1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
|
/*
* QEMU ARM CPU
*
* Copyright (c) 2012 SUSE LINUX Products GmbH
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see
* <http://www.gnu.org/licenses/gpl-2.0.html>
*/
#include "qemu/osdep.h"
#include "qemu/qemu-print.h"
#include "qemu/timer.h"
#include "qemu/log.h"
#include "exec/page-vary.h"
#include "target/arm/idau.h"
#include "qemu/module.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "cpu.h"
#ifdef CONFIG_TCG
#include "hw/core/tcg-cpu-ops.h"
#endif /* CONFIG_TCG */
#include "internals.h"
#include "exec/exec-all.h"
#include "hw/qdev-properties.h"
#if !defined(CONFIG_USER_ONLY)
#include "hw/loader.h"
#include "hw/boards.h"
#endif
#include "sysemu/tcg.h"
#include "sysemu/hw_accel.h"
#include "kvm_arm.h"
#include "disas/capstone.h"
#include "fpu/softfloat.h"
#include "cpregs.h"
static void arm_cpu_set_pc(CPUState *cs, vaddr value)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (is_a64(env)) {
env->pc = value;
env->thumb = false;
} else {
env->regs[15] = value & ~1;
env->thumb = value & 1;
}
}
#ifdef CONFIG_TCG
void arm_cpu_synchronize_from_tb(CPUState *cs,
const TranslationBlock *tb)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/*
* It's OK to look at env for the current mode here, because it's
* never possible for an AArch64 TB to chain to an AArch32 TB.
*/
if (is_a64(env)) {
env->pc = tb->pc;
} else {
env->regs[15] = tb->pc;
}
}
#endif /* CONFIG_TCG */
static bool arm_cpu_has_work(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
return (cpu->power_state != PSCI_OFF)
&& cs->interrupt_request &
(CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD
| CPU_INTERRUPT_VFIQ | CPU_INTERRUPT_VIRQ | CPU_INTERRUPT_VSERR
| CPU_INTERRUPT_EXITTB);
}
void arm_register_pre_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
void *opaque)
{
ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
entry->hook = hook;
entry->opaque = opaque;
QLIST_INSERT_HEAD(&cpu->pre_el_change_hooks, entry, node);
}
void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHookFn *hook,
void *opaque)
{
ARMELChangeHook *entry = g_new0(ARMELChangeHook, 1);
entry->hook = hook;
entry->opaque = opaque;
QLIST_INSERT_HEAD(&cpu->el_change_hooks, entry, node);
}
static void cp_reg_reset(gpointer key, gpointer value, gpointer opaque)
{
/* Reset a single ARMCPRegInfo register */
ARMCPRegInfo *ri = value;
ARMCPU *cpu = opaque;
if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS)) {
return;
}
if (ri->resetfn) {
ri->resetfn(&cpu->env, ri);
return;
}
/* A zero offset is never possible as it would be regs[0]
* so we use it to indicate that reset is being handled elsewhere.
* This is basically only used for fields in non-core coprocessors
* (like the pxa2xx ones).
*/
if (!ri->fieldoffset) {
return;
}
if (cpreg_field_is_64bit(ri)) {
CPREG_FIELD64(&cpu->env, ri) = ri->resetvalue;
} else {
CPREG_FIELD32(&cpu->env, ri) = ri->resetvalue;
}
}
static void cp_reg_check_reset(gpointer key, gpointer value, gpointer opaque)
{
/* Purely an assertion check: we've already done reset once,
* so now check that running the reset for the cpreg doesn't
* change its value. This traps bugs where two different cpregs
* both try to reset the same state field but to different values.
*/
ARMCPRegInfo *ri = value;
ARMCPU *cpu = opaque;
uint64_t oldvalue, newvalue;
if (ri->type & (ARM_CP_SPECIAL_MASK | ARM_CP_ALIAS | ARM_CP_NO_RAW)) {
return;
}
oldvalue = read_raw_cp_reg(&cpu->env, ri);
cp_reg_reset(key, value, opaque);
newvalue = read_raw_cp_reg(&cpu->env, ri);
assert(oldvalue == newvalue);
}
static void arm_cpu_reset(DeviceState *dev)
{
CPUState *s = CPU(dev);
ARMCPU *cpu = ARM_CPU(s);
ARMCPUClass *acc = ARM_CPU_GET_CLASS(cpu);
CPUARMState *env = &cpu->env;
acc->parent_reset(dev);
memset(env, 0, offsetof(CPUARMState, end_reset_fields));
g_hash_table_foreach(cpu->cp_regs, cp_reg_reset, cpu);
g_hash_table_foreach(cpu->cp_regs, cp_reg_check_reset, cpu);
env->vfp.xregs[ARM_VFP_FPSID] = cpu->reset_fpsid;
env->vfp.xregs[ARM_VFP_MVFR0] = cpu->isar.mvfr0;
env->vfp.xregs[ARM_VFP_MVFR1] = cpu->isar.mvfr1;
env->vfp.xregs[ARM_VFP_MVFR2] = cpu->isar.mvfr2;
cpu->power_state = s->start_powered_off ? PSCI_OFF : PSCI_ON;
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
}
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
/* 64 bit CPUs always start in 64 bit mode */
env->aarch64 = true;
#if defined(CONFIG_USER_ONLY)
env->pstate = PSTATE_MODE_EL0t;
/* Userspace expects access to DC ZVA, CTL_EL0 and the cache ops */
env->cp15.sctlr_el[1] |= SCTLR_UCT | SCTLR_UCI | SCTLR_DZE;
/* Enable all PAC keys. */
env->cp15.sctlr_el[1] |= (SCTLR_EnIA | SCTLR_EnIB |
SCTLR_EnDA | SCTLR_EnDB);
/* Trap on btype=3 for PACIxSP. */
env->cp15.sctlr_el[1] |= SCTLR_BT0;
/* and to the FP/Neon instructions */
env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
CPACR_EL1, FPEN, 3);
/* and to the SVE instructions */
env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
CPACR_EL1, ZEN, 3);
/* with reasonable vector length */
if (cpu_isar_feature(aa64_sve, cpu)) {
env->vfp.zcr_el[1] = cpu->sve_default_vq - 1;
}
/*
* Enable 48-bit address space (TODO: take reserved_va into account).
* Enable TBI0 but not TBI1.
* Note that this must match useronly_clean_ptr.
*/
env->cp15.tcr_el[1].raw_tcr = 5 | (1ULL << 37);
/* Enable MTE */
if (cpu_isar_feature(aa64_mte, cpu)) {
/* Enable tag access, but leave TCF0 as No Effect (0). */
env->cp15.sctlr_el[1] |= SCTLR_ATA0;
/*
* Exclude all tags, so that tag 0 is always used.
* This corresponds to Linux current->thread.gcr_incl = 0.
*
* Set RRND, so that helper_irg() will generate a seed later.
* Here in cpu_reset(), the crypto subsystem has not yet been
* initialized.
*/
env->cp15.gcr_el1 = 0x1ffff;
}
/*
* Disable access to SCXTNUM_EL0 from CSV2_1p2.
* This is not yet exposed from the Linux kernel in any way.
*/
env->cp15.sctlr_el[1] |= SCTLR_TSCXT;
#else
/* Reset into the highest available EL */
if (arm_feature(env, ARM_FEATURE_EL3)) {
env->pstate = PSTATE_MODE_EL3h;
} else if (arm_feature(env, ARM_FEATURE_EL2)) {
env->pstate = PSTATE_MODE_EL2h;
} else {
env->pstate = PSTATE_MODE_EL1h;
}
/* Sample rvbar at reset. */
env->cp15.rvbar = cpu->rvbar_prop;
env->pc = env->cp15.rvbar;
#endif
} else {
#if defined(CONFIG_USER_ONLY)
/* Userspace expects access to cp10 and cp11 for FP/Neon */
env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
CPACR, CP10, 3);
env->cp15.cpacr_el1 = FIELD_DP64(env->cp15.cpacr_el1,
CPACR, CP11, 3);
#endif
}
#if defined(CONFIG_USER_ONLY)
env->uncached_cpsr = ARM_CPU_MODE_USR;
/* For user mode we must enable access to coprocessors */
env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
env->cp15.c15_cpar = 3;
} else if (arm_feature(env, ARM_FEATURE_XSCALE)) {
env->cp15.c15_cpar = 1;
}
#else
/*
* If the highest available EL is EL2, AArch32 will start in Hyp
* mode; otherwise it starts in SVC. Note that if we start in
* AArch64 then these values in the uncached_cpsr will be ignored.
*/
if (arm_feature(env, ARM_FEATURE_EL2) &&
!arm_feature(env, ARM_FEATURE_EL3)) {
env->uncached_cpsr = ARM_CPU_MODE_HYP;
} else {
env->uncached_cpsr = ARM_CPU_MODE_SVC;
}
env->daif = PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F;
/* AArch32 has a hard highvec setting of 0xFFFF0000. If we are currently
* executing as AArch32 then check if highvecs are enabled and
* adjust the PC accordingly.
