aboutsummaryrefslogtreecommitdiff
path: root/qemu-doc.texi
blob: 92dfd5c658a7e2200081fed7b70f5ea3e801de6a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
\input texinfo @c -*- texinfo -*-
@c %**start of header
@setfilename qemu-doc.info
@settitle QEMU Emulator User Documentation
@exampleindent 0
@paragraphindent 0
@c %**end of header

@iftex
@titlepage
@sp 7
@center @titlefont{QEMU Emulator}
@sp 1
@center @titlefont{User Documentation}
@sp 3
@end titlepage
@end iftex

@ifnottex
@node Top
@top

@menu
* Introduction::
* Installation::
* QEMU PC System emulator::
* QEMU System emulator for non PC targets::
* QEMU User space emulator::
* compilation:: Compilation from the sources
* Index::
@end menu
@end ifnottex

@contents

@node Introduction
@chapter Introduction

@menu
* intro_features:: Features
@end menu

@node intro_features
@section Features

QEMU is a FAST! processor emulator using dynamic translation to
achieve good emulation speed.

QEMU has two operating modes:

@itemize @minus

@item
Full system emulation. In this mode, QEMU emulates a full system (for
example a PC), including one or several processors and various
peripherals. It can be used to launch different Operating Systems
without rebooting the PC or to debug system code.

@item
User mode emulation. In this mode, QEMU can launch
processes compiled for one CPU on another CPU. It can be used to
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
to ease cross-compilation and cross-debugging.

@end itemize

QEMU can run without an host kernel driver and yet gives acceptable
performance.

For system emulation, the following hardware targets are supported:
@itemize
@item PC (x86 or x86_64 processor)
@item ISA PC (old style PC without PCI bus)
@item PREP (PowerPC processor)
@item G3 BW PowerMac (PowerPC processor)
@item Mac99 PowerMac (PowerPC processor, in progress)
@item Sun4m (32-bit Sparc processor)
@item Sun4u (64-bit Sparc processor, in progress)
@item Malta board (32-bit MIPS processor)
@item ARM Integrator/CP (ARM)
@item ARM Versatile baseboard (ARM)
@item ARM RealView Emulation baseboard (ARM)
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
@item Freescale MCF5208EVB (ColdFire V2).
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
@item Palm Tungsten|E PDA (OMAP310 processor)
@end itemize

For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.

@node Installation
@chapter Installation

If you want to compile QEMU yourself, see @ref{compilation}.

@menu
* install_linux::   Linux
* install_windows:: Windows
* install_mac::     Macintosh
@end menu

@node install_linux
@section Linux

If a precompiled package is available for your distribution - you just
have to install it. Otherwise, see @ref{compilation}.

@node install_windows
@section Windows

Download the experimental binary installer at
@url{http://www.free.oszoo.org/@/download.html}.

@node install_mac
@section Mac OS X

Download the experimental binary installer at
@url{http://www.free.oszoo.org/@/download.html}.

@node QEMU PC System emulator
@chapter QEMU PC System emulator

@menu
* pcsys_introduction:: Introduction
* pcsys_quickstart::   Quick Start
* sec_invocation::     Invocation
* pcsys_keys::         Keys
* pcsys_monitor::      QEMU Monitor
* disk_images::        Disk Images
* pcsys_network::      Network emulation
* direct_linux_boot::  Direct Linux Boot
* pcsys_usb::          USB emulation
* vnc_security::       VNC security
* gdb_usage::          GDB usage
* pcsys_os_specific::  Target OS specific information
@end menu

@node pcsys_introduction
@section Introduction

@c man begin DESCRIPTION

The QEMU PC System emulator simulates the
following peripherals:

@itemize @minus
@item
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
@item
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
extensions (hardware level, including all non standard modes).
@item
PS/2 mouse and keyboard
@item
2 PCI IDE interfaces with hard disk and CD-ROM support
@item
Floppy disk
@item
PCI/ISA PCI network adapters
@item
Serial ports
@item
Creative SoundBlaster 16 sound card
@item
ENSONIQ AudioPCI ES1370 sound card
@item
Adlib(OPL2) - Yamaha YM3812 compatible chip
@item
PCI UHCI USB controller and a virtual USB hub.
@end itemize

SMP is supported with up to 255 CPUs.

Note that adlib is only available when QEMU was configured with
-enable-adlib

QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
VGA BIOS.

QEMU uses YM3812 emulation by Tatsuyuki Satoh.

@c man end

@node pcsys_quickstart
@section Quick Start

Download and uncompress the linux image (@file{linux.img}) and type:

@example
qemu linux.img
@end example

Linux should boot and give you a prompt.

@node sec_invocation
@section Invocation

@example
@c man begin SYNOPSIS
usage: qemu [options] [disk_image]
@c man end
@end example

@c man begin OPTIONS
@var{disk_image} is a raw hard disk image for IDE hard disk 0.

General options:
@table @option
@item -M machine
Select the emulated machine (@code{-M ?} for list)

@item -fda file
@item -fdb file
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).

@item -hda file
@item -hdb file
@item -hdc file
@item -hdd file
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).

@item -cdrom file
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
@option{-cdrom} at the same time). You can use the host CD-ROM by
using @file{/dev/cdrom} as filename (@pxref{host_drives}).

@item -boot [a|c|d|n]
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
is the default.

@item -snapshot
Write to temporary files instead of disk image files. In this case,
the raw disk image you use is not written back. You can however force
the write back by pressing @key{C-a s} (@pxref{disk_images}).

@item -no-fd-bootchk
Disable boot signature checking for floppy disks in Bochs BIOS. It may
be needed to boot from old floppy disks.

@item -m megs
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.

@item -smp n
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
to 4.

@item -audio-help

Will show the audio subsystem help: list of drivers, tunable
parameters.

@item -soundhw card1,card2,... or -soundhw all

Enable audio and selected sound hardware. Use ? to print all
available sound hardware.

@example
qemu -soundhw sb16,adlib hda
qemu -soundhw es1370 hda
qemu -soundhw all hda
qemu -soundhw ?
@end example

@item -localtime
Set the real time clock to local time (the default is to UTC
time). This option is needed to have correct date in MS-DOS or
Windows.

@item -startdate date
Set the initial date of the real time clock. Valid format for
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
@code{2006-06-17}. The default value is @code{now}.

@item -pidfile file
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
from a script.

@item -daemonize
Daemonize the QEMU process after initialization.  QEMU will not detach from
standard IO until it is ready to receive connections on any of its devices.
This option is a useful way for external programs to launch QEMU without having
to cope with initialization race conditions.

@item -win2k-hack
Use it when installing Windows 2000 to avoid a disk full bug. After
Windows 2000 is installed, you no longer need this option (this option
slows down the IDE transfers).

@item -option-rom file
Load the contents of file as an option ROM.  This option is useful to load
things like EtherBoot.

@item -name string
Sets the name of the guest.  This name will be display in the SDL window
caption.  The name will also be used for the VNC server.

@end table

Display options:
@table @option

@item -nographic

Normally, QEMU uses SDL to display the VGA output. With this option,
you can totally disable graphical output so that QEMU is a simple
command line application. The emulated serial port is redirected on
the console. Therefore, you can still use QEMU to debug a Linux kernel
with a serial console.

@item -no-frame

Do not use decorations for SDL windows and start them using the whole
available screen space. This makes the using QEMU in a dedicated desktop
workspace more convenient.

@item -full-screen
Start in full screen.

@item -vnc display[,option[,option[,...]]]

Normally, QEMU uses SDL to display the VGA output.  With this option,
you can have QEMU listen on VNC display @var{display} and redirect the VGA
display over the VNC session.  It is very useful to enable the usb
tablet device when using this option (option @option{-usbdevice
tablet}). When using the VNC display, you must use the @option{-k}
parameter to set the keyboard layout if you are not using en-us. Valid
syntax for the @var{display} is

@table @code

@item @var{interface:d}

TCP connections will only be allowed from @var{interface} on display @var{d}.
By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
be omitted in which case the server will bind to all interfaces.

