env;
    uint64_t bvr = env->cp15.dbgbvr[n];
    uint64_t bcr = env->cp15.dbgbcr[n];
    vaddr addr;
    int bt;
    int flags = BP_CPU;

    if (env->cpu_breakpoint[n]) {
        cpu_breakpoint_remove_by_ref(CPU(cpu), env->cpu_breakpoint[n]);
        env->cpu_breakpoint[n] = NULL;
    }

    if (!extract64(bcr, 0, 1)) {
        /* E bit clear : watchpoint disabled */
        return;
    }

    bt = extract64(bcr, 20, 4);

    switch (bt) {
    case 4: /* unlinked address mismatch (reserved if AArch64) */
    case 5: /* linked address mismatch (reserved if AArch64) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: address mismatch breakpoint types not implemented\n");
        return;
    case 0: /* unlinked address match */
    case 1: /* linked address match */
    {
        /*
         * Bits [1:0] are RES0.
         *
         * It is IMPLEMENTATION DEFINED whether bits [63:49]
         * ([63:53] for FEAT_LVA) are hardwired to a copy of the sign bit
         * of the VA field ([48] or [52] for FEAT_LVA), or whether the
         * value is read as written.  It is CONSTRAINED UNPREDICTABLE
         * whether the RESS bits are ignored when comparing an address.
         * Therefore we are allowed to compare the entire register, which
         * lets us avoid considering whether FEAT_LVA is actually enabled.
         *
         * The BAS field is used to allow setting breakpoints on 16-bit
         * wide instructions; it is CONSTRAINED UNPREDICTABLE whether
         * a bp will fire if the addresses covered by the bp and the addresses
         * covered by the insn overlap but the insn doesn't start at the
         * start of the bp address range. We choose to require the insn and
         * the bp to have the same address. The constraints on writing to
         * BAS enforced in dbgbcr_write mean we have only four cases:
         *  0b0000  => no breakpoint
         *  0b0011  => breakpoint on addr
         *  0b1100  => breakpoint on addr + 2
         *  0b1111  => breakpoint on addr
         * See also figure D2-3 in the v8 ARM ARM (DDI0487A.c).
         */
        int bas = extract64(bcr, 5, 4);
        addr = bvr & ~3ULL;
        if (bas == 0) {
            return;
        }
        if (bas == 0xc) {
            addr += 2;
        }
        break;
    }
    case 2: /* unlinked context ID match */
    case 8: /* unlinked VMID match (reserved if no EL2) */
    case 10: /* unlinked context ID and VMID match (reserved if no EL2) */
        qemu_log_mask(LOG_UNIMP,
                      "arm: unlinked context breakpoint types not implemented\n");
        return;
    case 9: /* linked VMID match (reserved if no EL2) */
    case 11: /* linked context ID and VMID match (reserved if no EL2) */
    case 3: /* linked context ID match */
    default:
        /*
         * We must generate no events for Linked context matches (unless
         * they are linked to by some other bp/wp, which is handled in
         * updates for the linking bp/wp). We choose to also generate no events
         * for reserved values.
         */
        return;
    }

    cpu_breakpoint_insert(CPU(cpu), addr, flags, &env->cpu_breakpoint[n]);
}

void hw_breakpoint_update_all(ARMCPU *cpu)
{
    int i;
    CPUARMState *env = &cpu->env;

    /*
     * Completely clear out existing QEMU breakpoints and our array, to
     * avoid possible stale entries following migration load.
     */
    cpu_breakpoint_remove_all(CPU(cpu), BP_CPU);
    memset(env->cpu_breakpoint, 0, sizeof(env->cpu_breakpoint));

    for (i = 0; i < ARRAY_SIZE(cpu->env.cpu_breakpoint); i++) {
        hw_breakpoint_update(cpu, i);
    }
}

#if !defined(CONFIG_USER_ONLY)

vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
{
    ARMCPU *cpu = ARM_CPU(cs);
    CPUARMState *env = &cpu->env;