*/
if (A32_BANKED_CURRENT_REG_GET(env, sctlr) & SCTLR_V) {
env->regs[15] = 0xFFFF0000;
}
env->vfp.xregs[ARM_VFP_FPEXC] = 0;
#endif
if (arm_feature(env, ARM_FEATURE_M)) {
#ifndef CONFIG_USER_ONLY
uint32_t initial_msp; /* Loaded from 0x0 */
uint32_t initial_pc; /* Loaded from 0x4 */
uint8_t *rom;
uint32_t vecbase;
#endif
if (cpu_isar_feature(aa32_lob, cpu)) {
/*
* LTPSIZE is constant 4 if MVE not implemented, and resets
* to an UNKNOWN value if MVE is implemented. We choose to
* always reset to 4.
*/
env->v7m.ltpsize = 4;
/* The LTPSIZE field in FPDSCR is constant and reads as 4. */
env->v7m.fpdscr[M_REG_NS] = 4 << FPCR_LTPSIZE_SHIFT;
env->v7m.fpdscr[M_REG_S] = 4 << FPCR_LTPSIZE_SHIFT;
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
env->v7m.secure = true;
} else {
/* This bit resets to 0 if security is supported, but 1 if
* it is not. The bit is not present in v7M, but we set it
* here so we can avoid having to make checks on it conditional
* on ARM_FEATURE_V8 (we don't let the guest see the bit).
*/
env->v7m.aircr = R_V7M_AIRCR_BFHFNMINS_MASK;
/*
* Set NSACR to indicate "NS access permitted to everything";
* this avoids having to have all the tests of it being
* conditional on ARM_FEATURE_M_SECURITY. Note also that from
* v8.1M the guest-visible value of NSACR in a CPU without the
* Security Extension is 0xcff.
*/
env->v7m.nsacr = 0xcff;
}
/* In v7M the reset value of this bit is IMPDEF, but ARM recommends
* that it resets to 1, so QEMU always does that rather than making
* it dependent on CPU model. In v8M it is RES1.
*/
env->v7m.ccr[M_REG_NS] = R_V7M_CCR_STKALIGN_MASK;
env->v7m.ccr[M_REG_S] = R_V7M_CCR_STKALIGN_MASK;
if (arm_feature(env, ARM_FEATURE_V8)) {
/* in v8M the NONBASETHRDENA bit [0] is RES1 */
env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_NONBASETHRDENA_MASK;
env->v7m.ccr[M_REG_S] |= R_V7M_CCR_NONBASETHRDENA_MASK;
}
if (!arm_feature(env, ARM_FEATURE_M_MAIN)) {
env->v7m.ccr[M_REG_NS] |= R_V7M_CCR_UNALIGN_TRP_MASK;
env->v7m.ccr[M_REG_S] |= R_V7M_CCR_UNALIGN_TRP_MASK;
}
if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
env->v7m.fpccr[M_REG_NS] = R_V7M_FPCCR_ASPEN_MASK;
env->v7m.fpccr[M_REG_S] = R_V7M_FPCCR_ASPEN_MASK |
R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK;
}
#ifndef CONFIG_USER_ONLY
/* Unlike A/R profile, M profile defines the reset LR value */
env->regs[14] = 0xffffffff;
env->v7m.vecbase[M_REG_S] = cpu->init_svtor & 0xffffff80;
env->v7m.vecbase[M_REG_NS] = cpu->init_nsvtor & 0xffffff80;
/* Load the initial SP and PC from offset 0 and 4 in the vector table */
vecbase = env->v7m.vecbase[env->v7m.secure];
rom = rom_ptr_for_as(s->as, vecbase, 8);
if (rom) {
/* Address zero is covered by ROM which hasn't yet been
* copied into physical memory.
*/
initial_msp = ldl_p(rom);
initial_pc = ldl_p(rom + 4);
} else {
/* Address zero not covered by a ROM blob, or the ROM blob
* is in non-modifiable memory and this is a second reset after
* it got copied into memory. In the latter case, rom_ptr
* will return a NULL pointer and we should use ldl_phys instead.
*/
initial_msp = ldl_phys(s->as, vecbase);
initial_pc = ldl_phys(s->as, vecbase + 4);
}
qemu_log_mask(CPU_LOG_INT,
"Loaded reset SP 0x%x PC 0x%x from vector table\n",
initial_msp, initial_pc);
env->regs[13] = initial_msp & 0xFFFFFFFC;
env->regs[15] = initial_pc & ~1;
env->thumb = initial_pc & 1;
#else
/*
* For user mode we run non-secure and with access to the FPU.
* The FPU context is active (ie does not need further setup)
* and is owned by non-secure.
*/
env->v7m.secure = false;
env->v7m.nsacr = 0xcff;
env->v7m.cpacr[M_REG_NS] = 0xf0ffff;
env->v7m.fpccr[M_REG_S] &=
~(R_V7M_FPCCR_LSPEN_MASK | R_V7M_FPCCR_S_MASK);
env->v7m.control[M_REG_S] |= R_V7M_CONTROL_FPCA_MASK;
#endif
}
/* M profile requires that reset clears the exclusive monitor;
* A profile does not, but clearing it makes more sense than having it
* set with an exclusive access on address zero.
*/
arm_clear_exclusive(env);
if (arm_feature(env, ARM_FEATURE_PMSA)) {
if (cpu->pmsav7_dregion > 0) {
if (arm_feature(env, ARM_FEATURE_V8)) {
memset(env->pmsav8.rbar[M_REG_NS], 0,
sizeof(*env->pmsav8.rbar[M_REG_NS])
* cpu->pmsav7_dregion);
memset(env->pmsav8.rlar[M_REG_NS], 0,
sizeof(*env->pmsav8.rlar[M_REG_NS])
* cpu->pmsav7_dregion);
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
memset(env->pmsav8.rbar[M_REG_S], 0,
sizeof(*env->pmsav8.rbar[M_REG_S])
* cpu->pmsav7_dregion);
memset(env->pmsav8.rlar[M_REG_S], 0,
sizeof(*env->pmsav8.rlar[M_REG_S])
* cpu->pmsav7_dregion);
}
} else if (arm_feature(env, ARM_FEATURE_V7)) {
memset(env->pmsav7.drbar, 0,
sizeof(*env->pmsav7.drbar) * cpu->pmsav7_dregion);
memset(env->pmsav7.drsr, 0,
sizeof(*env->pmsav7.drsr) * cpu->pmsav7_dregion);
memset(env->pmsav7.dracr, 0,
sizeof(*env->pmsav7.dracr) * cpu->pmsav7_dregion);
}
}
env->pmsav7.rnr[M_REG_NS] = 0;
env->pmsav7.rnr[M_REG_S] = 0;
env->pmsav8.mair0[M_REG_NS] = 0;
env->pmsav8.mair0[M_REG_S] = 0;
env->pmsav8.mair1[M_REG_NS] = 0;
env->pmsav8.mair1[M_REG_S] = 0;
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
if (cpu->sau_sregion > 0) {
memset(env->sau.rbar, 0, sizeof(*env->sau.rbar) * cpu->sau_sregion);
memset(env->sau.rlar, 0, sizeof(*env->sau.rlar) * cpu->sau_sregion);
}
env->sau.rnr = 0;
/* SAU_CTRL reset value is IMPDEF; we choose 0, which is what
* the Cortex-M33 does.
*/
env->sau.ctrl = 0;
}
set_flush_to_zero(1, &env->vfp.standard_fp_status);
set_flush_inputs_to_zero(1, &env->vfp.standard_fp_status);
set_default_nan_mode(1, &env->vfp.standard_fp_status);
set_default_nan_mode(1, &env->vfp.standard_fp_status_f16);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.fp_status);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.standard_fp_status);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.fp_status_f16);
set_float_detect_tininess(float_tininess_before_rounding,
&env->vfp.standard_fp_status_f16);
#ifndef CONFIG_USER_ONLY
if (kvm_enabled()) {
kvm_arm_reset_vcpu(cpu);
}
#endif
hw_breakpoint_update_all(cpu);
hw_watchpoint_update_all(cpu);
arm_rebuild_hflags(env);
}
#ifndef CONFIG_USER_ONLY
static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
unsigned int target_el,
unsigned int cur_el, bool secure,
uint64_t hcr_el2)
{
CPUARMState *env = cs->env_ptr;
bool pstate_unmasked;
bool unmasked = false;
/*
* Don't take exceptions if they target a lower EL.
* This check should catch any exceptions that would not be taken
* but left pending.
*/
if (cur_el > target_el) {
return false;
}
switch (excp_idx) {
case EXCP_FIQ:
pstate_unmasked = !(env->daif & PSTATE_F);
break;
case EXCP_IRQ:
pstate_unmasked = !(env->daif & PSTATE_I);
break;
case EXCP_VFIQ:
if (!(hcr_el2 & HCR_FMO) || (hcr_el2 & HCR_TGE)) {
/* VFIQs are only taken when hypervized. */
return false;
}
return !(env->daif & PSTATE_F);
case EXCP_VIRQ:
if (!(hcr_el2 & HCR_IMO) || (hcr_el2 & HCR_TGE)) {
/* VIRQs are only taken when hypervized. */
return false;
}
return !(env->daif & PSTATE_I);
case EXCP_VSERR:
if (!(hcr_el2 & HCR_AMO) || (hcr_el2 & HCR_TGE)) {
/* VIRQs are only taken when hypervized. */
return false;
}
return !(env->daif & PSTATE_A);
default:
g_assert_not_reached();
}
/*
* Use the target EL, current execution state and SCR/HCR settings to
* determine whether the corresponding CPSR bit is used to mask the
* interrupt.