@item @var{unix:path}

Connections will be allowed over UNIX domain sockets where @var{path} is the
location of a unix socket to listen for connections on.

@item @var{none}

VNC is initialized by not started. The monitor @code{change} command can be used
to later start the VNC server.

@end table

Following the @var{display} value there may be one or more @var{option} flags
separated by commas. Valid options are

@table @code

@item @var{password}

Require that password based authentication is used for client connections.
The password must be set separately using the @code{change} command in the
@ref{pcsys_monitor}

@item @var{tls}

Require that client use TLS when communicating with the VNC server. This
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
attack. It is recommended that this option be combined with either the
@var{x509} or @var{x509verify} options.

@item @var{x509=/path/to/certificate/dir}

Valid if @var{tls} is specified. Require that x509 credentials are used
for negotiating the TLS session. The server will send its x509 certificate
to the client. It is recommended that a password be set on the VNC server
to provide authentication of the client when this is used. The path following
this option specifies where the x509 certificates are to be loaded from.
See the @ref{vnc_security} section for details on generating certificates.

@item @var{x509verify=/path/to/certificate/dir}

Valid if @var{tls} is specified. Require that x509 credentials are used
for negotiating the TLS session. The server will send its x509 certificate
to the client, and request that the client send its own x509 certificate.
The server will validate the client's certificate against the CA certificate,
and reject clients when validation fails. If the certificate authority is
trusted, this is a sufficient authentication mechanism. You may still wish
to set a password on the VNC server as a second authentication layer. The
path following this option specifies where the x509 certificates are to
be loaded from. See the @ref{vnc_security} section for details on generating
certificates.

@end table

@item -k language

Use keyboard layout @var{language} (for example @code{fr} for
French). This option is only needed where it is not easy to get raw PC
keycodes (e.g. on Macs, with some X11 servers or with a VNC
display). You don't normally need to use it on PC/Linux or PC/Windows
hosts.

The available layouts are:
@example
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
@end example

The default is @code{en-us}.

@end table

USB options:
@table @option

@item -usb
Enable the USB driver (will be the default soon)

@item -usbdevice devname
Add the USB device @var{devname}. @xref{usb_devices}.
@end table

Network options:

@table @option

@item -net nic[,vlan=n][,macaddr=addr][,model=type]
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
= 0 is the default). The NIC is an ne2k_pci by default on the PC
target. Optionally, the MAC address can be changed. If no
@option{-net} option is specified, a single NIC is created.
Qemu can emulate several different models of network card.
Valid values for @var{type} are
@code{i82551}, @code{i82557b}, @code{i82559er},
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
@code{smc91c111}, @code{lance} and @code{mcf_fec}.
Not all devices are supported on all targets.  Use -net nic,model=?
for a list of available devices for your target.

@item -net user[,vlan=n][,hostname=name]
Use the user mode network stack which requires no administrator
privilege to run.  @option{hostname=name} can be used to specify the client
hostname reported by the builtin DHCP server.

@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
Connect the host TAP network interface @var{name} to VLAN @var{n} and
use the network script @var{file} to configure it. The default
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
disable script execution. If @var{name} is not
provided, the OS automatically provides one.  @option{fd=h} can be
used to specify the handle of an already opened host TAP interface. Example:

@example
qemu linux.img -net nic -net tap
@end example

More complicated example (two NICs, each one connected to a TAP device)
@example
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
@end example


@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]

Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
machine using a TCP socket connection. If @option{listen} is
specified, QEMU waits for incoming connections on @var{port}
(@var{host} is optional). @option{connect} is used to connect to
another QEMU instance using the @option{listen} option. @option{fd=h}
specifies an already opened TCP socket.

Example:
@example
# launch a first QEMU instance
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
               -net socket,listen=:1234
# connect the VLAN 0 of this instance to the VLAN 0
# of the first instance
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
               -net socket,connect=127.0.0.1:1234
@end example

@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]

Create a VLAN @var{n} shared with another QEMU virtual
machines using a UDP multicast socket, effectively making a bus for
every QEMU with same multicast address @var{maddr} and @var{port}.
NOTES:
@enumerate
@item
Several QEMU can be running on different hosts and share same bus (assuming
correct multicast setup for these hosts).
@item
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
@url{http://user-mode-linux.sf.net}.
@item
Use @option{fd=h} to specify an already opened UDP multicast socket.
@end enumerate

Example:
@example
# launch one QEMU instance
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
               -net socket,mcast=230.0.0.1:1234
# launch another QEMU instance on same "bus"
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
               -net socket,mcast=230.0.0.1:1234
# launch yet another QEMU instance on same "bus"
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
               -net socket,mcast=230.0.0.1:1234
@end example

Example (User Mode Linux compat.):
@example
# launch QEMU instance (note mcast address selected
# is UML's default)
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
               -net socket,mcast=239.192.168.1:1102
# launch UML
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
@end example

@item -net none
Indicate that no network devices should be configured. It is used to
override the default configuration (@option{-net nic -net user}) which
is activated if no @option{-net} options are provided.

@item -tftp dir
When using the user mode network stack, activate a built-in TFTP
server. The files in @var{dir} will be exposed as the root of a TFTP server.
The TFTP client on the guest must be configured in binary mode (use the command
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
usual 10.0.2.2.

@item -bootp file
When using the user mode network stack, broadcast @var{file} as the BOOTP
filename.  In conjunction with @option{-tftp}, this can be used to network boot
a guest from a local directory.

Example (using pxelinux):
@example
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
@end example

@item -smb dir
When using the user mode network stack, activate a built-in SMB
server so that Windows OSes can access to the host files in @file{dir}
transparently.

In the guest Windows OS, the line:
@example
10.0.2.4 smbserver
@end example
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).

Then @file{dir} can be accessed in @file{\\smbserver\qemu}.

Note that a SAMBA server must be installed on the host OS in
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.

@item -redir [tcp|udp]:host-port:[guest-host]:guest-port

When using the user mode network stack, redirect incoming TCP or UDP
connections to the host port @var{host-port} to the guest
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
is not specified, its value is 10.0.2.15 (default address given by the
built-in DHCP server).

For example, to redirect host X11 connection from screen 1 to guest
screen 0, use the following:

@example
# on the host
qemu -redir tcp:6001::6000 [...]
# this host xterm should open in the guest X11 server
xterm -display :1
@end example

To redirect telnet connections from host port 5555 to telnet port on
the guest, use the following:

@example
# on the host
qemu -redir tcp:5555::23 [...]
telnet localhost 5555
@end example

Then when you use on the host @code{telnet localhost 5555}, you
connect to the guest telnet server.

@end table

Linux boot specific: When using these options, you can use a given
Linux kernel without installing it in the disk image. It can be useful
for easier testing of various kernels.

@table @option

@item -kernel bzImage
Use @var{bzImage} as kernel image.

@item -append cmdline
Use @var{cmdline} as kernel command line

@item -initrd file
Use @var{file} as initial ram disk.

@end table

Debug/Expert options:
@table @option

@item -serial dev
Redirect the virtual serial port to host character device
@var{dev}. The default device is @code{vc} in graphical mode and
@code{stdio} in non graphical mode.

This option can be used several times to simulate up to 4 serials
ports.

Use @code{-serial none} to disable all serial ports.

Available character devices are:
@table @code
@item vc[:WxH]
Virtual console. Optionally, a width and height can be given in pixel with
@example
vc:800x600
@end example
It is also possible to specify width or height in characters:
@example
vc:80Cx24C
@end example
@item pty
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
@item none
No device is allocated.
@item null
void device
@item /dev/XXX
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
parameters are set according to the emulated ones.
@item /dev/parportN
[Linux only, parallel port only] Use host parallel port
@var{N}. Currently SPP and EPP parallel port features can be used.
@item file:filename
Write output to filename. No character can be read.
@item stdio
[Unix only] standard input/output
@item pipe:filename
name pipe @var{filename}
@item COMn
[Windows only] Use host serial port @var{n}
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specified @var{src_port} a random port is automatically chosen.