    /*
     * In BE32 system mode, target memory is stored byteswapped (on a
     * little-endian host system), and by the time we reach here (via an
     * opcode helper) the addresses of subword accesses have been adjusted
     * to account for that, which means that watchpoints will not match.
     * Undo the adjustment here.
     */
    if (arm_sctlr_b(env)) {
        if (len == 1) {
            addr ^= 3;
        } else if (len == 2) {
            addr ^= 2;
        }
    }

    return addr;
}

#endif /* !CONFIG_USER_ONLY */
#endif /* CONFIG_TCG */

/*
 * Check for traps to "powerdown debug" registers, which are controlled
 * by MDCR.TDOSA
 */
static CPAccessResult access_tdosa(CPUARMState *env, const ARMCPRegInfo *ri,
                                   bool isread)
{
    int el = arm_current_el(env);
    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
    bool mdcr_el2_tdosa = (mdcr_el2 & MDCR_TDOSA) || (mdcr_el2 & MDCR_TDE) ||
        (arm_hcr_el2_eff(env) & HCR_TGE);

    if (el < 2 && mdcr_el2_tdosa) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDOSA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

/*
 * Check for traps to "debug ROM" registers, which are controlled
 * by MDCR_EL2.TDRA for EL2 but by the more general MDCR_EL3.TDA for EL3.
 */
static CPAccessResult access_tdra(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    int el = arm_current_el(env);
    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
    bool mdcr_el2_tdra = (mdcr_el2 & MDCR_TDRA) || (mdcr_el2 & MDCR_TDE) ||
        (arm_hcr_el2_eff(env) & HCR_TGE);

    if (el < 2 && mdcr_el2_tdra) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

/*
 * Check for traps to general debug registers, which are controlled
 * by MDCR_EL2.TDA for EL2 and MDCR_EL3.TDA for EL3.
 */
static CPAccessResult access_tda(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    int el = arm_current_el(env);
    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
    bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
        (arm_hcr_el2_eff(env) & HCR_TGE);

    if (el < 2 && mdcr_el2_tda) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && (env->cp15.mdcr_el3 & MDCR_TDA)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

/*
 * Check for traps to Debug Comms Channel registers. If FEAT_FGT
 * is implemented then these are controlled by MDCR_EL2.TDCC for
 * EL2 and MDCR_EL3.TDCC for EL3. They are also controlled by
 * the general debug access trap bits MDCR_EL2.TDA and MDCR_EL3.TDA.
 */
static CPAccessResult access_tdcc(CPUARMState *env, const ARMCPRegInfo *ri,
                                  bool isread)
{
    int el = arm_current_el(env);
    uint64_t mdcr_el2 = arm_mdcr_el2_eff(env);
    bool mdcr_el2_tda = (mdcr_el2 & MDCR_TDA) || (mdcr_el2 & MDCR_TDE) ||
        (arm_hcr_el2_eff(env) & HCR_TGE);
    bool mdcr_el2_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
                                          (mdcr_el2 & MDCR_TDCC);
    bool mdcr_el3_tdcc = cpu_isar_feature(aa64_fgt, env_archcpu(env)) &&
                                          (env->cp15.mdcr_el3 & MDCR_TDCC);

    if (el < 2 && (mdcr_el2_tda || mdcr_el2_tdcc)) {
        return CP_ACCESS_TRAP_EL2;
    }
    if (el < 3 && ((env->cp15.mdcr_el3 & MDCR_TDA) || mdcr_el3_tdcc)) {
        return CP_ACCESS_TRAP_EL3;
    }
    return CP_ACCESS_OK;
}

static void oslar_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    /*
     * Writes to OSLAR_EL1 may update the OS lock status, which can be
     * read via a bit in OSLSR_EL1.
     */
    int oslock;

    if (ri->state == ARM_CP_STATE_AA32) {
        oslock = (value == 0xC5ACCE55);
    } else {
        oslock = value & 1;
    }

    env->cp15.oslsr_el1 = deposit32(env->cp15.oslsr_el1, 1, 1, oslock);
}

static void osdlr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                        uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    /*
     * Only defined bit is bit 0 (DLK); if Feat_DoubleLock is not
     * implemented this is RAZ/WI.
     */
    if(arm_feature(env, ARM_FEATURE_AARCH64)
       ? cpu_isar_feature(aa64_doublelock, cpu)
       : cpu_isar_feature(aa32_doublelock, cpu)) {
        env->cp15.osdlr_el1 = value & 1;
    }
}