*/
if ((target_el > cur_el) && (target_el != 1)) {
/* Exceptions targeting a higher EL may not be maskable */
if (arm_feature(env, ARM_FEATURE_AARCH64)) {
/*
* 64-bit masking rules are simple: exceptions to EL3
* can't be masked, and exceptions to EL2 can only be
* masked from Secure state. The HCR and SCR settings
* don't affect the masking logic, only the interrupt routing.
*/
if (target_el == 3 || !secure || (env->cp15.scr_el3 & SCR_EEL2)) {
unmasked = true;
}
} else {
/*
* The old 32-bit-only environment has a more complicated
* masking setup. HCR and SCR bits not only affect interrupt
* routing but also change the behaviour of masking.
*/
bool hcr, scr;
switch (excp_idx) {
case EXCP_FIQ:
/*
* If FIQs are routed to EL3 or EL2 then there are cases where
* we override the CPSR.F in determining if the exception is
* masked or not. If neither of these are set then we fall back
* to the CPSR.F setting otherwise we further assess the state
* below.
*/
hcr = hcr_el2 & HCR_FMO;
scr = (env->cp15.scr_el3 & SCR_FIQ);
/*
* When EL3 is 32-bit, the SCR.FW bit controls whether the
* CPSR.F bit masks FIQ interrupts when taken in non-secure
* state. If SCR.FW is set then FIQs can be masked by CPSR.F
* when non-secure but only when FIQs are only routed to EL3.
*/
scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
break;
case EXCP_IRQ:
/*
* When EL3 execution state is 32-bit, if HCR.IMO is set then
* we may override the CPSR.I masking when in non-secure state.
* The SCR.IRQ setting has already been taken into consideration
* when setting the target EL, so it does not have a further
* affect here.
*/
hcr = hcr_el2 & HCR_IMO;
scr = false;
break;
default:
g_assert_not_reached();
}
if ((scr || hcr) && !secure) {
unmasked = true;
}
}
}
/*
* The PSTATE bits only mask the interrupt if we have not overriden the
* ability above.
*/
return unmasked || pstate_unmasked;
}
static bool arm_cpu_exec_interrupt(CPUState *cs, int interrupt_request)
{
CPUClass *cc = CPU_GET_CLASS(cs);
CPUARMState *env = cs->env_ptr;
uint32_t cur_el = arm_current_el(env);
bool secure = arm_is_secure(env);
uint64_t hcr_el2 = arm_hcr_el2_eff(env);
uint32_t target_el;
uint32_t excp_idx;
/* The prioritization of interrupts is IMPLEMENTATION DEFINED. */
if (interrupt_request & CPU_INTERRUPT_FIQ) {
excp_idx = EXCP_FIQ;
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_HARD) {
excp_idx = EXCP_IRQ;
target_el = arm_phys_excp_target_el(cs, excp_idx, cur_el, secure);
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_VIRQ) {
excp_idx = EXCP_VIRQ;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_VFIQ) {
excp_idx = EXCP_VFIQ;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
goto found;
}
}
if (interrupt_request & CPU_INTERRUPT_VSERR) {
excp_idx = EXCP_VSERR;
target_el = 1;
if (arm_excp_unmasked(cs, excp_idx, target_el,
cur_el, secure, hcr_el2)) {
/* Taking a virtual abort clears HCR_EL2.VSE */
env->cp15.hcr_el2 &= ~HCR_VSE;
cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
goto found;
}
}
return false;
found:
cs->exception_index = excp_idx;
env->exception.target_el = target_el;
cc->tcg_ops->do_interrupt(cs);
return true;
}
#endif /* !CONFIG_USER_ONLY */
void arm_cpu_update_virq(ARMCPU *cpu)
{
/*
* Update the interrupt level for VIRQ, which is the logical OR of
* the HCR_EL2.VI bit and the input line level from the GIC.
*/
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
bool new_state = (env->cp15.hcr_el2 & HCR_VI) ||
(env->irq_line_state & CPU_INTERRUPT_VIRQ);
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VIRQ) != 0)) {
if (new_state) {
cpu_interrupt(cs, CPU_INTERRUPT_VIRQ);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_VIRQ);
}
}
}
void arm_cpu_update_vfiq(ARMCPU *cpu)
{
/*
* Update the interrupt level for VFIQ, which is the logical OR of
* the HCR_EL2.VF bit and the input line level from the GIC.
*/
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
bool new_state = (env->cp15.hcr_el2 & HCR_VF) ||
(env->irq_line_state & CPU_INTERRUPT_VFIQ);
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VFIQ) != 0)) {
if (new_state) {
cpu_interrupt(cs, CPU_INTERRUPT_VFIQ);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_VFIQ);
}
}
}
void arm_cpu_update_vserr(ARMCPU *cpu)
{
/*
* Update the interrupt level for VSERR, which is the HCR_EL2.VSE bit.
*/
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
bool new_state = env->cp15.hcr_el2 & HCR_VSE;
if (new_state != ((cs->interrupt_request & CPU_INTERRUPT_VSERR) != 0)) {
if (new_state) {
cpu_interrupt(cs, CPU_INTERRUPT_VSERR);
} else {
cpu_reset_interrupt(cs, CPU_INTERRUPT_VSERR);
}
}
}
#ifndef CONFIG_USER_ONLY
static void arm_cpu_set_irq(void *opaque, int irq, int level)
{
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
static const int mask[] = {
[ARM_CPU_IRQ] = CPU_INTERRUPT_HARD,
[ARM_CPU_FIQ] = CPU_INTERRUPT_FIQ,
[ARM_CPU_VIRQ] = CPU_INTERRUPT_VIRQ,
[ARM_CPU_VFIQ] = CPU_INTERRUPT_VFIQ
};
if (!arm_feature(env, ARM_FEATURE_EL2) &&
(irq == ARM_CPU_VIRQ || irq == ARM_CPU_VFIQ)) {
/*
* The GIC might tell us about VIRQ and VFIQ state, but if we don't
* have EL2 support we don't care. (Unless the guest is doing something
* silly this will only be calls saying "level is still 0".)
*/
return;
}
if (level) {
env->irq_line_state |= mask[irq];
} else {
env->irq_line_state &= ~mask[irq];
}
switch (irq) {
case ARM_CPU_VIRQ:
arm_cpu_update_virq(cpu);
break;
case ARM_CPU_VFIQ:
arm_cpu_update_vfiq(cpu);
break;
case ARM_CPU_IRQ:
case ARM_CPU_FIQ:
if (level) {
cpu_interrupt(cs, mask[irq]);
} else {
cpu_reset_interrupt(cs, mask[irq]);
}
break;
default:
g_assert_not_reached();
}
}
static void arm_cpu_kvm_set_irq(void *opaque, int irq, int level)
{
#ifdef CONFIG_KVM
ARMCPU *cpu = opaque;
CPUARMState *env = &cpu->env;
CPUState *cs = CPU(cpu);
uint32_t linestate_bit;
int irq_id;
switch (irq) {
case ARM_CPU_IRQ:
irq_id = KVM_ARM_IRQ_CPU_IRQ;
linestate_bit = CPU_INTERRUPT_HARD;
break;
case ARM_CPU_FIQ:
irq_id = KVM_ARM_IRQ_CPU_FIQ;
linestate_bit = CPU_INTERRUPT_FIQ;
break;
default:
g_assert_not_reached();
}
if (level) {
env->irq_line_state |= linestate_bit;
} else {
env->irq_line_state &= ~linestate_bit;
}
kvm_arm_set_irq(cs->cpu_index, KVM_ARM_IRQ_TYPE_CPU, irq_id, !!level);
#endif
}
static bool arm_cpu_virtio_is_big_endian(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
cpu_synchronize_state(cs);
return arm_cpu_data_is_big_endian(env);
}
#endif
static void arm_disas_set_info(CPUState *cpu, disassemble_info *info)
{
ARMCPU *ac = ARM_CPU(cpu);
CPUARMState *env = &ac->env;
bool sctlr_b;
if (is_a64(env)) {
/* We might not be compiled with the A64 disassembler
* because it needs a C++ compiler. Leave print_insn
* unset in this case to use the caller default behaviour.