If you just want a simple readonly console you can use @code{netcat} or
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
will appear in the netconsole session.

If you plan to send characters back via netconsole or you want to stop
and start qemu a lot of times, you should have qemu use the same
source port each time by using something like @code{-serial
udp::4555@@:4556} to qemu. Another approach is to use a patched
version of netcat which can listen to a TCP port and send and receive
characters via udp.  If you have a patched version of netcat which
activates telnet remote echo and single char transfer, then you can
use the following options to step up a netcat redirector to allow
telnet on port 5555 to access the qemu port.
@table @code
@item Qemu Options:
-serial udp::4555@@:4556
@item netcat options:
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
@item telnet options:
localhost 5555
@end table


@item tcp:[host]:port[,server][,nowait][,nodelay]
The TCP Net Console has two modes of operation.  It can send the serial
I/O to a location or wait for a connection from a location.  By default
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
the @var{server} option QEMU will wait for a client socket application
to connect to the port before continuing, unless the @code{nowait}
option was specified.  The @code{nodelay} option disables the Nagle buffering
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
one TCP connection at a time is accepted. You can use @code{telnet} to
connect to the corresponding character device.
@table @code
@item Example to send tcp console to 192.168.0.2 port 4444
-serial tcp:192.168.0.2:4444
@item Example to listen and wait on port 4444 for connection
-serial tcp::4444,server
@item Example to not wait and listen on ip 192.168.0.100 port 4444
-serial tcp:192.168.0.100:4444,server,nowait
@end table

@item telnet:host:port[,server][,nowait][,nodelay]
The telnet protocol is used instead of raw tcp sockets.  The options
work the same as if you had specified @code{-serial tcp}.  The
difference is that the port acts like a telnet server or client using
telnet option negotiation.  This will also allow you to send the
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
sequence.  Typically in unix telnet you do it with Control-] and then
type "send break" followed by pressing the enter key.

@item unix:path[,server][,nowait]
A unix domain socket is used instead of a tcp socket.  The option works the
same as if you had specified @code{-serial tcp} except the unix domain socket
@var{path} is used for connections.

@item mon:dev_string
This is a special option to allow the monitor to be multiplexed onto
another serial port.  The monitor is accessed with key sequence of
@key{Control-a} and then pressing @key{c}. See monitor access
@ref{pcsys_keys} in the -nographic section for more keys.
@var{dev_string} should be any one of the serial devices specified
above.  An example to multiplex the monitor onto a telnet server
listening on port 4444 would be:
@table @code
@item -serial mon:telnet::4444,server,nowait
@end table

@end table

@item -parallel dev
Redirect the virtual parallel port to host device @var{dev} (same
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
be used to use hardware devices connected on the corresponding host
parallel port.

This option can be used several times to simulate up to 3 parallel
ports.

Use @code{-parallel none} to disable all parallel ports.

@item -monitor dev
Redirect the monitor to host device @var{dev} (same devices as the
serial port).
The default device is @code{vc} in graphical mode and @code{stdio} in
non graphical mode.

@item -echr numeric_ascii_value
Change the escape character used for switching to the monitor when using
monitor and serial sharing.  The default is @code{0x01} when using the
@code{-nographic} option.  @code{0x01} is equal to pressing
@code{Control-a}.  You can select a different character from the ascii
control keys where 1 through 26 map to Control-a through Control-z.  For
instance you could use the either of the following to change the escape
character to Control-t.
@table @code
@item -echr 0x14
@item -echr 20
@end table

@item -s
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
@item -p port
Change gdb connection port.  @var{port} can be either a decimal number
to specify a TCP port, or a host device (same devices as the serial port).
@item -S
Do not start CPU at startup (you must type 'c' in the monitor).
@item -d
Output log in /tmp/qemu.log
@item -hdachs c,h,s,[,t]
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
all those parameters. This option is useful for old MS-DOS disk
images.

@item -L path
Set the directory for the BIOS, VGA BIOS and keymaps.

@item -std-vga
Simulate a standard VGA card with Bochs VBE extensions (default is
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
VBE extensions (e.g. Windows XP) and if you want to use high
resolution modes (>= 1280x1024x16) then you should use this option.

@item -no-acpi
Disable ACPI (Advanced Configuration and Power Interface) support. Use
it if your guest OS complains about ACPI problems (PC target machine
only).

@item -no-reboot
Exit instead of rebooting.

@item -loadvm file
Start right away with a saved state (@code{loadvm} in monitor)

@item -semihosting
Enable semihosting syscall emulation (ARM and M68K target machines only).

On ARM this implements the "Angel" interface.
On M68K this implements the "ColdFire GDB" interface used by libgloss.

Note that this allows guest direct access to the host filesystem,
so should only be used with trusted guest OS.
@end table

@c man end

@node pcsys_keys
@section Keys

@c man begin OPTIONS

During the graphical emulation, you can use the following keys:
@table @key
@item Ctrl-Alt-f
Toggle full screen

@item Ctrl-Alt-n
Switch to virtual console 'n'. Standard console mappings are:
@table @emph
@item 1
Target system display
@item 2
Monitor
@item 3
Serial port
@end table

@item Ctrl-Alt
Toggle mouse and keyboard grab.
@end table

In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.

During emulation, if you are using the @option{-nographic} option, use
@key{Ctrl-a h} to get terminal commands:

@table @key
@item Ctrl-a h
Print this help
@item Ctrl-a x
Exit emulator
@item Ctrl-a s
Save disk data back to file (if -snapshot)
@item Ctrl-a t
toggle console timestamps
@item Ctrl-a b
Send break (magic sysrq in Linux)
@item Ctrl-a c
Switch between console and monitor
@item Ctrl-a Ctrl-a
Send Ctrl-a
@end table
@c man end

@ignore

@c man begin SEEALSO
The HTML documentation of QEMU for more precise information and Linux
user mode emulator invocation.
@c man end

@c man begin AUTHOR
Fabrice Bellard
@c man end

@end ignore

@node pcsys_monitor
@section QEMU Monitor

The QEMU monitor is used to give complex commands to the QEMU
emulator. You can use it to:

@itemize @minus

@item
Remove or insert removable media images
(such as CD-ROM or floppies)

@item
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
from a disk file.

@item Inspect the VM state without an external debugger.

@end itemize

@subsection Commands

The following commands are available:

@table @option

@item help or ? [cmd]
Show the help for all commands or just for command @var{cmd}.

@item commit
Commit changes to the disk images (if -snapshot is used)

@item info subcommand
show various information about the system state

@table @option
@item info network
show the various VLANs and the associated devices
@item info block
show the block devices
@item info registers
show the cpu registers
@item info history
show the command line history
@item info pci
show emulated PCI device
@item info usb
show USB devices plugged on the virtual USB hub
@item info usbhost
show all USB host devices
@item info capture
show information about active capturing
@item info snapshots
show list of VM snapshots
@item info mice
show which guest mouse is receiving events
@end table

@item q or quit
Quit the emulator.

@item eject [-f] device
Eject a removable medium (use -f to force it).

@item change device setting

Change the configuration of a device

@table @option
@item change @var{diskdevice} @var{filename}
Change the medium for a removable disk device to point to @var{filename}. eg

@example
(qemu) change cdrom /path/to/some.iso
@end example

@item change vnc @var{display,options}
Change the configuration of the VNC server. The valid syntax for @var{display}
and @var{options} are described at @ref{sec_invocation}. eg

@example
(qemu) change vnc localhost:1
@end example

@item change vnc password

Change the password associated with the VNC server. The monitor will prompt for
the new password to be entered. VNC passwords are only significant upto 8 letters.
eg.

@example
(qemu) change vnc password
Password: ********
@end example

@end table

@item screendump filename
Save screen into PPM image @var{filename}.

@item mouse_move dx dy [dz]
Move the active mouse to the specified coordinates @var{dx} @var{dy}
with optional scroll axis @var{dz}.

@item mouse_button val
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).

