aboutsummaryrefslogtreecommitdiff
path: root/rust/hw/char/pl011/src/device.rs
blob: b9f8fb134b501c76eb4907b079920709eb879ab3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
// Copyright 2024, Linaro Limited
// Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
// SPDX-License-Identifier: GPL-2.0-or-later

use core::ptr::{addr_of_mut, NonNull};
use std::{
    ffi::CStr,
    os::raw::{c_int, c_uchar, c_uint, c_void},
};

use qemu_api::{
    bindings::{self, *},
    c_str,
    definitions::ObjectImpl,
    device_class::{DeviceImpl, TYPE_SYS_BUS_DEVICE},
    impl_device_class,
    irq::InterruptSource,
};

use crate::{
    device_class,
    memory_ops::PL011_OPS,
    registers::{self, Interrupt},
    RegisterOffset,
};

/// Integer Baud Rate Divider, `UARTIBRD`
const IBRD_MASK: u32 = 0xffff;

/// Fractional Baud Rate Divider, `UARTFBRD`
const FBRD_MASK: u32 = 0x3f;

const DATA_BREAK: u32 = 1 << 10;

/// QEMU sourced constant.
pub const PL011_FIFO_DEPTH: usize = 16_usize;

#[derive(Clone, Copy, Debug)]
enum DeviceId {
    #[allow(dead_code)]
    Arm = 0,
    Luminary,
}

impl std::ops::Index<hwaddr> for DeviceId {
    type Output = c_uchar;

    fn index(&self, idx: hwaddr) -> &Self::Output {
        match self {
            Self::Arm => &Self::PL011_ID_ARM[idx as usize],
            Self::Luminary => &Self::PL011_ID_LUMINARY[idx as usize],
        }
    }
}

impl DeviceId {
    const PL011_ID_ARM: [c_uchar; 8] = [0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1];
    const PL011_ID_LUMINARY: [c_uchar; 8] = [0x11, 0x00, 0x18, 0x01, 0x0d, 0xf0, 0x05, 0xb1];
}

#[repr(C)]
#[derive(Debug, qemu_api_macros::Object, qemu_api_macros::offsets)]
/// PL011 Device Model in QEMU
pub struct PL011State {
    pub parent_obj: SysBusDevice,
    pub iomem: MemoryRegion,
    #[doc(alias = "fr")]
    pub flags: registers::Flags,
    #[doc(alias = "lcr")]
    pub line_control: registers::LineControl,
    #[doc(alias = "rsr")]
    pub receive_status_error_clear: registers::ReceiveStatusErrorClear,
    #[doc(alias = "cr")]
    pub control: registers::Control,
    pub dmacr: u32,
    pub int_enabled: u32,
    pub int_level: u32,
    pub read_fifo: [u32; PL011_FIFO_DEPTH],
    pub ilpr: u32,
    pub ibrd: u32,
    pub fbrd: u32,
    pub ifl: u32,
    pub read_pos: usize,
    pub read_count: usize,
    pub read_trigger: usize,
    #[doc(alias = "chr")]
    pub char_backend: CharBackend,
    /// QEMU interrupts
    ///
    /// ```text
    ///  * sysbus MMIO region 0: device registers
    ///  * sysbus IRQ 0: `UARTINTR` (combined interrupt line)
    ///  * sysbus IRQ 1: `UARTRXINTR` (receive FIFO interrupt line)
    ///  * sysbus IRQ 2: `UARTTXINTR` (transmit FIFO interrupt line)
    ///  * sysbus IRQ 3: `UARTRTINTR` (receive timeout interrupt line)
    ///  * sysbus IRQ 4: `UARTMSINTR` (momem status interrupt line)
    ///  * sysbus IRQ 5: `UARTEINTR` (error interrupt line)
    /// ```
    #[doc(alias = "irq")]
    pub interrupts: [InterruptSource; IRQMASK.len()],
    #[doc(alias = "clk")]
    pub clock: NonNull<Clock>,
    #[doc(alias = "migrate_clk")]
    pub migrate_clock: bool,
    /// The byte string that identifies the device.
    device_id: DeviceId,
}

impl ObjectImpl for PL011State {
    type Class = PL011Class;
    const TYPE_NAME: &'static CStr = crate::TYPE_PL011;
    const PARENT_TYPE_NAME: Option<&'static CStr> = Some(TYPE_SYS_BUS_DEVICE);
    const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init);
}