*/
#if defined(CONFIG_ARM_A64_DIS)
info->print_insn = print_insn_arm_a64;
#endif
info->cap_arch = CS_ARCH_ARM64;
info->cap_insn_unit = 4;
info->cap_insn_split = 4;
} else {
int cap_mode;
if (env->thumb) {
info->cap_insn_unit = 2;
info->cap_insn_split = 4;
cap_mode = CS_MODE_THUMB;
} else {
info->cap_insn_unit = 4;
info->cap_insn_split = 4;
cap_mode = CS_MODE_ARM;
}
if (arm_feature(env, ARM_FEATURE_V8)) {
cap_mode |= CS_MODE_V8;
}
if (arm_feature(env, ARM_FEATURE_M)) {
cap_mode |= CS_MODE_MCLASS;
}
info->cap_arch = CS_ARCH_ARM;
info->cap_mode = cap_mode;
}
sctlr_b = arm_sctlr_b(env);
if (bswap_code(sctlr_b)) {
#if TARGET_BIG_ENDIAN
info->endian = BFD_ENDIAN_LITTLE;
#else
info->endian = BFD_ENDIAN_BIG;
#endif
}
info->flags &= ~INSN_ARM_BE32;
#ifndef CONFIG_USER_ONLY
if (sctlr_b) {
info->flags |= INSN_ARM_BE32;
}
#endif
}
#ifdef TARGET_AARCH64
static void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
uint32_t psr = pstate_read(env);
int i;
int el = arm_current_el(env);
const char *ns_status;
qemu_fprintf(f, " PC=%016" PRIx64 " ", env->pc);
for (i = 0; i < 32; i++) {
if (i == 31) {
qemu_fprintf(f, " SP=%016" PRIx64 "\n", env->xregs[i]);
} else {
qemu_fprintf(f, "X%02d=%016" PRIx64 "%s", i, env->xregs[i],
(i + 2) % 3 ? " " : "\n");
}
}
if (arm_feature(env, ARM_FEATURE_EL3) && el != 3) {
ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
} else {
ns_status = "";
}
qemu_fprintf(f, "PSTATE=%08x %c%c%c%c %sEL%d%c",
psr,
psr & PSTATE_N ? 'N' : '-',
psr & PSTATE_Z ? 'Z' : '-',
psr & PSTATE_C ? 'C' : '-',
psr & PSTATE_V ? 'V' : '-',
ns_status,
el,
psr & PSTATE_SP ? 'h' : 't');
if (cpu_isar_feature(aa64_bti, cpu)) {
qemu_fprintf(f, " BTYPE=%d", (psr & PSTATE_BTYPE) >> 10);
}
if (!(flags & CPU_DUMP_FPU)) {
qemu_fprintf(f, "\n");
return;
}
if (fp_exception_el(env, el) != 0) {
qemu_fprintf(f, " FPU disabled\n");
return;
}
qemu_fprintf(f, " FPCR=%08x FPSR=%08x\n",
vfp_get_fpcr(env), vfp_get_fpsr(env));
if (cpu_isar_feature(aa64_sve, cpu) && sve_exception_el(env, el) == 0) {
int j, zcr_len = sve_vqm1_for_el(env, el);
for (i = 0; i <= FFR_PRED_NUM; i++) {
bool eol;
if (i == FFR_PRED_NUM) {
qemu_fprintf(f, "FFR=");
/* It's last, so end the line. */
eol = true;
} else {
qemu_fprintf(f, "P%02d=", i);
switch (zcr_len) {
case 0:
eol = i % 8 == 7;
break;
case 1:
eol = i % 6 == 5;
break;
case 2:
case 3:
eol = i % 3 == 2;
break;
default:
/* More than one quadword per predicate. */
eol = true;
break;
}
}
for (j = zcr_len / 4; j >= 0; j--) {
int digits;
if (j * 4 + 4 <= zcr_len + 1) {
digits = 16;
} else {
digits = (zcr_len % 4 + 1) * 4;
}
qemu_fprintf(f, "%0*" PRIx64 "%s", digits,
env->vfp.pregs[i].p[j],
j ? ":" : eol ? "\n" : " ");
}
}
for (i = 0; i < 32; i++) {
if (zcr_len == 0) {
qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64 "%s",
i, env->vfp.zregs[i].d[1],
env->vfp.zregs[i].d[0], i & 1 ? "\n" : " ");
} else if (zcr_len == 1) {
qemu_fprintf(f, "Z%02d=%016" PRIx64 ":%016" PRIx64
":%016" PRIx64 ":%016" PRIx64 "\n",
i, env->vfp.zregs[i].d[3], env->vfp.zregs[i].d[2],
env->vfp.zregs[i].d[1], env->vfp.zregs[i].d[0]);
} else {
for (j = zcr_len; j >= 0; j--) {
bool odd = (zcr_len - j) % 2 != 0;
if (j == zcr_len) {
qemu_fprintf(f, "Z%02d[%x-%x]=", i, j, j - 1);
} else if (!odd) {
if (j > 0) {
qemu_fprintf(f, " [%x-%x]=", j, j - 1);
} else {
qemu_fprintf(f, " [%x]=", j);
}
}
qemu_fprintf(f, "%016" PRIx64 ":%016" PRIx64 "%s",
env->vfp.zregs[i].d[j * 2 + 1],
env->vfp.zregs[i].d[j * 2],
odd || j == 0 ? "\n" : ":");
}
}
}
} else {
for (i = 0; i < 32; i++) {
uint64_t *q = aa64_vfp_qreg(env, i);
qemu_fprintf(f, "Q%02d=%016" PRIx64 ":%016" PRIx64 "%s",
i, q[1], q[0], (i & 1 ? "\n" : " "));
}
}
}
#else
static inline void aarch64_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
g_assert_not_reached();
}
#endif
static void arm_cpu_dump_state(CPUState *cs, FILE *f, int flags)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
int i;
if (is_a64(env)) {
aarch64_cpu_dump_state(cs, f, flags);
return;
}
for (i = 0; i < 16; i++) {
qemu_fprintf(f, "R%02d=%08x", i, env->regs[i]);
if ((i % 4) == 3) {
qemu_fprintf(f, "\n");
} else {
qemu_fprintf(f, " ");
}
}
if (arm_feature(env, ARM_FEATURE_M)) {
uint32_t xpsr = xpsr_read(env);
const char *mode;
const char *ns_status = "";
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
ns_status = env->v7m.secure ? "S " : "NS ";
}
if (xpsr & XPSR_EXCP) {
mode = "handler";
} else {
if (env->v7m.control[env->v7m.secure] & R_V7M_CONTROL_NPRIV_MASK) {
mode = "unpriv-thread";
} else {
mode = "priv-thread";
}
}
qemu_fprintf(f, "XPSR=%08x %c%c%c%c %c %s%s\n",
xpsr,
xpsr & XPSR_N ? 'N' : '-',
xpsr & XPSR_Z ? 'Z' : '-',
xpsr & XPSR_C ? 'C' : '-',
xpsr & XPSR_V ? 'V' : '-',
xpsr & XPSR_T ? 'T' : 'A',
ns_status,
mode);
} else {
uint32_t psr = cpsr_read(env);
const char *ns_status = "";
if (arm_feature(env, ARM_FEATURE_EL3) &&
(psr & CPSR_M) != ARM_CPU_MODE_MON) {
ns_status = env->cp15.scr_el3 & SCR_NS ? "NS " : "S ";
}
qemu_fprintf(f, "PSR=%08x %c%c%c%c %c %s%s%d\n",
psr,
psr & CPSR_N ? 'N' : '-',
psr & CPSR_Z ? 'Z' : '-',
psr & CPSR_C ? 'C' : '-',
psr & CPSR_V ? 'V' : '-',
psr & CPSR_T ? 'T' : 'A',
ns_status,
aarch32_mode_name(psr), (psr & 0x10) ? 32 : 26);
}
if (flags & CPU_DUMP_FPU) {
int numvfpregs = 0;
if (cpu_isar_feature(aa32_simd_r32, cpu)) {
numvfpregs = 32;
} else if (cpu_isar_feature(aa32_vfp_simd, cpu)) {
numvfpregs = 16;
}
for (i = 0; i < numvfpregs; i++) {
uint64_t v = *aa32_vfp_dreg(env, i);
qemu_fprintf(f, "s%02d=%08x s%02d=%08x d%02d=%016" PRIx64 "\n",
i * 2, (uint32_t)v,
i * 2 + 1, (uint32_t)(v >> 32),
i, v);
}
qemu_fprintf(f, "FPSCR: %08x\n", vfp_get_fpscr(env));
if (cpu_isar_feature(aa32_mve, cpu)) {
qemu_fprintf(f, "VPR: %08x\n", env->v7m.vpr);
}
}
}
uint64_t arm_cpu_mp_affinity(int idx, uint8_t clustersz)
{
uint32_t Aff1 = idx / clustersz;
uint32_t Aff0 = idx % clustersz;
return (Aff1 << ARM_AFF1_SHIFT) | Aff0;
}
static void arm_cpu_initfn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
cpu_set_cpustate_pointers(cpu);
cpu->cp_regs = g_hash_table_new_full(g_direct_hash, g_direct_equal,
NULL, g_free);
QLIST_INIT(&cpu->pre_el_change_hooks);
QLIST_INIT(&cpu->el_change_hooks);
#ifdef CONFIG_USER_ONLY
# ifdef TARGET_AARCH64
/*
* The linux kernel defaults to 512-bit vectors, when sve is supported.
* See documentation for /proc/sys/abi/sve_default_vector_length, and
* our corresponding sve-default-vector-length cpu property.
*/
cpu->sve_default_vq = 4;
# endif
#else
/* Our inbound IRQ and FIQ lines */
if (kvm_enabled()) {
/* VIRQ and VFIQ are unused with KVM but we add them to maintain
* the same interface as non-KVM CPUs.
*/
qdev_init_gpio_in(DEVICE(cpu), arm_cpu_kvm_set_irq, 4);
} else {
qdev_init_gpio_in(DEVICE(cpu), arm_cpu_set_irq, 4);
}
qdev_init_gpio_out(DEVICE(cpu), cpu->gt_timer_outputs,
ARRAY_SIZE(cpu->gt_timer_outputs));
qdev_init_gpio_out_named(DEVICE(cpu), &cpu->gicv3_maintenance_interrupt,
"gicv3-maintenance-interrupt", 1);
qdev_init_gpio_out_named(DEVICE(cpu), &cpu->pmu_interrupt,
"pmu-interrupt", 1);
#endif
/* DTB consumers generally don't in fact care what the 'compatible'
* string is, so always provide some string and trust that a hypothetical
* picky DTB consumer will also provide a helpful error message.
