1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
|
/*
* Software MMU support
*
* Generate helpers used by TCG for qemu_ld/st ops and code load
* functions.
*
* Included from target op helpers and exec.c.
*
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/timer.h"
#include "exec/address-spaces.h"
#include "exec/memory.h"
#define DATA_SIZE (1 << SHIFT)
#if DATA_SIZE == 8
#define SUFFIX q
#define LSUFFIX q
#define SDATA_TYPE int64_t
#define DATA_TYPE uint64_t
#elif DATA_SIZE == 4
#define SUFFIX l
#define LSUFFIX l
#define SDATA_TYPE int32_t
#define DATA_TYPE uint32_t
#elif DATA_SIZE == 2
#define SUFFIX w
#define LSUFFIX uw
#define SDATA_TYPE int16_t
#define DATA_TYPE uint16_t
#elif DATA_SIZE == 1
#define SUFFIX b
#define LSUFFIX ub
#define SDATA_TYPE int8_t
#define DATA_TYPE uint8_t
#else
#error unsupported data size
#endif
/* For the benefit of TCG generated code, we want to avoid the complication
of ABI-specific return type promotion and always return a value extended
to the register size of the host. This is tcg_target_long, except in the
case of a 32-bit host and 64-bit data, and for that we always have
uint64_t. Don't bother with this widened value for SOFTMMU_CODE_ACCESS. */
#if defined(SOFTMMU_CODE_ACCESS) || DATA_SIZE == 8
# define WORD_TYPE DATA_TYPE
# define USUFFIX SUFFIX
#else
# define WORD_TYPE tcg_target_ulong
# define USUFFIX glue(u, SUFFIX)
# define SSUFFIX glue(s, SUFFIX)
#endif
#ifdef SOFTMMU_CODE_ACCESS
#define READ_ACCESS_TYPE MMU_INST_FETCH
#define ADDR_READ addr_code
#else
#define READ_ACCESS_TYPE MMU_DATA_LOAD
#define ADDR_READ addr_read
#endif
#if DATA_SIZE == 8
# define BSWAP(X) bswap64(X)
#elif DATA_SIZE == 4
# define BSWAP(X) bswap32(X)
#elif DATA_SIZE == 2
# define BSWAP(X) bswap16(X)
#else
# define BSWAP(X) (X)
#endif
#ifdef TARGET_WORDS_BIGENDIAN
# define TGT_BE(X) (X)
# define TGT_LE(X) BSWAP(X)
#else
# define TGT_BE(X) BSWAP(X)
# define TGT_LE(X) (X)
#endif
#if DATA_SIZE == 1
# define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
# define helper_be_ld_name helper_le_ld_name
# define helper_le_lds_name glue(glue(helper_ret_ld, SSUFFIX), MMUSUFFIX)
# define helper_be_lds_name helper_le_lds_name
# define helper_le_st_name glue(glue(helper_ret_st, SUFFIX), MMUSUFFIX)
# define helper_be_st_name helper_le_st_name
#else
# define helper_le_ld_name glue(glue(helper_le_ld, USUFFIX), MMUSUFFIX)
# define helper_be_ld_name glue(glue(helper_be_ld, USUFFIX), MMUSUFFIX)
# define helper_le_lds_name glue(glue(helper_le_ld, SSUFFIX), MMUSUFFIX)
# define helper_be_lds_name glue(glue(helper_be_ld, SSUFFIX), MMUSUFFIX)
# define helper_le_st_name glue(glue(helper_le_st, SUFFIX), MMUSUFFIX)
# define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
#endif
#ifdef TARGET_WORDS_BIGENDIAN
# define helper_te_ld_name helper_be_ld_name
# define helper_te_st_name helper_be_st_name
#else
# define helper_te_ld_name helper_le_ld_name
# define helper_te_st_name helper_le_st_name
#endif
/* macro to check the victim tlb */
#define VICTIM_TLB_HIT(ty) \
({ \
/* we are about to do a page table walk. our last hope is the \
* victim tlb. try to refill from the victim tlb before walking the \
* page table. */ \
int vidx; \
CPUIOTLBEntry tmpiotlb; \
CPUTLBEntry tmptlb; \
for (vidx = CPU_VTLB_SIZE-1; vidx >= 0; --vidx) { \
if (env->tlb_v_table[mmu_idx][vidx].ty == (addr & TARGET_PAGE_MASK)) {\
/* found entry in victim tlb, swap tlb and iotlb */ \
tmptlb = env->tlb_table[mmu_idx][index]; \
env->tlb_table[mmu_idx][index] = env->tlb_v_table[mmu_idx][vidx]; \
env->tlb_v_table[mmu_idx][vidx] = tmptlb; \
tmpiotlb = env->iotlb[mmu_idx][index]; \
env->iotlb[mmu_idx][index] = env->iotlb_v[mmu_idx][vidx]; \
env->iotlb_v[mmu_idx][vidx] = tmpiotlb; \
break; \
} \
} \
/* return true when there is a vtlb hit, i.e. vidx >=0 */ \
vidx >= 0; \
})
#ifndef SOFTMMU_CODE_ACCESS
static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
CPUIOTLBEntry *iotlbentry,
target_ulong addr,
uintptr_t retaddr)
{
uint64_t val;
CPUState *cpu = ENV_GET_CPU(env);
hwaddr physaddr = iotlbentry->addr;
MemoryRegion *mr = iotlb_to_region(cpu, physaddr);
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
cpu->mem_io_pc = retaddr;