#[repr(C)]
pub struct PL011Class {
    _inner: [u8; 0],
}

impl DeviceImpl for PL011State {
    fn properties() -> &'static [Property] {
        &device_class::PL011_PROPERTIES
    }
    fn vmsd() -> Option<&'static VMStateDescription> {
        Some(&device_class::VMSTATE_PL011)
    }
    const REALIZE: Option<fn(&mut Self)> = Some(Self::realize);
    const RESET: Option<fn(&mut Self)> = Some(Self::reset);
}

impl_device_class!(PL011State);

impl PL011State {
    /// Initializes a pre-allocated, unitialized instance of `PL011State`.
    ///
    /// # Safety
    ///
    /// `self` must point to a correctly sized and aligned location for the
    /// `PL011State` type. It must not be called more than once on the same
    /// location/instance. All its fields are expected to hold unitialized
    /// values with the sole exception of `parent_obj`.
    unsafe fn init(&mut self) {
        const CLK_NAME: &CStr = c_str!("clk");

        let sbd = unsafe { &mut *(addr_of_mut!(*self).cast::<SysBusDevice>()) };

        // SAFETY:
        //
        // self and self.iomem are guaranteed to be valid at this point since callers
        // must make sure the `self` reference is valid.
        unsafe {
            memory_region_init_io(
                addr_of_mut!(self.iomem),
                addr_of_mut!(*self).cast::<Object>(),
                &PL011_OPS,
                addr_of_mut!(*self).cast::<c_void>(),
                Self::TYPE_NAME.as_ptr(),
                0x1000,
            );
            sysbus_init_mmio(sbd, addr_of_mut!(self.iomem));
        }

        for irq in self.interrupts.iter() {
            sbd.init_irq(irq);
        }

        let dev = addr_of_mut!(*self).cast::<DeviceState>();

        // SAFETY:
        //
        // self.clock is not initialized at this point; but since `NonNull<_>` is Copy,
        // we can overwrite the undefined value without side effects. This is
        // safe since all PL011State instances are created by QOM code which
        // calls this function to initialize the fields; therefore no code is
        // able to access an invalid self.clock value.
        unsafe {
            self.clock = NonNull::new(qdev_init_clock_in(
                dev,
                CLK_NAME.as_ptr(),
                None, /* pl011_clock_update */
                addr_of_mut!(*self).cast::<c_void>(),
                ClockEvent::ClockUpdate.0,
            ))
            .unwrap();
        }
    }

    pub fn read(&mut self, offset: hwaddr, _size: c_uint) -> std::ops::ControlFlow<u64, u64> {
        use RegisterOffset::*;

        std::ops::ControlFlow::Break(match RegisterOffset::try_from(offset) {
            Err(v) if (0x3f8..0x400).contains(&(v >> 2)) => {
                u64::from(self.device_id[(offset - 0xfe0) >> 2])
            }
            Err(_) => {
                // qemu_log_mask(LOG_GUEST_ERROR, "pl011_read: Bad offset 0x%x\n", (int)offset);
                0
            }
            Ok(DR) => {
                self.flags.set_receive_fifo_full(false);
                let c = self.read_fifo[self.read_pos];
                if self.read_count > 0 {
                    self.read_count -= 1;
                    self.read_pos = (self.read_pos + 1) & (self.fifo_depth() - 1);
                }
                if self.read_count == 0 {
                    self.flags.set_receive_fifo_empty(true);
                }
                if self.read_count + 1 == self.read_trigger {
                    self.int_level &= !registers::INT_RX;
                }
                // Update error bits.
                self.receive_status_error_clear = c.to_be_bytes()[3].into();
                self.update();
                // Must call qemu_chr_fe_accept_input, so return Continue:
                return std::ops::ControlFlow::Continue(c.into());
            }
            Ok(RSR) => u8::from(self.receive_status_error_clear).into(),
            Ok(FR) => u16::from(self.flags).into(),
            Ok(FBRD) => self.fbrd.into(),
            Ok(ILPR) => self.ilpr.into(),
            Ok(IBRD) => self.ibrd.into(),
            Ok(LCR_H) => u16::from(self.line_control).into(),
            Ok(CR) => {
                // We exercise our self-control.
                u16::from(self.control).into()
            }
            Ok(FLS) => self.ifl.into(),
            Ok(IMSC) => self.int_enabled.into(),
            Ok(RIS) => self.int_level.into(),
            Ok(MIS) => u64::from(self.int_level & self.int_enabled),
            Ok(ICR) => {
                // "The UARTICR Register is the interrupt clear register and is write-only"
                // Source: ARM DDI 0183G 3.3.13 Interrupt Clear Register, UARTICR
                0
            }
            Ok(DMACR) => self.dmacr.into(),
        })
    }