*/
cpu->dtb_compatible = "qemu,unknown";
cpu->psci_version = QEMU_PSCI_VERSION_0_1; /* By default assume PSCI v0.1 */
cpu->kvm_target = QEMU_KVM_ARM_TARGET_NONE;
if (tcg_enabled() || hvf_enabled()) {
/* TCG and HVF implement PSCI 1.1 */
cpu->psci_version = QEMU_PSCI_VERSION_1_1;
}
}
static Property arm_cpu_gt_cntfrq_property =
DEFINE_PROP_UINT64("cntfrq", ARMCPU, gt_cntfrq_hz,
NANOSECONDS_PER_SECOND / GTIMER_SCALE);
static Property arm_cpu_reset_cbar_property =
DEFINE_PROP_UINT64("reset-cbar", ARMCPU, reset_cbar, 0);
static Property arm_cpu_reset_hivecs_property =
DEFINE_PROP_BOOL("reset-hivecs", ARMCPU, reset_hivecs, false);
#ifndef CONFIG_USER_ONLY
static Property arm_cpu_has_el2_property =
DEFINE_PROP_BOOL("has_el2", ARMCPU, has_el2, true);
static Property arm_cpu_has_el3_property =
DEFINE_PROP_BOOL("has_el3", ARMCPU, has_el3, true);
#endif
static Property arm_cpu_cfgend_property =
DEFINE_PROP_BOOL("cfgend", ARMCPU, cfgend, false);
static Property arm_cpu_has_vfp_property =
DEFINE_PROP_BOOL("vfp", ARMCPU, has_vfp, true);
static Property arm_cpu_has_neon_property =
DEFINE_PROP_BOOL("neon", ARMCPU, has_neon, true);
static Property arm_cpu_has_dsp_property =
DEFINE_PROP_BOOL("dsp", ARMCPU, has_dsp, true);
static Property arm_cpu_has_mpu_property =
DEFINE_PROP_BOOL("has-mpu", ARMCPU, has_mpu, true);
/* This is like DEFINE_PROP_UINT32 but it doesn't set the default value,
* because the CPU initfn will have already set cpu->pmsav7_dregion to
* the right value for that particular CPU type, and we don't want
* to override that with an incorrect constant value.
*/
static Property arm_cpu_pmsav7_dregion_property =
DEFINE_PROP_UNSIGNED_NODEFAULT("pmsav7-dregion", ARMCPU,
pmsav7_dregion,
qdev_prop_uint32, uint32_t);
static bool arm_get_pmu(Object *obj, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
return cpu->has_pmu;
}
static void arm_set_pmu(Object *obj, bool value, Error **errp)
{
ARMCPU *cpu = ARM_CPU(obj);
if (value) {
if (kvm_enabled() && !kvm_arm_pmu_supported()) {
error_setg(errp, "'pmu' feature not supported by KVM on this host");
return;
}
set_feature(&cpu->env, ARM_FEATURE_PMU);
} else {
unset_feature(&cpu->env, ARM_FEATURE_PMU);
}
cpu->has_pmu = value;
}
unsigned int gt_cntfrq_period_ns(ARMCPU *cpu)
{
/*
* The exact approach to calculating guest ticks is:
*
* muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), cpu->gt_cntfrq_hz,
* NANOSECONDS_PER_SECOND);
*
* We don't do that. Rather we intentionally use integer division
* truncation below and in the caller for the conversion of host monotonic
* time to guest ticks to provide the exact inverse for the semantics of
* the QEMUTimer scale factor. QEMUTimer's scale facter is an integer, so
* it loses precision when representing frequencies where
* `(NANOSECONDS_PER_SECOND % cpu->gt_cntfrq) > 0` holds. Failing to
* provide an exact inverse leads to scheduling timers with negative
* periods, which in turn leads to sticky behaviour in the guest.
*
* Finally, CNTFRQ is effectively capped at 1GHz to ensure our scale factor
* cannot become zero.
*/
return NANOSECONDS_PER_SECOND > cpu->gt_cntfrq_hz ?
NANOSECONDS_PER_SECOND / cpu->gt_cntfrq_hz : 1;
}
void arm_cpu_post_init(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
/* M profile implies PMSA. We have to do this here rather than
* in realize with the other feature-implication checks because
* we look at the PMSA bit to see if we should add some properties.
*/
if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
set_feature(&cpu->env, ARM_FEATURE_PMSA);
}
if (arm_feature(&cpu->env, ARM_FEATURE_CBAR) ||
arm_feature(&cpu->env, ARM_FEATURE_CBAR_RO)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_cbar_property);
}
if (!arm_feature(&cpu->env, ARM_FEATURE_M)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_reset_hivecs_property);
}
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
object_property_add_uint64_ptr(obj, "rvbar",
&cpu->rvbar_prop,
OBJ_PROP_FLAG_READWRITE);
}
#ifndef CONFIG_USER_ONLY
if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
/* Add the has_el3 state CPU property only if EL3 is allowed. This will
* prevent "has_el3" from existing on CPUs which cannot support EL3.
*/
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el3_property);
object_property_add_link(obj, "secure-memory",
TYPE_MEMORY_REGION,
(Object **)&cpu->secure_memory,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_STRONG);
}
if (arm_feature(&cpu->env, ARM_FEATURE_EL2)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_el2_property);
}
#endif
if (arm_feature(&cpu->env, ARM_FEATURE_PMU)) {
cpu->has_pmu = true;
object_property_add_bool(obj, "pmu", arm_get_pmu, arm_set_pmu);
}
/*
* Allow user to turn off VFP and Neon support, but only for TCG --
* KVM does not currently allow us to lie to the guest about its
* ID/feature registers, so the guest always sees what the host has.
*/
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)
? cpu_isar_feature(aa64_fp_simd, cpu)
: cpu_isar_feature(aa32_vfp, cpu)) {
cpu->has_vfp = true;
if (!kvm_enabled()) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_vfp_property);
}
}
if (arm_feature(&cpu->env, ARM_FEATURE_NEON)) {
cpu->has_neon = true;
if (!kvm_enabled()) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_neon_property);
}
}
if (arm_feature(&cpu->env, ARM_FEATURE_M) &&
arm_feature(&cpu->env, ARM_FEATURE_THUMB_DSP)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_dsp_property);
}
if (arm_feature(&cpu->env, ARM_FEATURE_PMSA)) {
qdev_property_add_static(DEVICE(obj), &arm_cpu_has_mpu_property);
if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
qdev_property_add_static(DEVICE(obj),
&arm_cpu_pmsav7_dregion_property);
}
}
if (arm_feature(&cpu->env, ARM_FEATURE_M_SECURITY)) {
object_property_add_link(obj, "idau", TYPE_IDAU_INTERFACE, &cpu->idau,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_STRONG);
/*
* M profile: initial value of the Secure VTOR. We can't just use
* a simple DEFINE_PROP_UINT32 for this because we want to permit
* the property to be set after realize.
*/
object_property_add_uint32_ptr(obj, "init-svtor",
&cpu->init_svtor,
OBJ_PROP_FLAG_READWRITE);
}
if (arm_feature(&cpu->env, ARM_FEATURE_M)) {
/*
* Initial value of the NS VTOR (for cores without the Security
* extension, this is the only VTOR)
*/
object_property_add_uint32_ptr(obj, "init-nsvtor",
&cpu->init_nsvtor,
OBJ_PROP_FLAG_READWRITE);
}
/* Not DEFINE_PROP_UINT32: we want this to be settable after realize */
object_property_add_uint32_ptr(obj, "psci-conduit",
&cpu->psci_conduit,
OBJ_PROP_FLAG_READWRITE);
qdev_property_add_static(DEVICE(obj), &arm_cpu_cfgend_property);
if (arm_feature(&cpu->env, ARM_FEATURE_GENERIC_TIMER)) {
qdev_property_add_static(DEVICE(cpu), &arm_cpu_gt_cntfrq_property);
}
if (kvm_enabled()) {
kvm_arm_add_vcpu_properties(obj);
}
#ifndef CONFIG_USER_ONLY
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) &&
cpu_isar_feature(aa64_mte, cpu)) {
object_property_add_link(obj, "tag-memory",
TYPE_MEMORY_REGION,
(Object **)&cpu->tag_memory,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_STRONG);
if (arm_feature(&cpu->env, ARM_FEATURE_EL3)) {
object_property_add_link(obj, "secure-tag-memory",
TYPE_MEMORY_REGION,
(Object **)&cpu->secure_tag_memory,
qdev_prop_allow_set_link_before_realize,
OBJ_PROP_LINK_STRONG);
}
}
#endif
}
static void arm_cpu_finalizefn(Object *obj)
{
ARMCPU *cpu = ARM_CPU(obj);
ARMELChangeHook *hook, *next;
g_hash_table_destroy(cpu->cp_regs);
QLIST_FOREACH_SAFE(hook, &cpu->pre_el_change_hooks, node, next) {
QLIST_REMOVE(hook, node);
g_free(hook);
}
QLIST_FOREACH_SAFE(hook, &cpu->el_change_hooks, node, next) {
QLIST_REMOVE(hook, node);
g_free(hook);
}
#ifndef CONFIG_USER_ONLY
if (cpu->pmu_timer) {
timer_free(cpu->pmu_timer);
}
#endif
}
void arm_cpu_finalize_features(ARMCPU *cpu, Error **errp)
{
Error *local_err = NULL;
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
arm_cpu_sve_finalize(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
arm_cpu_pauth_finalize(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
arm_cpu_lpa2_finalize(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
}
if (kvm_enabled()) {
kvm_arm_steal_time_finalize(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
}
}
static void arm_cpu_realizefn(DeviceState *dev, Error **errp)
{
CPUState *cs = CPU(dev);
ARMCPU *cpu = ARM_CPU(dev);
ARMCPUClass *acc = ARM_CPU_GET_CLASS(dev);
CPUARMState *env = &cpu->env;
int pagebits;
Error *local_err = NULL;
bool no_aa32 = false;
/* If we needed to query the host kernel for the CPU features
* then it's possible that might have failed in the initfn, but
* this is the first point where we can report it.