static void dbgclaimset_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    env->cp15.dbgclaim |= (value & 0xFF);
}

static uint64_t dbgclaimset_read(CPUARMState *env, const ARMCPRegInfo *ri)
{
    /* CLAIM bits are RAO */
    return 0xFF;
}

static void dbgclaimclr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                              uint64_t value)
{
    env->cp15.dbgclaim &= ~(value & 0xFF);
}

static const ARMCPRegInfo debug_cp_reginfo[] = {
    /*
     * DBGDRAR, DBGDSAR: always RAZ since we don't implement memory mapped
     * debug components. The AArch64 version of DBGDRAR is named MDRAR_EL1;
     * unlike DBGDRAR it is never accessible from EL0.
     * DBGDSAR is deprecated and must RAZ from v8 anyway, so it has no AArch64
     * accessor.
     */
    { .name = "DBGDRAR", .cp = 14, .crn = 1, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "MDRAR_EL1", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 0,
      .access = PL1_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crn = 2, .crm = 0, .opc1 = 0, .opc2 = 0,
      .access = PL0_R, .accessfn = access_tdra,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    /* Monitor debug system control register; the 32-bit alias is DBGDSCRext. */
    { .name = "MDSCR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_tda,
      .fgt = FGT_MDSCR_EL1,
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1),
      .resetvalue = 0 },
    /*
     * MDCCSR_EL0[30:29] map to EDSCR[30:29].  Simply RAZ as the external
     * Debug Communication Channel is not implemented.
     */
    { .name = "MDCCSR_EL0", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 3, .crn = 0, .crm = 1, .opc2 = 0,
      .access = PL0_R, .accessfn = access_tdcc,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    /*
     * OSDTRRX_EL1/OSDTRTX_EL1 are used for save and restore of DBGDTRRX_EL0.
     * It is a component of the Debug Communications Channel, which is not implemented.
     */
    { .name = "OSDTRRX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
      .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 0, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_tdcc,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    { .name = "OSDTRTX_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
      .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 3, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_tdcc,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    /*
     * OSECCR_EL1 provides a mechanism for an operating system
     * to access the contents of EDECCR. EDECCR is not implemented though,
     * as is the rest of external device mechanism.
     */
    { .name = "OSECCR_EL1", .state = ARM_CP_STATE_BOTH, .cp = 14,
      .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 6, .opc2 = 2,
      .access = PL1_RW, .accessfn = access_tda,
      .fgt = FGT_OSECCR_EL1,
      .type = ARM_CP_CONST, .resetvalue = 0 },
    /*
     * DBGDSCRint[15,12,5:2] map to MDSCR_EL1[15,12,5:2].  Map all bits as
     * it is unlikely a guest will care.
     * We don't implement the configurable EL0 access.
     */
    { .name = "DBGDSCRint", .state = ARM_CP_STATE_AA32,
      .cp = 14, .opc1 = 0, .crn = 0, .crm = 1, .opc2 = 0,
      .type = ARM_CP_ALIAS,
      .access = PL1_R, .accessfn = access_tda,
      .fieldoffset = offsetof(CPUARMState, cp15.mdscr_el1), },
    { .name = "OSLAR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 0, .opc2 = 4,
      .access = PL1_W, .type = ARM_CP_NO_RAW,
      .accessfn = access_tdosa,
      .fgt = FGT_OSLAR_EL1,
      .writefn = oslar_write },
    { .name = "OSLSR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 1, .opc2 = 4,
      .access = PL1_R, .resetvalue = 10,
      .accessfn = access_tdosa,
      .fgt = FGT_OSLSR_EL1,
      .fieldoffset = offsetof(CPUARMState, cp15.oslsr_el1) },
    /* Dummy OSDLR_EL1: 32-bit Linux will read this */
    { .name = "OSDLR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 1, .crm = 3, .opc2 = 4,
      .access = PL1_RW, .accessfn = access_tdosa,
      .fgt = FGT_OSDLR_EL1,
      .writefn = osdlr_write,
      .fieldoffset = offsetof(CPUARMState, cp15.osdlr_el1) },
    /*
     * Dummy DBGVCR: Linux wants to clear this on startup, but we don't
     * implement vector catch debug events yet.
     */
    { .name = "DBGVCR",
      .cp = 14, .opc1 = 0, .crn = 0, .crm = 7, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP },
    /*
     * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
     * to save and restore a 32-bit guest's DBGVCR)
     */
    { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
      .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
      .access = PL2_RW, .accessfn = access_tda,
      .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
    /*
     * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
     * Channel but Linux may try to access this register. The 32-bit
     * alias is DBGDCCINT.
     */
    { .name = "MDCCINT_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = 2, .opc2 = 0,
      .access = PL1_RW, .accessfn = access_tdcc,
      .type = ARM_CP_NOP },
    /*
     * Dummy DBGCLAIM registers.
     * "The architecture does not define any functionality for the CLAIM tag bits.",
     * so we only keep the raw bits
     */
    { .name = "DBGCLAIMSET_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 8, .opc2 = 6,
      .type = ARM_CP_ALIAS,
      .access = PL1_RW, .accessfn = access_tda,
      .fgt = FGT_DBGCLAIM,
      .writefn = dbgclaimset_write, .readfn = dbgclaimset_read },
    { .name = "DBGCLAIMCLR_EL1", .state = ARM_CP_STATE_BOTH,
      .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 7, .crm = 9, .opc2 = 6,
      .access = PL1_RW, .accessfn = access_tda,
      .fgt = FGT_DBGCLAIM,
      .writefn = dbgclaimclr_write, .raw_writefn = raw_write,
      .fieldoffset = offsetof(CPUARMState, cp15.dbgclaim) },
};