if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
cpu_io_recompile(cpu, retaddr);
}
cpu->mem_io_vaddr = addr;
memory_region_dispatch_read(mr, physaddr, &val, 1 << SHIFT,
iotlbentry->attrs);
return val;
}
#endif
#ifdef SOFTMMU_CODE_ACCESS
static __attribute__((unused))
#endif
WORD_TYPE helper_le_ld_name(CPUArchState *env, target_ulong addr,
TCGMemOpIdx oi, uintptr_t retaddr)
{
unsigned mmu_idx = get_mmuidx(oi);
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
uintptr_t haddr;
DATA_TYPE res;
/* Adjust the given return address. */
retaddr -= GETPC_ADJ;
/* If the TLB entry is for a different page, reload and try again. */
if ((addr & TARGET_PAGE_MASK)
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if ((addr & (DATA_SIZE - 1)) != 0
&& (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
mmu_idx, retaddr);
}
if (!VICTIM_TLB_HIT(ADDR_READ)) {
tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
mmu_idx, retaddr);
}
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
}
/* Handle an IO access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
CPUIOTLBEntry *iotlbentry;
if ((addr & (DATA_SIZE - 1)) != 0) {
goto do_unaligned_access;
}
iotlbentry = &env->iotlb[mmu_idx][index];
/* ??? Note that the io helpers always read data in the target
byte ordering. We should push the LE/BE request down into io. */
res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
res = TGT_LE(res);
return res;
}
/* Handle slow unaligned access (it spans two pages or IO). */
if (DATA_SIZE > 1
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
>= TARGET_PAGE_SIZE)) {
target_ulong addr1, addr2;
DATA_TYPE res1, res2;
unsigned shift;
do_unaligned_access:
if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
mmu_idx, retaddr);
}
addr1 = addr & ~(DATA_SIZE - 1);
addr2 = addr1 + DATA_SIZE;
/* Note the adjustment at the beginning of the function.
Undo that for the recursion. */
res1 = helper_le_ld_name(env, addr1, oi, retaddr + GETPC_ADJ);
res2 = helper_le_ld_name(env, addr2, oi, retaddr + GETPC_ADJ);
shift = (addr & (DATA_SIZE - 1)) * 8;
/* Little-endian combine. */
res = (res1 >> shift) | (res2 << ((DATA_SIZE * 8) - shift));
return res;
}
/* Handle aligned access or unaligned access in the same page. */
if ((addr & (DATA_SIZE - 1)) != 0
&& (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
mmu_idx, retaddr);
}
haddr = addr + env->tlb_table[mmu_idx][index].addend;
#if DATA_SIZE == 1
res = glue(glue(ld, LSUFFIX), _p)((uint8_t *)haddr);
#else
res = glue(glue(ld, LSUFFIX), _le_p)((uint8_t *)haddr);
#endif
return res;
}
#if DATA_SIZE > 1
#ifdef SOFTMMU_CODE_ACCESS
static __attribute__((unused))
#endif
WORD_TYPE helper_be_ld_name(CPUArchState *env, target_ulong addr,
TCGMemOpIdx oi, uintptr_t retaddr)
{
unsigned mmu_idx = get_mmuidx(oi);
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
uintptr_t haddr;
DATA_TYPE res;
/* Adjust the given return address. */
retaddr -= GETPC_ADJ;
/* If the TLB entry is for a different page, reload and try again. */
if ((addr & TARGET_PAGE_MASK)
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if ((addr & (DATA_SIZE - 1)) != 0
&& (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
mmu_idx, retaddr);
}
if (!VICTIM_TLB_HIT(ADDR_READ)) {
tlb_fill(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
mmu_idx, retaddr);
}
tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
}
/* Handle an IO access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
CPUIOTLBEntry *iotlbentry;
if ((addr & (DATA_SIZE - 1)) != 0) {
goto do_unaligned_access;
}
iotlbentry = &env->iotlb[mmu_idx][index];
/* ??? Note that the io helpers always read data in the target
byte ordering. We should push the LE/BE request down into io. */
res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
res = TGT_BE(res);
return res;
}
/* Handle slow unaligned access (it spans two pages or IO). */
if (DATA_SIZE > 1
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
>= TARGET_PAGE_SIZE)) {
target_ulong addr1, addr2;
DATA_TYPE res1, res2;
unsigned shift;
do_unaligned_access:
if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
mmu_idx, retaddr);
}
addr1 = addr & ~(DATA_SIZE - 1);
addr2 = addr1 + DATA_SIZE;
/* Note the adjustment at the beginning of the function.