*/
if (cpu->host_cpu_probe_failed) {
if (!kvm_enabled() && !hvf_enabled()) {
error_setg(errp, "The 'host' CPU type can only be used with KVM or HVF");
} else {
error_setg(errp, "Failed to retrieve host CPU features");
}
return;
}
#ifndef CONFIG_USER_ONLY
/* The NVIC and M-profile CPU are two halves of a single piece of
* hardware; trying to use one without the other is a command line
* error and will result in segfaults if not caught here.
*/
if (arm_feature(env, ARM_FEATURE_M)) {
if (!env->nvic) {
error_setg(errp, "This board cannot be used with Cortex-M CPUs");
return;
}
} else {
if (env->nvic) {
error_setg(errp, "This board can only be used with Cortex-M CPUs");
return;
}
}
if (kvm_enabled()) {
/*
* Catch all the cases which might cause us to create more than one
* address space for the CPU (otherwise we will assert() later in
* cpu_address_space_init()).
*/
if (arm_feature(env, ARM_FEATURE_M)) {
error_setg(errp,
"Cannot enable KVM when using an M-profile guest CPU");
return;
}
if (cpu->has_el3) {
error_setg(errp,
"Cannot enable KVM when guest CPU has EL3 enabled");
return;
}
if (cpu->tag_memory) {
error_setg(errp,
"Cannot enable KVM when guest CPUs has MTE enabled");
return;
}
}
{
uint64_t scale;
if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
if (!cpu->gt_cntfrq_hz) {
error_setg(errp, "Invalid CNTFRQ: %"PRId64"Hz",
cpu->gt_cntfrq_hz);
return;
}
scale = gt_cntfrq_period_ns(cpu);
} else {
scale = GTIMER_SCALE;
}
cpu->gt_timer[GTIMER_PHYS] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_ptimer_cb, cpu);
cpu->gt_timer[GTIMER_VIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_vtimer_cb, cpu);
cpu->gt_timer[GTIMER_HYP] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_htimer_cb, cpu);
cpu->gt_timer[GTIMER_SEC] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_stimer_cb, cpu);
cpu->gt_timer[GTIMER_HYPVIRT] = timer_new(QEMU_CLOCK_VIRTUAL, scale,
arm_gt_hvtimer_cb, cpu);
}
#endif
cpu_exec_realizefn(cs, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
arm_cpu_finalize_features(cpu, &local_err);
if (local_err != NULL) {
error_propagate(errp, local_err);
return;
}
if (arm_feature(env, ARM_FEATURE_AARCH64) &&
cpu->has_vfp != cpu->has_neon) {
/*
* This is an architectural requirement for AArch64; AArch32 is
* more flexible and permits VFP-no-Neon and Neon-no-VFP.
*/
error_setg(errp,
"AArch64 CPUs must have both VFP and Neon or neither");
return;
}
if (!cpu->has_vfp) {
uint64_t t;
uint32_t u;
t = cpu->isar.id_aa64isar1;
t = FIELD_DP64(t, ID_AA64ISAR1, JSCVT, 0);
cpu->isar.id_aa64isar1 = t;
t = cpu->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, FP, 0xf);
cpu->isar.id_aa64pfr0 = t;
u = cpu->isar.id_isar6;
u = FIELD_DP32(u, ID_ISAR6, JSCVT, 0);
u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
cpu->isar.id_isar6 = u;
u = cpu->isar.mvfr0;
u = FIELD_DP32(u, MVFR0, FPSP, 0);
u = FIELD_DP32(u, MVFR0, FPDP, 0);
u = FIELD_DP32(u, MVFR0, FPDIVIDE, 0);
u = FIELD_DP32(u, MVFR0, FPSQRT, 0);
u = FIELD_DP32(u, MVFR0, FPROUND, 0);
if (!arm_feature(env, ARM_FEATURE_M)) {
u = FIELD_DP32(u, MVFR0, FPTRAP, 0);
u = FIELD_DP32(u, MVFR0, FPSHVEC, 0);
}
cpu->isar.mvfr0 = u;
u = cpu->isar.mvfr1;
u = FIELD_DP32(u, MVFR1, FPFTZ, 0);
u = FIELD_DP32(u, MVFR1, FPDNAN, 0);
u = FIELD_DP32(u, MVFR1, FPHP, 0);
if (arm_feature(env, ARM_FEATURE_M)) {
u = FIELD_DP32(u, MVFR1, FP16, 0);
}
cpu->isar.mvfr1 = u;
u = cpu->isar.mvfr2;
u = FIELD_DP32(u, MVFR2, FPMISC, 0);
cpu->isar.mvfr2 = u;
}
if (!cpu->has_neon) {
uint64_t t;
uint32_t u;
unset_feature(env, ARM_FEATURE_NEON);
t = cpu->isar.id_aa64isar0;
t = FIELD_DP64(t, ID_AA64ISAR0, AES, 0);
t = FIELD_DP64(t, ID_AA64ISAR0, SHA1, 0);
t = FIELD_DP64(t, ID_AA64ISAR0, SHA2, 0);
t = FIELD_DP64(t, ID_AA64ISAR0, SHA3, 0);
t = FIELD_DP64(t, ID_AA64ISAR0, SM3, 0);
t = FIELD_DP64(t, ID_AA64ISAR0, SM4, 0);
t = FIELD_DP64(t, ID_AA64ISAR0, DP, 0);
cpu->isar.id_aa64isar0 = t;
t = cpu->isar.id_aa64isar1;
t = FIELD_DP64(t, ID_AA64ISAR1, FCMA, 0);
t = FIELD_DP64(t, ID_AA64ISAR1, BF16, 0);
t = FIELD_DP64(t, ID_AA64ISAR1, I8MM, 0);
cpu->isar.id_aa64isar1 = t;
t = cpu->isar.id_aa64pfr0;
t = FIELD_DP64(t, ID_AA64PFR0, ADVSIMD, 0xf);
cpu->isar.id_aa64pfr0 = t;
u = cpu->isar.id_isar5;
u = FIELD_DP32(u, ID_ISAR5, AES, 0);
u = FIELD_DP32(u, ID_ISAR5, SHA1, 0);
u = FIELD_DP32(u, ID_ISAR5, SHA2, 0);
u = FIELD_DP32(u, ID_ISAR5, RDM, 0);
u = FIELD_DP32(u, ID_ISAR5, VCMA, 0);
cpu->isar.id_isar5 = u;
u = cpu->isar.id_isar6;
u = FIELD_DP32(u, ID_ISAR6, DP, 0);
u = FIELD_DP32(u, ID_ISAR6, FHM, 0);
u = FIELD_DP32(u, ID_ISAR6, BF16, 0);
u = FIELD_DP32(u, ID_ISAR6, I8MM, 0);
cpu->isar.id_isar6 = u;
if (!arm_feature(env, ARM_FEATURE_M)) {
u = cpu->isar.mvfr1;
u = FIELD_DP32(u, MVFR1, SIMDLS, 0);
u = FIELD_DP32(u, MVFR1, SIMDINT, 0);
u = FIELD_DP32(u, MVFR1, SIMDSP, 0);
u = FIELD_DP32(u, MVFR1, SIMDHP, 0);
cpu->isar.mvfr1 = u;
u = cpu->isar.mvfr2;
u = FIELD_DP32(u, MVFR2, SIMDMISC, 0);
cpu->isar.mvfr2 = u;
}
}
if (!cpu->has_neon && !cpu->has_vfp) {
uint64_t t;
uint32_t u;
t = cpu->isar.id_aa64isar0;
t = FIELD_DP64(t, ID_AA64ISAR0, FHM, 0);
cpu->isar.id_aa64isar0 = t;
t = cpu->isar.id_aa64isar1;
t = FIELD_DP64(t, ID_AA64ISAR1, FRINTTS, 0);
cpu->isar.id_aa64isar1 = t;
u = cpu->isar.mvfr0;
u = FIELD_DP32(u, MVFR0, SIMDREG, 0);
cpu->isar.mvfr0 = u;
/* Despite the name, this field covers both VFP and Neon */
u = cpu->isar.mvfr1;
u = FIELD_DP32(u, MVFR1, SIMDFMAC, 0);
cpu->isar.mvfr1 = u;
}
if (arm_feature(env, ARM_FEATURE_M) && !cpu->has_dsp) {
uint32_t u;
unset_feature(env, ARM_FEATURE_THUMB_DSP);
u = cpu->isar.id_isar1;
u = FIELD_DP32(u, ID_ISAR1, EXTEND, 1);
cpu->isar.id_isar1 = u;
u = cpu->isar.id_isar2;
u = FIELD_DP32(u, ID_ISAR2, MULTU, 1);
u = FIELD_DP32(u, ID_ISAR2, MULTS, 1);
cpu->isar.id_isar2 = u;
u = cpu->isar.id_isar3;
u = FIELD_DP32(u, ID_ISAR3, SIMD, 1);
u = FIELD_DP32(u, ID_ISAR3, SATURATE, 0);
cpu->isar.id_isar3 = u;
}
/* Some features automatically imply others: */
if (arm_feature(env, ARM_FEATURE_V8)) {
if (arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_V7);
} else {
set_feature(env, ARM_FEATURE_V7VE);
}
}
/*
* There exist AArch64 cpus without AArch32 support. When KVM
* queries ID_ISAR0_EL1 on such a host, the value is UNKNOWN.