static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
    /* 64 bit access versions of the (dummy) debug registers */
    { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
    { .name = "DBGDSAR", .cp = 14, .crm = 2, .opc1 = 0,
      .access = PL0_R, .type = ARM_CP_CONST | ARM_CP_64BIT, .resetvalue = 0 },
};

static void dbgwvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    int i = ri->crm;

    /*
     * Bits [1:0] are RES0.
     *
     * It is IMPLEMENTATION DEFINED whether [63:49] ([63:53] with FEAT_LVA)
     * are hardwired to the value of bit [48] ([52] with FEAT_LVA), or if
     * they contain the value written.  It is CONSTRAINED UNPREDICTABLE
     * whether the RESS bits are ignored when comparing an address.
     *
     * Therefore we are allowed to compare the entire register, which lets
     * us avoid considering whether or not FEAT_LVA is actually enabled.
     */
    value &= ~3ULL;

    raw_write(env, ri, value);
    if (tcg_enabled()) {
        hw_watchpoint_update(cpu, i);
    }
}

static void dbgwcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    if (tcg_enabled()) {
        hw_watchpoint_update(cpu, i);
    }
}

static void dbgbvr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    int i = ri->crm;

    raw_write(env, ri, value);
    if (tcg_enabled()) {
        hw_breakpoint_update(cpu, i);
    }
}

static void dbgbcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
                         uint64_t value)
{
    ARMCPU *cpu = env_archcpu(env);
    int i = ri->crm;

    /*
     * BAS[3] is a read-only copy of BAS[2], and BAS[1] a read-only
     * copy of BAS[0].
     */
    value = deposit64(value, 6, 1, extract64(value, 5, 1));
    value = deposit64(value, 8, 1, extract64(value, 7, 1));

    raw_write(env, ri, value);
    if (tcg_enabled()) {
        hw_breakpoint_update(cpu, i);
    }
}

void define_debug_regs(ARMCPU *cpu)
{
    /*
     * Define v7 and v8 architectural debug registers.
     * These are just dummy implementations for now.
     */
    int i;
    int wrps, brps, ctx_cmps;

    /*
     * The Arm ARM says DBGDIDR is optional and deprecated if EL1 cannot
     * use AArch32.  Given that bit 15 is RES1, if the value is 0 then
     * the register must not exist for this cpu.
     */
    if (cpu->isar.dbgdidr != 0) {
        ARMCPRegInfo dbgdidr = {
            .name = "DBGDIDR", .cp = 14, .crn = 0, .crm = 0,
            .opc1 = 0, .opc2 = 0,
            .access = PL0_R, .accessfn = access_tda,
            .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdidr,
        };
        define_one_arm_cp_reg(cpu, &dbgdidr);
    }