@item mouse_set index
Set which mouse device receives events at given @var{index}, index
can be obtained with
@example
info mice
@end example

@item wavcapture filename [frequency [bits [channels]]]
Capture audio into @var{filename}. Using sample rate @var{frequency}
bits per sample @var{bits} and number of channels @var{channels}.

Defaults:
@itemize @minus
@item Sample rate = 44100 Hz - CD quality
@item Bits = 16
@item Number of channels = 2 - Stereo
@end itemize

@item stopcapture index
Stop capture with a given @var{index}, index can be obtained with
@example
info capture
@end example

@item log item1[,...]
Activate logging of the specified items to @file{/tmp/qemu.log}.

@item savevm [tag|id]
Create a snapshot of the whole virtual machine. If @var{tag} is
provided, it is used as human readable identifier. If there is already
a snapshot with the same tag or ID, it is replaced. More info at
@ref{vm_snapshots}.

@item loadvm tag|id
Set the whole virtual machine to the snapshot identified by the tag
@var{tag} or the unique snapshot ID @var{id}.

@item delvm tag|id
Delete the snapshot identified by @var{tag} or @var{id}.

@item stop
Stop emulation.

@item c or cont
Resume emulation.

@item gdbserver [port]
Start gdbserver session (default port=1234)

@item x/fmt addr
Virtual memory dump starting at @var{addr}.

@item xp /fmt addr
Physical memory dump starting at @var{addr}.

@var{fmt} is a format which tells the command how to format the
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}

@table @var
@item count
is the number of items to be dumped.

@item format
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
c (char) or i (asm instruction).

@item size
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
@code{h} or @code{w} can be specified with the @code{i} format to
respectively select 16 or 32 bit code instruction size.

@end table

Examples:
@itemize
@item
Dump 10 instructions at the current instruction pointer:
@example
(qemu) x/10i $eip
0x90107063:  ret
0x90107064:  sti
0x90107065:  lea    0x0(%esi,1),%esi
0x90107069:  lea    0x0(%edi,1),%edi
0x90107070:  ret
0x90107071:  jmp    0x90107080
0x90107073:  nop
0x90107074:  nop
0x90107075:  nop
0x90107076:  nop
@end example

@item
Dump 80 16 bit values at the start of the video memory.
@smallexample
(qemu) xp/80hx 0xb8000
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
@end smallexample
@end itemize

@item p or print/fmt expr

Print expression value. Only the @var{format} part of @var{fmt} is
used.

@item sendkey keys

Send @var{keys} to the emulator. Use @code{-} to press several keys
simultaneously. Example:
@example
sendkey ctrl-alt-f1
@end example

This command is useful to send keys that your graphical user interface
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.

@item system_reset

Reset the system.

@item usb_add devname

Add the USB device @var{devname}.  For details of available devices see
@ref{usb_devices}

@item usb_del devname

Remove the USB device @var{devname} from the QEMU virtual USB
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
command @code{info usb} to see the devices you can remove.

@end table

@subsection Integer expressions

The monitor understands integers expressions for every integer
argument. You can use register names to get the value of specifics
CPU registers by prefixing them with @emph{$}.

@node disk_images
@section Disk Images

Since version 0.6.1, QEMU supports many disk image formats, including
growable disk images (their size increase as non empty sectors are
written), compressed and encrypted disk images. Version 0.8.3 added
the new qcow2 disk image format which is essential to support VM
snapshots.

@menu
* disk_images_quickstart::    Quick start for disk image creation
* disk_images_snapshot_mode:: Snapshot mode
* vm_snapshots::              VM snapshots
* qemu_img_invocation::       qemu-img Invocation
* host_drives::               Using host drives
* disk_images_fat_images::    Virtual FAT disk images
@end menu

@node disk_images_quickstart
@subsection Quick start for disk image creation

You can create a disk image with the command:
@example
qemu-img create myimage.img mysize
@end example
where @var{myimage.img} is the disk image filename and @var{mysize} is its
size in kilobytes. You can add an @code{M} suffix to give the size in
megabytes and a @code{G} suffix for gigabytes.

See @ref{qemu_img_invocation} for more information.

@node disk_images_snapshot_mode
@subsection Snapshot mode

If you use the option @option{-snapshot}, all disk images are
considered as read only. When sectors in written, they are written in
a temporary file created in @file{/tmp}. You can however force the
write back to the raw disk images by using the @code{commit} monitor
command (or @key{C-a s} in the serial console).

@node vm_snapshots
@subsection VM snapshots

VM snapshots are snapshots of the complete virtual machine including
CPU state, RAM, device state and the content of all the writable
disks. In order to use VM snapshots, you must have at least one non
removable and writable block device using the @code{qcow2} disk image
format. Normally this device is the first virtual hard drive.

Use the monitor command @code{savevm} to create a new VM snapshot or
replace an existing one. A human readable name can be assigned to each
snapshot in addition to its numerical ID.

Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
a VM snapshot. @code{info snapshots} lists the available snapshots
with their associated information:

@example
(qemu) info snapshots
Snapshot devices: hda
Snapshot list (from hda):
ID        TAG                 VM SIZE                DATE       VM CLOCK
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
2                                 40M 2006-08-06 12:43:29   00:00:18.633
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
@end example

A VM snapshot is made of a VM state info (its size is shown in
@code{info snapshots}) and a snapshot of every writable disk image.
The VM state info is stored in the first @code{qcow2} non removable
and writable block device. The disk image snapshots are stored in
every disk image. The size of a snapshot in a disk image is difficult
to evaluate and is not shown by @code{info snapshots} because the
associated disk sectors are shared among all the snapshots to save
disk space (otherwise each snapshot would need a full copy of all the
disk images).

When using the (unrelated) @code{-snapshot} option
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
but they are deleted as soon as you exit QEMU.

VM snapshots currently have the following known limitations:
@itemize
@item
They cannot cope with removable devices if they are removed or
inserted after a snapshot is done.
@item
A few device drivers still have incomplete snapshot support so their
state is not saved or restored properly (in particular USB).
@end itemize

@node qemu_img_invocation
@subsection @code{qemu-img} Invocation

@include qemu-img.texi

@node host_drives
@subsection Using host drives

In addition to disk image files, QEMU can directly access host
devices. We describe here the usage for QEMU version >= 0.8.3.

@subsubsection Linux

On Linux, you can directly use the host device filename instead of a
disk image filename provided you have enough privileges to access
it. For example, use @file{/dev/cdrom} to access to the CDROM or
@file{/dev/fd0} for the floppy.

@table @code
@item CD
You can specify a CDROM device even if no CDROM is loaded. QEMU has
specific code to detect CDROM insertion or removal. CDROM ejection by
the guest OS is supported. Currently only data CDs are supported.
@item Floppy
You can specify a floppy device even if no floppy is loaded. Floppy
removal is currently not detected accurately (if you change floppy
without doing floppy access while the floppy is not loaded, the guest
OS will think that the same floppy is loaded).
@item Hard disks
Hard disks can be used. Normally you must specify the whole disk
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
see it as a partitioned disk. WARNING: unless you know what you do, it
is better to only make READ-ONLY accesses to the hard disk otherwise
you may corrupt your host data (use the @option{-snapshot} command
line option or modify the device permissions accordingly).
@end table

@subsubsection Windows

@table @code
@item CD
The preferred syntax is the drive letter (e.g. @file{d:}). The
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
supported as an alias to the first CDROM drive.

Currently there is no specific code to handle removable media, so it
is better to use the @code{change} or @code{eject} monitor commands to
change or eject media.
@item Hard disks
Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
where @var{N} is the drive number (0 is the first hard disk).

WARNING: unless you know what you do, it is better to only make
READ-ONLY accesses to the hard disk otherwise you may corrupt your
host data (use the @option{-snapshot} command line so that the
modifications are written in a temporary file).
@end table


@subsubsection Mac OS X

@file{/dev/cdrom} is an alias to the first CDROM.

Currently there is no specific code to handle removable media, so it
is better to use the @code{change} or @code{eject} monitor commands to
change or eject media.