Undo that for the recursion. */
res1 = helper_be_ld_name(env, addr1, oi, retaddr + GETPC_ADJ);
res2 = helper_be_ld_name(env, addr2, oi, retaddr + GETPC_ADJ);
shift = (addr & (DATA_SIZE - 1)) * 8;
/* Big-endian combine. */
res = (res1 << shift) | (res2 >> ((DATA_SIZE * 8) - shift));
return res;
}
/* Handle aligned access or unaligned access in the same page. */
if ((addr & (DATA_SIZE - 1)) != 0
&& (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
mmu_idx, retaddr);
}
haddr = addr + env->tlb_table[mmu_idx][index].addend;
res = glue(glue(ld, LSUFFIX), _be_p)((uint8_t *)haddr);
return res;
}
#endif /* DATA_SIZE > 1 */
DATA_TYPE
glue(glue(helper_ld, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
int mmu_idx)
{
TCGMemOpIdx oi = make_memop_idx(SHIFT, mmu_idx);
return helper_te_ld_name (env, addr, oi, GETRA());
}
#ifndef SOFTMMU_CODE_ACCESS
/* Provide signed versions of the load routines as well. We can of course
avoid this for 64-bit data, or for 32-bit data on 32-bit host. */
#if DATA_SIZE * 8 < TCG_TARGET_REG_BITS
WORD_TYPE helper_le_lds_name(CPUArchState *env, target_ulong addr,
TCGMemOpIdx oi, uintptr_t retaddr)
{
return (SDATA_TYPE)helper_le_ld_name(env, addr, oi, retaddr);
}
# if DATA_SIZE > 1
WORD_TYPE helper_be_lds_name(CPUArchState *env, target_ulong addr,
TCGMemOpIdx oi, uintptr_t retaddr)
{
return (SDATA_TYPE)helper_be_ld_name(env, addr, oi, retaddr);
}
# endif
#endif
static inline void glue(io_write, SUFFIX)(CPUArchState *env,
CPUIOTLBEntry *iotlbentry,
DATA_TYPE val,
target_ulong addr,
uintptr_t retaddr)
{
CPUState *cpu = ENV_GET_CPU(env);
hwaddr physaddr = iotlbentry->addr;
MemoryRegion *mr = iotlb_to_region(cpu, physaddr);
physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
cpu_io_recompile(cpu, retaddr);
}
cpu->mem_io_vaddr = addr;
cpu->mem_io_pc = retaddr;
memory_region_dispatch_write(mr, physaddr, val, 1 << SHIFT,
iotlbentry->attrs);
}
void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
TCGMemOpIdx oi, uintptr_t retaddr)
{
unsigned mmu_idx = get_mmuidx(oi);
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
uintptr_t haddr;
/* Adjust the given return address. */
retaddr -= GETPC_ADJ;
/* If the TLB entry is for a different page, reload and try again. */
if ((addr & TARGET_PAGE_MASK)
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if ((addr & (DATA_SIZE - 1)) != 0
&& (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
mmu_idx, retaddr);
}
if (!VICTIM_TLB_HIT(addr_write)) {
tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
}
tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
}
/* Handle an IO access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
CPUIOTLBEntry *iotlbentry;
if ((addr & (DATA_SIZE - 1)) != 0) {
goto do_unaligned_access;
}
iotlbentry = &env->iotlb[mmu_idx][index];
/* ??? Note that the io helpers always read data in the target
byte ordering. We should push the LE/BE request down into io. */
val = TGT_LE(val);
glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
return;
}
/* Handle slow unaligned access (it spans two pages or IO). */
if (DATA_SIZE > 1
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
>= TARGET_PAGE_SIZE)) {
int i;
do_unaligned_access:
if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
mmu_idx, retaddr);
}
/* XXX: not efficient, but simple */
/* Note: relies on the fact that tlb_fill() does not remove the
* previous page from the TLB cache. */
for (i = DATA_SIZE - 1; i >= 0; i--) {
/* Little-endian extract. */
uint8_t val8 = val >> (i * 8);
/* Note the adjustment at the beginning of the function.