    /*
     * DBGDEVID is present in the v7 debug architecture if
     * DBGDIDR.DEVID_imp is 1 (bit 15); from v7.1 and on it is
     * mandatory (and bit 15 is RES1). DBGDEVID1 and DBGDEVID2 exist
     * from v7.1 of the debug architecture. Because no fields have yet
     * been defined in DBGDEVID2 (and quite possibly none will ever
     * be) we don't define an ARMISARegisters field for it.
     * These registers exist only if EL1 can use AArch32, but that
     * happens naturally because they are only PL1 accessible anyway.
     */
    if (extract32(cpu->isar.dbgdidr, 15, 1)) {
        ARMCPRegInfo dbgdevid = {
            .name = "DBGDEVID",
            .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 2, .crn = 7,
            .access = PL1_R, .accessfn = access_tda,
            .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid,
        };
        define_one_arm_cp_reg(cpu, &dbgdevid);
    }
    if (cpu_isar_feature(aa32_debugv7p1, cpu)) {
        ARMCPRegInfo dbgdevid12[] = {
            {
                .name = "DBGDEVID1",
                .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 1, .crn = 7,
                .access = PL1_R, .accessfn = access_tda,
                .type = ARM_CP_CONST, .resetvalue = cpu->isar.dbgdevid1,
            }, {
                .name = "DBGDEVID2",
                .cp = 14, .opc1 = 0, .crn = 7, .opc2 = 0, .crn = 7,
                .access = PL1_R, .accessfn = access_tda,
                .type = ARM_CP_CONST, .resetvalue = 0,
            },
        };
        define_arm_cp_regs(cpu, dbgdevid12);
    }

    brps = arm_num_brps(cpu);
    wrps = arm_num_wrps(cpu);
    ctx_cmps = arm_num_ctx_cmps(cpu);

    assert(ctx_cmps <= brps);

    define_arm_cp_regs(cpu, debug_cp_reginfo);

    if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
        define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
    }

    for (i = 0; i < brps; i++) {
        char *dbgbvr_el1_name = g_strdup_printf("DBGBVR%d_EL1", i);
        char *dbgbcr_el1_name = g_strdup_printf("DBGBCR%d_EL1", i);
        ARMCPRegInfo dbgregs[] = {
            { .name = dbgbvr_el1_name, .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 4,
              .access = PL1_RW, .accessfn = access_tda,
              .fgt = FGT_DBGBVRN_EL1,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbvr[i]),
              .writefn = dbgbvr_write, .raw_writefn = raw_write
            },
            { .name = dbgbcr_el1_name, .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 5,
              .access = PL1_RW, .accessfn = access_tda,
              .fgt = FGT_DBGBCRN_EL1,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgbcr[i]),
              .writefn = dbgbcr_write, .raw_writefn = raw_write
            },
        };
        define_arm_cp_regs(cpu, dbgregs);
        g_free(dbgbvr_el1_name);
        g_free(dbgbcr_el1_name);
    }

    for (i = 0; i < wrps; i++) {
        char *dbgwvr_el1_name = g_strdup_printf("DBGWVR%d_EL1", i);
        char *dbgwcr_el1_name = g_strdup_printf("DBGWCR%d_EL1", i);
        ARMCPRegInfo dbgregs[] = {
            { .name = dbgwvr_el1_name, .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 6,
              .access = PL1_RW, .accessfn = access_tda,
              .fgt = FGT_DBGWVRN_EL1,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwvr[i]),
              .writefn = dbgwvr_write, .raw_writefn = raw_write
            },
            { .name = dbgwcr_el1_name, .state = ARM_CP_STATE_BOTH,
              .cp = 14, .opc0 = 2, .opc1 = 0, .crn = 0, .crm = i, .opc2 = 7,
              .access = PL1_RW, .accessfn = access_tda,
              .fgt = FGT_DBGWCRN_EL1,
              .fieldoffset = offsetof(CPUARMState, cp15.dbgwcr[i]),
              .writefn = dbgwcr_write, .raw_writefn = raw_write
            },
        };
        define_arm_cp_regs(cpu, dbgregs);
        g_free(dbgwvr_el1_name);
        g_free(dbgwcr_el1_name);
    }
}