@node disk_images_fat_images
@subsection Virtual FAT disk images

QEMU can automatically create a virtual FAT disk image from a
directory tree. In order to use it, just type:

@example
qemu linux.img -hdb fat:/my_directory
@end example

Then you access access to all the files in the @file{/my_directory}
directory without having to copy them in a disk image or to export
them via SAMBA or NFS. The default access is @emph{read-only}.

Floppies can be emulated with the @code{:floppy:} option:

@example
qemu linux.img -fda fat:floppy:/my_directory
@end example

A read/write support is available for testing (beta stage) with the
@code{:rw:} option:

@example
qemu linux.img -fda fat:floppy:rw:/my_directory
@end example

What you should @emph{never} do:
@itemize
@item use non-ASCII filenames ;
@item use "-snapshot" together with ":rw:" ;
@item expect it to work when loadvm'ing ;
@item write to the FAT directory on the host system while accessing it with the guest system.
@end itemize

@node pcsys_network
@section Network emulation

QEMU can simulate several network cards (PCI or ISA cards on the PC
target) and can connect them to an arbitrary number of Virtual Local
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
VLAN. VLAN can be connected between separate instances of QEMU to
simulate large networks. For simpler usage, a non privileged user mode
network stack can replace the TAP device to have a basic network
connection.

@subsection VLANs

QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
connection between several network devices. These devices can be for
example QEMU virtual Ethernet cards or virtual Host ethernet devices
(TAP devices).

@subsection Using TAP network interfaces

This is the standard way to connect QEMU to a real network. QEMU adds
a virtual network device on your host (called @code{tapN}), and you
can then configure it as if it was a real ethernet card.

@subsubsection Linux host

As an example, you can download the @file{linux-test-xxx.tar.gz}
archive and copy the script @file{qemu-ifup} in @file{/etc} and
configure properly @code{sudo} so that the command @code{ifconfig}
contained in @file{qemu-ifup} can be executed as root. You must verify
that your host kernel supports the TAP network interfaces: the
device @file{/dev/net/tun} must be present.

See @ref{sec_invocation} to have examples of command lines using the
TAP network interfaces.

@subsubsection Windows host

There is a virtual ethernet driver for Windows 2000/XP systems, called
TAP-Win32. But it is not included in standard QEMU for Windows,
so you will need to get it separately. It is part of OpenVPN package,
so download OpenVPN from : @url{http://openvpn.net/}.

@subsection Using the user mode network stack

By using the option @option{-net user} (default configuration if no
@option{-net} option is specified), QEMU uses a completely user mode
network stack (you don't need root privilege to use the virtual
network). The virtual network configuration is the following:

@example

         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
                           |          (10.0.2.2)
                           |
                           ---->  DNS server (10.0.2.3)
                           |
                           ---->  SMB server (10.0.2.4)
@end example

The QEMU VM behaves as if it was behind a firewall which blocks all
incoming connections. You can use a DHCP client to automatically
configure the network in the QEMU VM. The DHCP server assign addresses
to the hosts starting from 10.0.2.15.

In order to check that the user mode network is working, you can ping
the address 10.0.2.2 and verify that you got an address in the range
10.0.2.x from the QEMU virtual DHCP server.

Note that @code{ping} is not supported reliably to the internet as it
would require root privileges. It means you can only ping the local
router (10.0.2.2).

When using the built-in TFTP server, the router is also the TFTP
server.

When using the @option{-redir} option, TCP or UDP connections can be
redirected from the host to the guest. It allows for example to
redirect X11, telnet or SSH connections.

@subsection Connecting VLANs between QEMU instances

Using the @option{-net socket} option, it is possible to make VLANs
that span several QEMU instances. See @ref{sec_invocation} to have a
basic example.

@node direct_linux_boot
@section Direct Linux Boot

This section explains how to launch a Linux kernel inside QEMU without
having to make a full bootable image. It is very useful for fast Linux
kernel testing.

The syntax is:
@example
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
@end example

Use @option{-kernel} to provide the Linux kernel image and
@option{-append} to give the kernel command line arguments. The
@option{-initrd} option can be used to provide an INITRD image.

When using the direct Linux boot, a disk image for the first hard disk
@file{hda} is required because its boot sector is used to launch the
Linux kernel.

If you do not need graphical output, you can disable it and redirect
the virtual serial port and the QEMU monitor to the console with the
@option{-nographic} option. The typical command line is:
@example
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
     -append "root=/dev/hda console=ttyS0" -nographic
@end example

Use @key{Ctrl-a c} to switch between the serial console and the
monitor (@pxref{pcsys_keys}).

@node pcsys_usb
@section USB emulation

QEMU emulates a PCI UHCI USB controller. You can virtually plug
virtual USB devices or real host USB devices (experimental, works only
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
as necessary to connect multiple USB devices.

@menu
* usb_devices::
* host_usb_devices::
@end menu
@node usb_devices
@subsection Connecting USB devices

USB devices can be connected with the @option{-usbdevice} commandline option
or the @code{usb_add} monitor command.  Available devices are:

@table @var
@item @code{mouse}
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
@item @code{tablet}
Pointer device that uses absolute coordinates (like a touchscreen).
This means qemu is able to report the mouse position without having
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
@item @code{disk:file}
Mass storage device based on @var{file} (@pxref{disk_images})
@item @code{host:bus.addr}
Pass through the host device identified by @var{bus.addr}
(Linux only)
@item @code{host:vendor_id:product_id}
Pass through the host device identified by @var{vendor_id:product_id}
(Linux only)
@item @code{wacom-tablet}
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
above but it can be used with the tslib library because in addition to touch
coordinates it reports touch pressure.
@item @code{keyboard}
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
@end table

@node host_usb_devices
@subsection Using host USB devices on a Linux host

WARNING: this is an experimental feature. QEMU will slow down when
using it. USB devices requiring real time streaming (i.e. USB Video
Cameras) are not supported yet.

@enumerate
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
is actually using the USB device. A simple way to do that is simply to
disable the corresponding kernel module by renaming it from @file{mydriver.o}
to @file{mydriver.o.disabled}.

@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
@example
ls /proc/bus/usb
001  devices  drivers
@end example

@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
@example
chown -R myuid /proc/bus/usb
@end example

@item Launch QEMU and do in the monitor:
@example
info usbhost
  Device 1.2, speed 480 Mb/s
    Class 00: USB device 1234:5678, USB DISK
@end example
You should see the list of the devices you can use (Never try to use
hubs, it won't work).

@item Add the device in QEMU by using:
@example
usb_add host:1234:5678
@end example

Normally the guest OS should report that a new USB device is
plugged. You can use the option @option{-usbdevice} to do the same.

@item Now you can try to use the host USB device in QEMU.

@end enumerate

When relaunching QEMU, you may have to unplug and plug again the USB
device to make it work again (this is a bug).

@node vnc_security
@section VNC security

The VNC server capability provides access to the graphical console
of the guest VM across the network. This has a number of security
considerations depending on the deployment scenarios.

@menu
* vnc_sec_none::
* vnc_sec_password::
* vnc_sec_certificate::
* vnc_sec_certificate_verify::
* vnc_sec_certificate_pw::
* vnc_generate_cert::
@end menu
@node vnc_sec_none
@subsection Without passwords

The simplest VNC server setup does not include any form of authentication.
For this setup it is recommended to restrict it to listen on a UNIX domain
socket only. For example

@example
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
@end example

This ensures that only users on local box with read/write access to that
path can access the VNC server. To securely access the VNC server from a
remote machine, a combination of netcat+ssh can be used to provide a secure
tunnel.

@node vnc_sec_password
@subsection With passwords

The VNC protocol has limited support for password based authentication. Since
the protocol limits passwords to 8 characters it should not be considered
to provide high security. The password can be fairly easily brute-forced by
a client making repeat connections. For this reason, a VNC server using password
authentication should be restricted to only listen on the loopback interface
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
option, and then once QEMU is running the password is set with the monitor. Until
the monitor is used to set the password all clients will be rejected.