    pub fn write(&mut self, offset: hwaddr, value: u64) {
        // eprintln!("write offset {offset} value {value}");
        use RegisterOffset::*;
        let value: u32 = value as u32;
        match RegisterOffset::try_from(offset) {
            Err(_bad_offset) => {
                eprintln!("write bad offset {offset} value {value}");
            }
            Ok(DR) => {
                // ??? Check if transmitter is enabled.
                let ch: u8 = value as u8;
                // XXX this blocks entire thread. Rewrite to use
                // qemu_chr_fe_write and background I/O callbacks

                // SAFETY: self.char_backend is a valid CharBackend instance after it's been
                // initialized in realize().
                unsafe {
                    qemu_chr_fe_write_all(addr_of_mut!(self.char_backend), &ch, 1);
                }
                self.loopback_tx(value);
                self.int_level |= registers::INT_TX;
                self.update();
            }
            Ok(RSR) => {
                self.receive_status_error_clear = 0.into();
            }
            Ok(FR) => {
                // flag writes are ignored
            }
            Ok(ILPR) => {
                self.ilpr = value;
            }
            Ok(IBRD) => {
                self.ibrd = value;
            }
            Ok(FBRD) => {
                self.fbrd = value;
            }
            Ok(LCR_H) => {
                let value = value as u16;
                let new_val: registers::LineControl = value.into();
                // Reset the FIFO state on FIFO enable or disable
                if bool::from(self.line_control.fifos_enabled())
                    ^ bool::from(new_val.fifos_enabled())
                {
                    self.reset_fifo();
                }
                if self.line_control.send_break() ^ new_val.send_break() {
                    let mut break_enable: c_int = new_val.send_break().into();
                    // SAFETY: self.char_backend is a valid CharBackend instance after it's been
                    // initialized in realize().
                    unsafe {
                        qemu_chr_fe_ioctl(
                            addr_of_mut!(self.char_backend),
                            CHR_IOCTL_SERIAL_SET_BREAK as i32,
                            addr_of_mut!(break_enable).cast::<c_void>(),
                        );
                    }
                    self.loopback_break(break_enable > 0);
                }
                self.line_control = new_val;
                self.set_read_trigger();
            }
            Ok(CR) => {
                // ??? Need to implement the enable bit.
                let value = value as u16;
                self.control = value.into();
                self.loopback_mdmctrl();
            }
            Ok(FLS) => {
                self.ifl = value;
                self.set_read_trigger();
            }
            Ok(IMSC) => {
                self.int_enabled = value;
                self.update();
            }
            Ok(RIS) => {}
            Ok(MIS) => {}
            Ok(ICR) => {
                self.int_level &= !value;
                self.update();
            }
            Ok(DMACR) => {
                self.dmacr = value;
                if value & 3 > 0 {
                    // qemu_log_mask(LOG_UNIMP, "pl011: DMA not implemented\n");
                    eprintln!("pl011: DMA not implemented");
                }
            }
        }
    }

    #[inline]
    fn loopback_tx(&mut self, value: u32) {
        if !self.loopback_enabled() {
            return;
        }

        // Caveat:
        //
        // In real hardware, TX loopback happens at the serial-bit level
        // and then reassembled by the RX logics back into bytes and placed
        // into the RX fifo. That is, loopback happens after TX fifo.
        //
        // Because the real hardware TX fifo is time-drained at the frame
        // rate governed by the configured serial format, some loopback
        // bytes in TX fifo may still be able to get into the RX fifo
        // that could be full at times while being drained at software
        // pace.
        //
        // In such scenario, the RX draining pace is the major factor
        // deciding which loopback bytes get into the RX fifo, unless
        // hardware flow-control is enabled.
        //
        // For simplicity, the above described is not emulated.
        self.put_fifo(value);
    }

    fn loopback_mdmctrl(&mut self) {
        if !self.loopback_enabled() {
            return;
        }