* Similarly, we cannot check ID_AA64PFR0 without AArch64 support.
* As a general principle, we also do not make ID register
* consistency checks anywhere unless using TCG, because only
* for TCG would a consistency-check failure be a QEMU bug.
*/
if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
no_aa32 = !cpu_isar_feature(aa64_aa32, cpu);
}
if (arm_feature(env, ARM_FEATURE_V7VE)) {
/* v7 Virtualization Extensions. In real hardware this implies
* EL2 and also the presence of the Security Extensions.
* For QEMU, for backwards-compatibility we implement some
* CPUs or CPU configs which have no actual EL2 or EL3 but do
* include the various other features that V7VE implies.
* Presence of EL2 itself is ARM_FEATURE_EL2, and of the
* Security Extensions is ARM_FEATURE_EL3.
*/
assert(!tcg_enabled() || no_aa32 ||
cpu_isar_feature(aa32_arm_div, cpu));
set_feature(env, ARM_FEATURE_LPAE);
set_feature(env, ARM_FEATURE_V7);
}
if (arm_feature(env, ARM_FEATURE_V7)) {
set_feature(env, ARM_FEATURE_VAPA);
set_feature(env, ARM_FEATURE_THUMB2);
set_feature(env, ARM_FEATURE_MPIDR);
if (!arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_V6K);
} else {
set_feature(env, ARM_FEATURE_V6);
}
/* Always define VBAR for V7 CPUs even if it doesn't exist in
* non-EL3 configs. This is needed by some legacy boards.
*/
set_feature(env, ARM_FEATURE_VBAR);
}
if (arm_feature(env, ARM_FEATURE_V6K)) {
set_feature(env, ARM_FEATURE_V6);
set_feature(env, ARM_FEATURE_MVFR);
}
if (arm_feature(env, ARM_FEATURE_V6)) {
set_feature(env, ARM_FEATURE_V5);
if (!arm_feature(env, ARM_FEATURE_M)) {
assert(!tcg_enabled() || no_aa32 ||
cpu_isar_feature(aa32_jazelle, cpu));
set_feature(env, ARM_FEATURE_AUXCR);
}
}
if (arm_feature(env, ARM_FEATURE_V5)) {
set_feature(env, ARM_FEATURE_V4T);
}
if (arm_feature(env, ARM_FEATURE_LPAE)) {
set_feature(env, ARM_FEATURE_V7MP);
}
if (arm_feature(env, ARM_FEATURE_CBAR_RO)) {
set_feature(env, ARM_FEATURE_CBAR);
}
if (arm_feature(env, ARM_FEATURE_THUMB2) &&
!arm_feature(env, ARM_FEATURE_M)) {
set_feature(env, ARM_FEATURE_THUMB_DSP);
}
/*
* We rely on no XScale CPU having VFP so we can use the same bits in the
* TB flags field for VECSTRIDE and XSCALE_CPAR.
*/
assert(arm_feature(&cpu->env, ARM_FEATURE_AARCH64) ||
!cpu_isar_feature(aa32_vfp_simd, cpu) ||
!arm_feature(env, ARM_FEATURE_XSCALE));
if (arm_feature(env, ARM_FEATURE_V7) &&
!arm_feature(env, ARM_FEATURE_M) &&
!arm_feature(env, ARM_FEATURE_PMSA)) {
/* v7VMSA drops support for the old ARMv5 tiny pages, so we
* can use 4K pages.
*/
pagebits = 12;
} else {
/* For CPUs which might have tiny 1K pages, or which have an
* MPU and might have small region sizes, stick with 1K pages.
*/
pagebits = 10;
}
if (!set_preferred_target_page_bits(pagebits)) {
/* This can only ever happen for hotplugging a CPU, or if
* the board code incorrectly creates a CPU which it has
* promised via minimum_page_size that it will not.
*/
error_setg(errp, "This CPU requires a smaller page size than the "
"system is using");
return;
}
/* This cpu-id-to-MPIDR affinity is used only for TCG; KVM will override it.
* We don't support setting cluster ID ([16..23]) (known as Aff2
* in later ARM ARM versions), or any of the higher affinity level fields,
* so these bits always RAZ.
*/
if (cpu->mp_affinity == ARM64_AFFINITY_INVALID) {
cpu->mp_affinity = arm_cpu_mp_affinity(cs->cpu_index,
ARM_DEFAULT_CPUS_PER_CLUSTER);
}
if (cpu->reset_hivecs) {
cpu->reset_sctlr |= (1 << 13);
}
if (cpu->cfgend) {
if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
cpu->reset_sctlr |= SCTLR_EE;
} else {
cpu->reset_sctlr |= SCTLR_B;
}
}
if (!arm_feature(env, ARM_FEATURE_M) && !cpu->has_el3) {
/* If the has_el3 CPU property is disabled then we need to disable the
* feature.
*/
unset_feature(env, ARM_FEATURE_EL3);
/*
* Disable the security extension feature bits in the processor
* feature registers as well.
*/
cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1, ID_PFR1, SECURITY, 0);
cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, COPSDBG, 0);
cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
ID_AA64PFR0, EL3, 0);
}
if (!cpu->has_el2) {
unset_feature(env, ARM_FEATURE_EL2);
}
if (!cpu->has_pmu) {
unset_feature(env, ARM_FEATURE_PMU);
}
if (arm_feature(env, ARM_FEATURE_PMU)) {
pmu_init(cpu);
if (!kvm_enabled()) {
arm_register_pre_el_change_hook(cpu, &pmu_pre_el_change, 0);
arm_register_el_change_hook(cpu, &pmu_post_el_change, 0);
}
#ifndef CONFIG_USER_ONLY
cpu->pmu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, arm_pmu_timer_cb,
cpu);
#endif
} else {
cpu->isar.id_aa64dfr0 =
FIELD_DP64(cpu->isar.id_aa64dfr0, ID_AA64DFR0, PMUVER, 0);
cpu->isar.id_dfr0 = FIELD_DP32(cpu->isar.id_dfr0, ID_DFR0, PERFMON, 0);
cpu->pmceid0 = 0;
cpu->pmceid1 = 0;
}
if (!arm_feature(env, ARM_FEATURE_EL2)) {
/*
* Disable the hypervisor feature bits in the processor feature
* registers if we don't have EL2.
*/
cpu->isar.id_aa64pfr0 = FIELD_DP64(cpu->isar.id_aa64pfr0,
ID_AA64PFR0, EL2, 0);
cpu->isar.id_pfr1 = FIELD_DP32(cpu->isar.id_pfr1,
ID_PFR1, VIRTUALIZATION, 0);
}
#ifndef CONFIG_USER_ONLY
if (cpu->tag_memory == NULL && cpu_isar_feature(aa64_mte, cpu)) {
/*
* Disable the MTE feature bits if we do not have tag-memory
* provided by the machine.
*/
cpu->isar.id_aa64pfr1 =
FIELD_DP64(cpu->isar.id_aa64pfr1, ID_AA64PFR1, MTE, 0);
}
#endif
/* MPU can be configured out of a PMSA CPU either by setting has-mpu
* to false or by setting pmsav7-dregion to 0.