@example
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
(qemu) change vnc password
Password: ********
(qemu)
@end example

@node vnc_sec_certificate
@subsection With x509 certificates

The QEMU VNC server also implements the VeNCrypt extension allowing use of
TLS for encryption of the session, and x509 certificates for authentication.
The use of x509 certificates is strongly recommended, because TLS on its
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
support provides a secure session, but no authentication. This allows any
client to connect, and provides an encrypted session.

@example
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
@end example

In the above example @code{/etc/pki/qemu} should contain at least three files,
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
NB the @code{server-key.pem} file should be protected with file mode 0600 to
only be readable by the user owning it.

@node vnc_sec_certificate_verify
@subsection With x509 certificates and client verification

Certificates can also provide a means to authenticate the client connecting.
The server will request that the client provide a certificate, which it will
then validate against the CA certificate. This is a good choice if deploying
in an environment with a private internal certificate authority.

@example
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
@end example


@node vnc_sec_certificate_pw
@subsection With x509 certificates, client verification and passwords

Finally, the previous method can be combined with VNC password authentication
to provide two layers of authentication for clients.

@example
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
(qemu) change vnc password
Password: ********
(qemu)
@end example

@node vnc_generate_cert
@subsection Generating certificates for VNC

The GNU TLS packages provides a command called @code{certtool} which can
be used to generate certificates and keys in PEM format. At a minimum it
is neccessary to setup a certificate authority, and issue certificates to
each server. If using certificates for authentication, then each client
will also need to be issued a certificate. The recommendation is for the
server to keep its certificates in either @code{/etc/pki/qemu} or for
unprivileged users in @code{$HOME/.pki/qemu}.

@menu
* vnc_generate_ca::
* vnc_generate_server::
* vnc_generate_client::
@end menu
@node vnc_generate_ca
@subsubsection Setup the Certificate Authority

This step only needs to be performed once per organization / organizational
unit. First the CA needs a private key. This key must be kept VERY secret
and secure. If this key is compromised the entire trust chain of the certificates
issued with it is lost.

@example
# certtool --generate-privkey > ca-key.pem
@end example

A CA needs to have a public certificate. For simplicity it can be a self-signed
certificate, or one issue by a commercial certificate issuing authority. To
generate a self-signed certificate requires one core piece of information, the
name of the organization.

@example
# cat > ca.info <<EOF
cn = Name of your organization
ca
cert_signing_key
EOF
# certtool --generate-self-signed \
           --load-privkey ca-key.pem
           --template ca.info \
           --outfile ca-cert.pem
@end example

The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.

@node vnc_generate_server
@subsubsection Issuing server certificates

Each server (or host) needs to be issued with a key and certificate. When connecting
the certificate is sent to the client which validates it against the CA certificate.
The core piece of information for a server certificate is the hostname. This should
be the fully qualified hostname that the client will connect with, since the client
will typically also verify the hostname in the certificate. On the host holding the
secure CA private key:

@example
# cat > server.info <<EOF
organization = Name  of your organization
cn = server.foo.example.com
tls_www_server
encryption_key
signing_key
EOF
# certtool --generate-privkey > server-key.pem
# certtool --generate-certificate \
           --load-ca-certificate ca-cert.pem \
           --load-ca-privkey ca-key.pem \
           --load-privkey server server-key.pem \
           --template server.info \
           --outfile server-cert.pem
@end example

The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
to the server for which they were generated. The @code{server-key.pem} is security
sensitive and should be kept protected with file mode 0600 to prevent disclosure.

@node vnc_generate_client
@subsubsection Issuing client certificates

If the QEMU VNC server is to use the @code{x509verify} option to validate client
certificates as its authentication mechanism, each client also needs to be issued
a certificate. The client certificate contains enough metadata to uniquely identify
the client, typically organization, state, city, building, etc. On the host holding
the secure CA private key:

@example
# cat > client.info <<EOF
country = GB
state = London
locality = London
organiazation = Name of your organization
cn = client.foo.example.com
tls_www_client
encryption_key
signing_key
EOF
# certtool --generate-privkey > client-key.pem
# certtool --generate-certificate \
           --load-ca-certificate ca-cert.pem \
           --load-ca-privkey ca-key.pem \
           --load-privkey client-key.pem \
           --template client.info \
           --outfile client-cert.pem
@end example

The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
copied to the client for which they were generated.

@node gdb_usage
@section GDB usage

QEMU has a primitive support to work with gdb, so that you can do
'Ctrl-C' while the virtual machine is running and inspect its state.

In order to use gdb, launch qemu with the '-s' option. It will wait for a
gdb connection:
@example
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
       -append "root=/dev/hda"
Connected to host network interface: tun0
Waiting gdb connection on port 1234
@end example

Then launch gdb on the 'vmlinux' executable:
@example
> gdb vmlinux
@end example

In gdb, connect to QEMU:
@example
(gdb) target remote localhost:1234
@end example

Then you can use gdb normally. For example, type 'c' to launch the kernel:
@example
(gdb) c
@end example

Here are some useful tips in order to use gdb on system code:

@enumerate
@item
Use @code{info reg} to display all the CPU registers.
@item
Use @code{x/10i $eip} to display the code at the PC position.
@item
Use @code{set architecture i8086} to dump 16 bit code. Then use
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
@end enumerate

@node pcsys_os_specific
@section Target OS specific information

@subsection Linux

To have access to SVGA graphic modes under X11, use the @code{vesa} or
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
color depth in the guest and the host OS.

When using a 2.6 guest Linux kernel, you should add the option
@code{clock=pit} on the kernel command line because the 2.6 Linux
kernels make very strict real time clock checks by default that QEMU
cannot simulate exactly.

When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
not activated because QEMU is slower with this patch. The QEMU
Accelerator Module is also much slower in this case. Earlier Fedora
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
patch by default. Newer kernels don't have it.

@subsection Windows

If you have a slow host, using Windows 95 is better as it gives the
best speed. Windows 2000 is also a good choice.

@subsubsection SVGA graphic modes support

QEMU emulates a Cirrus Logic GD5446 Video
card. All Windows versions starting from Windows 95 should recognize
and use this graphic card. For optimal performances, use 16 bit color
depth in the guest and the host OS.

If you are using Windows XP as guest OS and if you want to use high
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1280x1024x16), then you should use the VESA VBE virtual graphic card
(option @option{-std-vga}).

@subsubsection CPU usage reduction

Windows 9x does not correctly use the CPU HLT
instruction. The result is that it takes host CPU cycles even when
idle. You can install the utility from
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
problem. Note that no such tool is needed for NT, 2000 or XP.

@subsubsection Windows 2000 disk full problem

Windows 2000 has a bug which gives a disk full problem during its
installation. When installing it, use the @option{-win2k-hack} QEMU
option to enable a specific workaround. After Windows 2000 is
installed, you no longer need this option (this option slows down the
IDE transfers).

@subsubsection Windows 2000 shutdown

Windows 2000 cannot automatically shutdown in QEMU although Windows 98
can. It comes from the fact that Windows 2000 does not automatically
use the APM driver provided by the BIOS.

In order to correct that, do the following (thanks to Struan
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
Add/Troubleshoot a device => Add a new device & Next => No, select the
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
(again) a few times. Now the driver is installed and Windows 2000 now
correctly instructs QEMU to shutdown at the appropriate moment.

@subsubsection Share a directory between Unix and Windows

See @ref{sec_invocation} about the help of the option @option{-smb}.

@subsubsection Windows XP security problem

Some releases of Windows XP install correctly but give a security
error when booting:
@example
A problem is preventing Windows from accurately checking the
license for this computer. Error code: 0x800703e6.
@end example

The workaround is to install a service pack for XP after a boot in safe
mode. Then reboot, and the problem should go away. Since there is no
network while in safe mode, its recommended to download the full
installation of SP1 or SP2 and transfer that via an ISO or using the
vvfat block device ("-hdb fat:directory_which_holds_the_SP").

@subsection MS-DOS and FreeDOS

@subsubsection CPU usage reduction

DOS does not correctly use the CPU HLT instruction. The result is that
it takes host CPU cycles even when idle. You can install the utility
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
problem.