        /*
         * Loopback software-driven modem control outputs to modem status inputs:
         *   FR.RI  <= CR.Out2
         *   FR.DCD <= CR.Out1
         *   FR.CTS <= CR.RTS
         *   FR.DSR <= CR.DTR
         *
         * The loopback happens immediately even if this call is triggered
         * by setting only CR.LBE.
         *
         * CTS/RTS updates due to enabled hardware flow controls are not
         * dealt with here.
         */

        self.flags.set_ring_indicator(self.control.out_2());
        self.flags.set_data_carrier_detect(self.control.out_1());
        self.flags.set_clear_to_send(self.control.request_to_send());
        self.flags
            .set_data_set_ready(self.control.data_transmit_ready());

        // Change interrupts based on updated FR
        let mut il = self.int_level;

        il &= !Interrupt::MS;

        if self.flags.data_set_ready() {
            il |= Interrupt::DSR as u32;
        }
        if self.flags.data_carrier_detect() {
            il |= Interrupt::DCD as u32;
        }
        if self.flags.clear_to_send() {
            il |= Interrupt::CTS as u32;
        }
        if self.flags.ring_indicator() {
            il |= Interrupt::RI as u32;
        }
        self.int_level = il;
        self.update();
    }

    fn loopback_break(&mut self, enable: bool) {
        if enable {
            self.loopback_tx(DATA_BREAK);
        }
    }

    fn set_read_trigger(&mut self) {
        self.read_trigger = 1;
    }

    pub fn realize(&mut self) {
        // SAFETY: self.char_backend has the correct size and alignment for a
        // CharBackend object, and its callbacks are of the correct types.
        unsafe {
            qemu_chr_fe_set_handlers(
                addr_of_mut!(self.char_backend),
                Some(pl011_can_receive),
                Some(pl011_receive),
                Some(pl011_event),
                None,
                addr_of_mut!(*self).cast::<c_void>(),
                core::ptr::null_mut(),
                true,
            );
        }
    }

    pub fn reset(&mut self) {
        self.line_control.reset();
        self.receive_status_error_clear.reset();
        self.dmacr = 0;
        self.int_enabled = 0;
        self.int_level = 0;
        self.ilpr = 0;
        self.ibrd = 0;
        self.fbrd = 0;
        self.read_trigger = 1;
        self.ifl = 0x12;
        self.control.reset();
        self.flags = 0.into();
        self.reset_fifo();
    }

    pub fn reset_fifo(&mut self) {
        self.read_count = 0;
        self.read_pos = 0;

        /* Reset FIFO flags */
        self.flags.reset();
    }

    pub fn can_receive(&self) -> bool {
        // trace_pl011_can_receive(s->lcr, s->read_count, r);
        self.read_count < self.fifo_depth()
    }

    pub fn event(&mut self, event: QEMUChrEvent) {
        if event == bindings::QEMUChrEvent::CHR_EVENT_BREAK && !self.fifo_enabled() {
            self.put_fifo(DATA_BREAK);
            self.receive_status_error_clear.set_break_error(true);
        }
    }

    #[inline]
    pub fn fifo_enabled(&self) -> bool {
        matches!(self.line_control.fifos_enabled(), registers::Mode::FIFO)
    }

    #[inline]
    pub fn loopback_enabled(&self) -> bool {
        self.control.enable_loopback()
    }

    #[inline]
    pub fn fifo_depth(&self) -> usize {
        // Note: FIFO depth is expected to be power-of-2
        if self.fifo_enabled() {
            return PL011_FIFO_DEPTH;
        }
        1
    }

    pub fn put_fifo(&mut self, value: c_uint) {
        let depth = self.fifo_depth();
        assert!(depth > 0);
        let slot = (self.read_pos + self.read_count) & (depth - 1);
        self.read_fifo[slot] = value;
        self.read_count += 1;
        self.flags.set_receive_fifo_empty(false);
        if self.read_count == depth {
            self.flags.set_receive_fifo_full(true);
        }

        if self.read_count == self.read_trigger {
            self.int_level |= registers::INT_RX;
            self.update();
        }
    }

    pub fn update(&self) {
        let flags = self.int_level & self.int_enabled;
        for (irq, i) in self.interrupts.iter().zip(IRQMASK) {
            irq.set(flags & i != 0);
        }
    }

    pub fn post_load(&mut self, _version_id: u32) -> Result<(), ()> {
        /* Sanity-check input state */
        if self.read_pos >= self.read_fifo.len() || self.read_count > self.read_fifo.len() {
            return Err(());
        }

        if !self.fifo_enabled() && self.read_count > 0 && self.read_pos > 0 {
            // Older versions of PL011 didn't ensure that the single
            // character in the FIFO in FIFO-disabled mode is in
            // element 0 of the array; convert to follow the current
            // code's assumptions.
            self.read_fifo[0] = self.read_fifo[self.read_pos];
            self.read_pos = 0;
        }

        self.ibrd &= IBRD_MASK;
        self.fbrd &= FBRD_MASK;