*/
if (!cpu->has_mpu) {
cpu->pmsav7_dregion = 0;
}
if (cpu->pmsav7_dregion == 0) {
cpu->has_mpu = false;
}
if (arm_feature(env, ARM_FEATURE_PMSA) &&
arm_feature(env, ARM_FEATURE_V7)) {
uint32_t nr = cpu->pmsav7_dregion;
if (nr > 0xff) {
error_setg(errp, "PMSAv7 MPU #regions invalid %" PRIu32, nr);
return;
}
if (nr) {
if (arm_feature(env, ARM_FEATURE_V8)) {
/* PMSAv8 */
env->pmsav8.rbar[M_REG_NS] = g_new0(uint32_t, nr);
env->pmsav8.rlar[M_REG_NS] = g_new0(uint32_t, nr);
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
env->pmsav8.rbar[M_REG_S] = g_new0(uint32_t, nr);
env->pmsav8.rlar[M_REG_S] = g_new0(uint32_t, nr);
}
} else {
env->pmsav7.drbar = g_new0(uint32_t, nr);
env->pmsav7.drsr = g_new0(uint32_t, nr);
env->pmsav7.dracr = g_new0(uint32_t, nr);
}
}
}
if (arm_feature(env, ARM_FEATURE_M_SECURITY)) {
uint32_t nr = cpu->sau_sregion;
if (nr > 0xff) {
error_setg(errp, "v8M SAU #regions invalid %" PRIu32, nr);
return;
}
if (nr) {
env->sau.rbar = g_new0(uint32_t, nr);
env->sau.rlar = g_new0(uint32_t, nr);
}
}
if (arm_feature(env, ARM_FEATURE_EL3)) {
set_feature(env, ARM_FEATURE_VBAR);
}
register_cp_regs_for_features(cpu);
arm_cpu_register_gdb_regs_for_features(cpu);
init_cpreg_list(cpu);
#ifndef CONFIG_USER_ONLY
MachineState *ms = MACHINE(qdev_get_machine());
unsigned int smp_cpus = ms->smp.cpus;
bool has_secure = cpu->has_el3 || arm_feature(env, ARM_FEATURE_M_SECURITY);
/*
* We must set cs->num_ases to the final value before
* the first call to cpu_address_space_init.
*/
if (cpu->tag_memory != NULL) {
cs->num_ases = 3 + has_secure;
} else {
cs->num_ases = 1 + has_secure;
}
if (has_secure) {
if (!cpu->secure_memory) {
cpu->secure_memory = cs->memory;
}
cpu_address_space_init(cs, ARMASIdx_S, "cpu-secure-memory",
cpu->secure_memory);
}
if (cpu->tag_memory != NULL) {
cpu_address_space_init(cs, ARMASIdx_TagNS, "cpu-tag-memory",
cpu->tag_memory);
if (has_secure) {
cpu_address_space_init(cs, ARMASIdx_TagS, "cpu-tag-memory",
cpu->secure_tag_memory);
}
}
cpu_address_space_init(cs, ARMASIdx_NS, "cpu-memory", cs->memory);
/* No core_count specified, default to smp_cpus. */
if (cpu->core_count == -1) {
cpu->core_count = smp_cpus;
}
#endif
if (tcg_enabled()) {
int dcz_blocklen = 4 << cpu->dcz_blocksize;
/*
* We only support DCZ blocklen that fits on one page.
*
* Architectually this is always true. However TARGET_PAGE_SIZE
* is variable and, for compatibility with -machine virt-2.7,
* is only 1KiB, as an artifact of legacy ARMv5 subpage support.
* But even then, while the largest architectural DCZ blocklen
* is 2KiB, no cpu actually uses such a large blocklen.
*/
assert(dcz_blocklen <= TARGET_PAGE_SIZE);
/*
* We only support DCZ blocksize >= 2*TAG_GRANULE, which is to say
* both nibbles of each byte storing tag data may be written at once.
* Since TAG_GRANULE is 16, this means that blocklen must be >= 32.
*/
if (cpu_isar_feature(aa64_mte, cpu)) {
assert(dcz_blocklen >= 2 * TAG_GRANULE);
}
}
qemu_init_vcpu(cs);
cpu_reset(cs);
acc->parent_realize(dev, errp);
}
static ObjectClass *arm_cpu_class_by_name(const char *cpu_model)
{
ObjectClass *oc;
char *typename;
char **cpuname;
const char *cpunamestr;
cpuname = g_strsplit(cpu_model, ",", 1);
cpunamestr = cpuname[0];
#ifdef CONFIG_USER_ONLY
/* For backwards compatibility usermode emulation allows "-cpu any",
* which has the same semantics as "-cpu max".
*/
if (!strcmp(cpunamestr, "any")) {
cpunamestr = "max";
}
#endif
typename = g_strdup_printf(ARM_CPU_TYPE_NAME("%s"), cpunamestr);
oc = object_class_by_name(typename);
g_strfreev(cpuname);
g_free(typename);
if (!oc || !object_class_dynamic_cast(oc, TYPE_ARM_CPU) ||
object_class_is_abstract(oc)) {
return NULL;
}
return oc;
}
static Property arm_cpu_properties[] = {
DEFINE_PROP_UINT64("midr", ARMCPU, midr, 0),
DEFINE_PROP_UINT64("mp-affinity", ARMCPU,
mp_affinity, ARM64_AFFINITY_INVALID),
DEFINE_PROP_INT32("node-id", ARMCPU, node_id, CPU_UNSET_NUMA_NODE_ID),
DEFINE_PROP_INT32("core-count", ARMCPU, core_count, -1),
DEFINE_PROP_END_OF_LIST()
};
static gchar *arm_gdb_arch_name(CPUState *cs)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
return g_strdup("iwmmxt");
}
return g_strdup("arm");
}
#ifndef CONFIG_USER_ONLY
#include "hw/core/sysemu-cpu-ops.h"
static const struct SysemuCPUOps arm_sysemu_ops = {
.get_phys_page_attrs_debug = arm_cpu_get_phys_page_attrs_debug,
.asidx_from_attrs = arm_asidx_from_attrs,
.write_elf32_note = arm_cpu_write_elf32_note,
.write_elf64_note = arm_cpu_write_elf64_note,
.virtio_is_big_endian = arm_cpu_virtio_is_big_endian,
.legacy_vmsd = &vmstate_arm_cpu,
};
#endif
#ifdef CONFIG_TCG
static const struct TCGCPUOps arm_tcg_ops = {
.initialize = arm_translate_init,
.synchronize_from_tb = arm_cpu_synchronize_from_tb,
.debug_excp_handler = arm_debug_excp_handler,
#ifdef CONFIG_USER_ONLY
.record_sigsegv = arm_cpu_record_sigsegv,
.record_sigbus = arm_cpu_record_sigbus,
#else
.tlb_fill = arm_cpu_tlb_fill,
.cpu_exec_interrupt = arm_cpu_exec_interrupt,
.do_interrupt = arm_cpu_do_interrupt,
.do_transaction_failed = arm_cpu_do_transaction_failed,
.do_unaligned_access = arm_cpu_do_unaligned_access,
.adjust_watchpoint_address = arm_adjust_watchpoint_address,
.debug_check_watchpoint = arm_debug_check_watchpoint,
.debug_check_breakpoint = arm_debug_check_breakpoint,
#endif /* !CONFIG_USER_ONLY */
};
#endif /* CONFIG_TCG */
static void arm_cpu_class_init(ObjectClass *oc, void *data)
{
ARMCPUClass *acc = ARM_CPU_CLASS(oc);
CPUClass *cc = CPU_CLASS(acc);
DeviceClass *dc = DEVICE_CLASS(oc);
device_class_set_parent_realize(dc, arm_cpu_realizefn,
&acc->parent_realize);
device_class_set_props(dc, arm_cpu_properties);
device_class_set_parent_reset(dc, arm_cpu_reset, &acc->parent_reset);
cc->class_by_name = arm_cpu_class_by_name;
cc->has_work = arm_cpu_has_work;
cc->dump_state = arm_cpu_dump_state;
cc->set_pc = arm_cpu_set_pc;
cc->gdb_read_register = arm_cpu_gdb_read_register;
cc->gdb_write_register = arm_cpu_gdb_write_register;
#ifndef CONFIG_USER_ONLY
cc->sysemu_ops = &arm_sysemu_ops;
#endif
cc->gdb_num_core_regs = 26;
cc->gdb_core_xml_file = "arm-core.xml";
cc->gdb_arch_name = arm_gdb_arch_name;
cc->gdb_get_dynamic_xml = arm_gdb_get_dynamic_xml;
cc->gdb_stop_before_watchpoint = true;
cc->disas_set_info = arm_disas_set_info;
#ifdef CONFIG_TCG
cc->tcg_ops = &arm_tcg_ops;
#endif /* CONFIG_TCG */
}
static void arm_cpu_instance_init(Object *obj)
{
ARMCPUClass *acc = ARM_CPU_GET_CLASS(obj);
acc->info->initfn(obj);
arm_cpu_post_init(obj);
}
static void cpu_register_class_init(ObjectClass *oc, void *data)
{
ARMCPUClass *acc = ARM_CPU_CLASS(oc);
acc->info = data;
}
void arm_cpu_register(const ARMCPUInfo *info)
{
TypeInfo type_info = {
.parent = TYPE_ARM_CPU,
.instance_size = sizeof(ARMCPU),
.instance_align = __alignof__(ARMCPU),
.instance_init = arm_cpu_instance_init,
.class_size = sizeof(ARMCPUClass),
.class_init = info->class_init ?: cpu_register_class_init,
.class_data = (void *)info,
};
type_info.name = g_strdup_printf("%s-" TYPE_ARM_CPU, info->name);
type_register(&type_info);
g_free((void *)type_info.name);
}
static const TypeInfo arm_cpu_type_info = {
.name = TYPE_ARM_CPU,
.parent = TYPE_CPU,
.instance_size = sizeof(ARMCPU),
.instance_align = __alignof__(ARMCPU),
.instance_init = arm_cpu_initfn,
.instance_finalize = arm_cpu_finalizefn,
.abstract = true,
.class_size = sizeof(ARMCPUClass),
.class_init = arm_cpu_class_init,
};
static void arm_cpu_register_types(void)
{
type_register_static(&arm_cpu_type_info);
}
type_init(arm_cpu_register_types)
|