@node QEMU System emulator for non PC targets
@chapter QEMU System emulator for non PC targets

QEMU is a generic emulator and it emulates many non PC
machines. Most of the options are similar to the PC emulator. The
differences are mentioned in the following sections.

@menu
* QEMU PowerPC System emulator::
* Sparc32 System emulator::
* Sparc64 System emulator::
* MIPS System emulator::
* ARM System emulator::
* ColdFire System emulator::
@end menu

@node QEMU PowerPC System emulator
@section QEMU PowerPC System emulator

Use the executable @file{qemu-system-ppc} to simulate a complete PREP
or PowerMac PowerPC system.

QEMU emulates the following PowerMac peripherals:

@itemize @minus
@item
UniNorth PCI Bridge
@item
PCI VGA compatible card with VESA Bochs Extensions
@item
2 PMAC IDE interfaces with hard disk and CD-ROM support
@item
NE2000 PCI adapters
@item
Non Volatile RAM
@item
VIA-CUDA with ADB keyboard and mouse.
@end itemize

QEMU emulates the following PREP peripherals:

@itemize @minus
@item
PCI Bridge
@item
PCI VGA compatible card with VESA Bochs Extensions
@item
2 IDE interfaces with hard disk and CD-ROM support
@item
Floppy disk
@item
NE2000 network adapters
@item
Serial port
@item
PREP Non Volatile RAM
@item
PC compatible keyboard and mouse.
@end itemize

QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.

@c man begin OPTIONS

The following options are specific to the PowerPC emulation:

@table @option

@item -g WxH[xDEPTH]

Set the initial VGA graphic mode. The default is 800x600x15.

@end table

@c man end


More information is available at
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.

@node Sparc32 System emulator
@section Sparc32 System emulator

Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
5, SPARCstation 10, or SPARCserver 600MP (sun4m architecture). The
emulation is somewhat complete.  SMP up to 16 CPUs is supported, but
Linux limits the number of usable CPUs to 4.

QEMU emulates the following sun4m peripherals:

@itemize @minus
@item
IOMMU
@item
TCX Frame buffer
@item
Lance (Am7990) Ethernet
@item
Non Volatile RAM M48T08
@item
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
and power/reset logic
@item
ESP SCSI controller with hard disk and CD-ROM support
@item
Floppy drive (not on SS-600MP)
@item
CS4231 sound device (only on SS-5, not working yet)
@end itemize

The number of peripherals is fixed in the architecture.  Maximum
memory size depends on the machine type, for SS-5 it is 256MB and for
SS-10 and SS-600MP 2047MB.

Since version 0.8.2, QEMU uses OpenBIOS
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
firmware implementation. The goal is to implement a 100% IEEE
1275-1994 (referred to as Open Firmware) compliant firmware.

A sample Linux 2.6 series kernel and ram disk image are available on
the QEMU web site. Please note that currently NetBSD, OpenBSD or
Solaris kernels don't work.

@c man begin OPTIONS

The following options are specific to the Sparc32 emulation:

@table @option

@item -g WxHx[xDEPTH]

Set the initial TCX graphic mode. The default is 1024x768x8, currently
the only other possible mode is 1024x768x24.

@item -prom-env string

Set OpenBIOS variables in NVRAM, for example:

@example
qemu-system-sparc -prom-env 'auto-boot?=false' \
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
@end example

@item -M [SS-5|SS-10]

Set the emulated machine type. Default is SS-5.

@end table

@c man end

@node Sparc64 System emulator
@section Sparc64 System emulator

Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
The emulator is not usable for anything yet.

QEMU emulates the following sun4u peripherals:

@itemize @minus
@item
UltraSparc IIi APB PCI Bridge
@item
PCI VGA compatible card with VESA Bochs Extensions
@item
Non Volatile RAM M48T59
@item
PC-compatible serial ports
@end itemize

@node MIPS System emulator
@section MIPS System emulator

Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
Three different machine types are emulated:

@itemize @minus
@item
A generic ISA PC-like machine "mips"
@item
The MIPS Malta prototype board "malta"
@item
An ACER Pica "pica61"
@item
MIPS emulator pseudo board "mipssim"
@end itemize

The generic emulation is supported by Debian 'Etch' and is able to
install Debian into a virtual disk image. The following devices are
emulated:

@itemize @minus
@item
A range of MIPS CPUs, default is the 24Kf
@item
PC style serial port
@item
PC style IDE disk
@item
NE2000 network card
@end itemize

The Malta emulation supports the following devices:

@itemize @minus
@item
Core board with MIPS 24Kf CPU and Galileo system controller
@item
PIIX4 PCI/USB/SMbus controller
@item
The Multi-I/O chip's serial device
@item
PCnet32 PCI network card
@item
Malta FPGA serial device
@item
Cirrus VGA graphics card
@end itemize

The ACER Pica emulation supports:

@itemize @minus
@item
MIPS R4000 CPU
@item
PC-style IRQ and DMA controllers
@item
PC Keyboard
@item
IDE controller
@end itemize

The mipssim pseudo board emulation provides an environment similiar
to what the proprietary MIPS emulator uses for running Linux.
It supports:

@itemize @minus
@item
A range of MIPS CPUs, default is the 24Kf
@item
PC style serial port
@item
MIPSnet network emulation
@end itemize

@node ARM System emulator
@section ARM System emulator

Use the executable @file{qemu-system-arm} to simulate a ARM
machine. The ARM Integrator/CP board is emulated with the following
devices:

@itemize @minus
@item
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
@item
Two PL011 UARTs
@item
SMC 91c111 Ethernet adapter
@item
PL110 LCD controller
@item
PL050 KMI with PS/2 keyboard and mouse.
@item
PL181 MultiMedia Card Interface with SD card.
@end itemize

The ARM Versatile baseboard is emulated with the following devices:

@itemize @minus
@item
ARM926E, ARM1136 or Cortex-A8 CPU
@item
PL190 Vectored Interrupt Controller
@item
Four PL011 UARTs
@item
SMC 91c111 Ethernet adapter
@item
PL110 LCD controller
@item
PL050 KMI with PS/2 keyboard and mouse.
@item
PCI host bridge.  Note the emulated PCI bridge only provides access to
PCI memory space.  It does not provide access to PCI IO space.
This means some devices (eg. ne2k_pci NIC) are not usable, and others
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
mapped control registers.
@item
PCI OHCI USB controller.
@item
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
@item
PL181 MultiMedia Card Interface with SD card.
@end itemize

The ARM RealView Emulation baseboard is emulated with the following devices:

@itemize @minus
@item
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
@item
ARM AMBA Generic/Distributed Interrupt Controller
@item
Four PL011 UARTs
@item
SMC 91c111 Ethernet adapter
@item
PL110 LCD controller
@item
PL050 KMI with PS/2 keyboard and mouse
@item
PCI host bridge
@item
PCI OHCI USB controller
@item
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
@item
PL181 MultiMedia Card Interface with SD card.
@end itemize

The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
and "Terrier") emulation includes the following peripherals:

@itemize @minus
@item
Intel PXA270 System-on-chip (ARM V5TE core)
@item
NAND Flash memory
@item
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
@item
On-chip OHCI USB controller
@item
On-chip LCD controller
@item
On-chip Real Time Clock
@item
TI ADS7846 touchscreen controller on SSP bus
@item
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
@item
GPIO-connected keyboard controller and LEDs
@item
Secure Digital card connected to PXA MMC/SD host
@item
Three on-chip UARTs
@item
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
@end itemize

The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
following elements:

@itemize @minus
@item
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
@item
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
@item
On-chip LCD controller
@item
On-chip Real Time Clock
@item
TI TSC2102i touchscreen controller / analog-digital converter / Audio
CODEC, connected through MicroWire and I@math{^2}S busses
@item
GPIO-connected matrix keypad
@item
Secure Digital card connected to OMAP MMC/SD host
@item
Three on-chip UARTs
@end itemize

The Luminary Micro Stellaris LM3S811EVB emulation includes the following
devices:

@itemize @minus
@item
Cortex-M3 CPU core.
@item
64k Flash and 8k SRAM.
@item
Timers, UARTs, ADC and I@math{^2}C interface.
@item
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
@end itemize

The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
devices:

@itemize @minus
@item
Cortex-M3 CPU core.
@item
256k Flash and 64k SRAM.
@item
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
@item
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
@end itemize

A Linux 2.6 test image is available on the QEMU web site. More
information is available in the QEMU mailing-list archive.