Undo that for the recursion. */
glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
oi, retaddr + GETPC_ADJ);
}
return;
}
/* Handle aligned access or unaligned access in the same page. */
if ((addr & (DATA_SIZE - 1)) != 0
&& (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
mmu_idx, retaddr);
}
haddr = addr + env->tlb_table[mmu_idx][index].addend;
#if DATA_SIZE == 1
glue(glue(st, SUFFIX), _p)((uint8_t *)haddr, val);
#else
glue(glue(st, SUFFIX), _le_p)((uint8_t *)haddr, val);
#endif
}
#if DATA_SIZE > 1
void helper_be_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
TCGMemOpIdx oi, uintptr_t retaddr)
{
unsigned mmu_idx = get_mmuidx(oi);
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
uintptr_t haddr;
/* Adjust the given return address. */
retaddr -= GETPC_ADJ;
/* If the TLB entry is for a different page, reload and try again. */
if ((addr & TARGET_PAGE_MASK)
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
if ((addr & (DATA_SIZE - 1)) != 0
&& (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
mmu_idx, retaddr);
}
if (!VICTIM_TLB_HIT(addr_write)) {
tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
}
tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
}
/* Handle an IO access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
CPUIOTLBEntry *iotlbentry;
if ((addr & (DATA_SIZE - 1)) != 0) {
goto do_unaligned_access;
}
iotlbentry = &env->iotlb[mmu_idx][index];
/* ??? Note that the io helpers always read data in the target
byte ordering. We should push the LE/BE request down into io. */
val = TGT_BE(val);
glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
return;
}
/* Handle slow unaligned access (it spans two pages or IO). */
if (DATA_SIZE > 1
&& unlikely((addr & ~TARGET_PAGE_MASK) + DATA_SIZE - 1
>= TARGET_PAGE_SIZE)) {
int i;
do_unaligned_access:
if ((get_memop(oi) & MO_AMASK) == MO_ALIGN) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
mmu_idx, retaddr);
}
/* XXX: not efficient, but simple */
/* Note: relies on the fact that tlb_fill() does not remove the
* previous page from the TLB cache. */
for (i = DATA_SIZE - 1; i >= 0; i--) {
/* Big-endian extract. */
uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
/* Note the adjustment at the beginning of the function.
Undo that for the recursion. */
glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
oi, retaddr + GETPC_ADJ);
}
return;
}
/* Handle aligned access or unaligned access in the same page. */
if ((addr & (DATA_SIZE - 1)) != 0
&& (get_memop(oi) & MO_AMASK) == MO_ALIGN) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
mmu_idx, retaddr);
}
haddr = addr + env->tlb_table[mmu_idx][index].addend;
glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
}
#endif /* DATA_SIZE > 1 */
void
glue(glue(helper_st, SUFFIX), MMUSUFFIX)(CPUArchState *env, target_ulong addr,
DATA_TYPE val, int mmu_idx)
{
TCGMemOpIdx oi = make_memop_idx(SHIFT, mmu_idx);
helper_te_st_name(env, addr, val, oi, GETRA());
}
#if DATA_SIZE == 1
/* Probe for whether the specified guest write access is permitted.
* If it is not permitted then an exception will be taken in the same
* way as if this were a real write access (and we will not return).
* Otherwise the function will return, and there will be a valid
* entry in the TLB for this access.
*/
void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
uintptr_t retaddr)
{
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
if ((addr & TARGET_PAGE_MASK)
!= (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
/* TLB entry is for a different page */
if (!VICTIM_TLB_HIT(addr_write)) {
tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
}
}
}
#endif
#endif /* !defined(SOFTMMU_CODE_ACCESS) */
#undef READ_ACCESS_TYPE
#undef SHIFT
#undef DATA_TYPE
#undef SUFFIX
#undef LSUFFIX
#undef DATA_SIZE
#undef ADDR_READ
#undef WORD_TYPE
#undef SDATA_TYPE
#undef USUFFIX
#undef SSUFFIX
#undef BSWAP
#undef TGT_BE
#undef TGT_LE
#undef CPU_BE
#undef CPU_LE
#undef helper_le_ld_name
#undef helper_be_ld_name
#undef helper_le_lds_name
#undef helper_be_lds_name
#undef helper_le_st_name
#undef helper_be_st_name
#undef helper_te_ld_name
#undef helper_te_st_name
|