        Ok(())
    }
}

/// Which bits in the interrupt status matter for each outbound IRQ line ?
pub const IRQMASK: [u32; 6] = [
    /* combined IRQ */
    Interrupt::E
        | Interrupt::MS
        | Interrupt::RT as u32
        | Interrupt::TX as u32
        | Interrupt::RX as u32,
    Interrupt::RX as u32,
    Interrupt::TX as u32,
    Interrupt::RT as u32,
    Interrupt::MS,
    Interrupt::E,
];

/// # Safety
///
/// We expect the FFI user of this function to pass a valid pointer, that has
/// the same size as [`PL011State`]. We also expect the device is
/// readable/writeable from one thread at any time.
pub unsafe extern "C" fn pl011_can_receive(opaque: *mut c_void) -> c_int {
    unsafe {
        debug_assert!(!opaque.is_null());
        let state = NonNull::new_unchecked(opaque.cast::<PL011State>());
        state.as_ref().can_receive().into()
    }
}

/// # Safety
///
/// We expect the FFI user of this function to pass a valid pointer, that has
/// the same size as [`PL011State`]. We also expect the device is
/// readable/writeable from one thread at any time.
///
/// The buffer and size arguments must also be valid.
pub unsafe extern "C" fn pl011_receive(opaque: *mut c_void, buf: *const u8, size: c_int) {
    unsafe {
        debug_assert!(!opaque.is_null());
        let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>());
        if state.as_ref().loopback_enabled() {
            return;
        }
        if size > 0 {
            debug_assert!(!buf.is_null());
            state.as_mut().put_fifo(c_uint::from(buf.read_volatile()))
        }
    }
}

/// # Safety
///
/// We expect the FFI user of this function to pass a valid pointer, that has
/// the same size as [`PL011State`]. We also expect the device is
/// readable/writeable from one thread at any time.
pub unsafe extern "C" fn pl011_event(opaque: *mut c_void, event: QEMUChrEvent) {
    unsafe {
        debug_assert!(!opaque.is_null());
        let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>());
        state.as_mut().event(event)
    }
}

/// # Safety
///
/// We expect the FFI user of this function to pass a valid pointer for `chr`.
#[no_mangle]
pub unsafe extern "C" fn pl011_create(
    addr: u64,
    irq: qemu_irq,
    chr: *mut Chardev,
) -> *mut DeviceState {
    unsafe {
        let dev: *mut DeviceState = qdev_new(PL011State::TYPE_NAME.as_ptr());
        let sysbus: *mut SysBusDevice = dev.cast::<SysBusDevice>();

        qdev_prop_set_chr(dev, c_str!("chardev").as_ptr(), chr);
        sysbus_realize_and_unref(sysbus, addr_of_mut!(error_fatal));
        sysbus_mmio_map(sysbus, 0, addr);
        sysbus_connect_irq(sysbus, 0, irq);
        dev
    }
}

#[repr(C)]
#[derive(Debug, qemu_api_macros::Object)]
/// PL011 Luminary device model.
pub struct PL011Luminary {
    parent_obj: PL011State,
}

#[repr(C)]
pub struct PL011LuminaryClass {
    _inner: [u8; 0],
}

impl PL011Luminary {
    /// Initializes a pre-allocated, unitialized instance of `PL011Luminary`.
    ///
    /// # Safety
    ///
    /// We expect the FFI user of this function to pass a valid pointer, that
    /// has the same size as [`PL011Luminary`]. We also expect the device is
    /// readable/writeable from one thread at any time.
    unsafe fn init(&mut self) {
        self.parent_obj.device_id = DeviceId::Luminary;
    }
}

impl ObjectImpl for PL011Luminary {
    type Class = PL011LuminaryClass;
    const TYPE_NAME: &'static CStr = crate::TYPE_PL011_LUMINARY;
    const PARENT_TYPE_NAME: Option<&'static CStr> = Some(crate::TYPE_PL011);
    const INSTANCE_INIT: Option<unsafe fn(&mut Self)> = Some(Self::init);
}

impl DeviceImpl for PL011Luminary {}

impl_device_class!(PL011Luminary);