@node ColdFire System emulator
@section ColdFire System emulator

Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
The emulator is able to boot a uClinux kernel.

The M5208EVB emulation includes the following devices:

@itemize @minus
@item
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
@item
Three Two on-chip UARTs.
@item
Fast Ethernet Controller (FEC)
@end itemize

The AN5206 emulation includes the following devices:

@itemize @minus
@item
MCF5206 ColdFire V2 Microprocessor.
@item
Two on-chip UARTs.
@end itemize

@node QEMU User space emulator
@chapter QEMU User space emulator

@menu
* Supported Operating Systems ::
* Linux User space emulator::
* Mac OS X/Darwin User space emulator ::
@end menu

@node Supported Operating Systems
@section Supported Operating Systems

The following OS are supported in user space emulation:

@itemize @minus
@item
Linux (referred as qemu-linux-user)
@item
Mac OS X/Darwin (referred as qemu-darwin-user)
@end itemize

@node Linux User space emulator
@section Linux User space emulator

@menu
* Quick Start::
* Wine launch::
* Command line options::
* Other binaries::
@end menu

@node Quick Start
@subsection Quick Start

In order to launch a Linux process, QEMU needs the process executable
itself and all the target (x86) dynamic libraries used by it.

@itemize

@item On x86, you can just try to launch any process by using the native
libraries:

@example
qemu-i386 -L / /bin/ls
@end example

@code{-L /} tells that the x86 dynamic linker must be searched with a
@file{/} prefix.

@item Since QEMU is also a linux process, you can launch qemu with
qemu (NOTE: you can only do that if you compiled QEMU from the sources):

@example
qemu-i386 -L / qemu-i386 -L / /bin/ls
@end example

@item On non x86 CPUs, you need first to download at least an x86 glibc
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
@code{LD_LIBRARY_PATH} is not set:

@example
unset LD_LIBRARY_PATH
@end example

Then you can launch the precompiled @file{ls} x86 executable:

@example
qemu-i386 tests/i386/ls
@end example
You can look at @file{qemu-binfmt-conf.sh} so that
QEMU is automatically launched by the Linux kernel when you try to
launch x86 executables. It requires the @code{binfmt_misc} module in the
Linux kernel.

@item The x86 version of QEMU is also included. You can try weird things such as:
@example
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
          /usr/local/qemu-i386/bin/ls-i386
@end example

@end itemize

@node Wine launch
@subsection Wine launch

@itemize

@item Ensure that you have a working QEMU with the x86 glibc
distribution (see previous section). In order to verify it, you must be
able to do:

@example
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
@end example

@item Download the binary x86 Wine install
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).

@item Configure Wine on your account. Look at the provided script
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.

@item Then you can try the example @file{putty.exe}:

@example
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
@end example

@end itemize

@node Command line options
@subsection Command line options

@example
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
@end example

@table @option
@item -h
Print the help
@item -L path
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
@item -s size
Set the x86 stack size in bytes (default=524288)
@end table

Debug options:

@table @option
@item -d
Activate log (logfile=/tmp/qemu.log)
@item -p pagesize
Act as if the host page size was 'pagesize' bytes
@end table

@node Other binaries
@subsection Other binaries

@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
configurations), and arm-uclinux bFLT format binaries.

@command{qemu-m68k} is capable of running semihosted binaries using the BDM
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
coldfire uClinux bFLT format binaries.

The binary format is detected automatically.

@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
(Sparc64 CPU, 32 bit ABI).

@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).

@node Mac OS X/Darwin User space emulator
@section Mac OS X/Darwin User space emulator

@menu
* Mac OS X/Darwin Status::
* Mac OS X/Darwin Quick Start::
* Mac OS X/Darwin Command line options::
@end menu

@node Mac OS X/Darwin Status
@subsection Mac OS X/Darwin Status

@itemize @minus
@item
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
@item
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
@item
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
@item
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
@end itemize

[1] If you're host commpage can be executed by qemu.

@node Mac OS X/Darwin Quick Start
@subsection Quick Start

In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
itself and all the target dynamic libraries used by it. If you don't have the FAT
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
CD or compile them by hand.

@itemize

@item On x86, you can just try to launch any process by using the native
libraries:

@example
qemu-i386 /bin/ls
@end example

or to run the ppc version of the executable:

@example
qemu-ppc /bin/ls
@end example

@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
are installed:

@example
qemu-i386 -L /opt/x86_root/ /bin/ls
@end example

@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
@file{/opt/x86_root/usr/bin/dyld}.

@end itemize

@node Mac OS X/Darwin Command line options
@subsection Command line options

@example
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
@end example

@table @option
@item -h
Print the help
@item -L path
Set the library root path (default=/)
@item -s size
Set the stack size in bytes (default=524288)
@end table

Debug options:

@table @option
@item -d
Activate log (logfile=/tmp/qemu.log)
@item -p pagesize
Act as if the host page size was 'pagesize' bytes
@end table

@node compilation
@chapter Compilation from the sources

@menu
* Linux/Unix::
* Windows::
* Cross compilation for Windows with Linux::
* Mac OS X::
@end menu

@node Linux/Unix
@section Linux/Unix

@subsection Compilation

First you must decompress the sources:
@example
cd /tmp
tar zxvf qemu-x.y.z.tar.gz
cd qemu-x.y.z
@end example

Then you configure QEMU and build it (usually no options are needed):
@example
./configure
make
@end example

Then type as root user:
@example
make install
@end example
to install QEMU in @file{/usr/local}.

@subsection GCC version

In order to compile QEMU successfully, it is very important that you
have the right tools. The most important one is gcc. On most hosts and
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
Linux distribution includes a gcc 4.x compiler, you can usually
install an older version (it is invoked by @code{gcc32} or
@code{gcc34}). The QEMU configure script automatically probes for
these older versions so that usually you don't have to do anything.

@node Windows
@section Windows

@itemize
@item Install the current versions of MSYS and MinGW from
@url{http://www.mingw.org/}. You can find detailed installation
instructions in the download section and the FAQ.

@item Download
the MinGW development library of SDL 1.2.x
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
directory. Edit the @file{sdl-config} script so that it gives the
correct SDL directory when invoked.

@item Extract the current version of QEMU.

@item Start the MSYS shell (file @file{msys.bat}).

@item Change to the QEMU directory. Launch @file{./configure} and
@file{make}.  If you have problems using SDL, verify that
@file{sdl-config} can be launched from the MSYS command line.

@item You can install QEMU in @file{Program Files/Qemu} by typing
@file{make install}. Don't forget to copy @file{SDL.dll} in
@file{Program Files/Qemu}.

@end itemize

@node Cross compilation for Windows with Linux
@section Cross compilation for Windows with Linux

@itemize
@item
Install the MinGW cross compilation tools available at
@url{http://www.mingw.org/}.

@item
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
the QEMU configuration script.

@item
Configure QEMU for Windows cross compilation:
@example
./configure --enable-mingw32
@end example
If necessary, you can change the cross-prefix according to the prefix
chosen for the MinGW tools with --cross-prefix. You can also use
--prefix to set the Win32 install path.

@item You can install QEMU in the installation directory by typing
@file{make install}. Don't forget to copy @file{SDL.dll} in the
installation directory.

@end itemize

Note: Currently, Wine does not seem able to launch
QEMU for Win32.

@node Mac OS X
@section Mac OS X

The Mac OS X patches are not fully merged in QEMU, so you should look
at the QEMU mailing list archive to have all the necessary
information.

@node Index
@chapter Index
@printindex cp

@bye