aboutsummaryrefslogtreecommitdiff
path: root/migration/multifd-nocomp.c
blob: ffe75256c9fbe459dee4eb4aa8f80ae013ff2d87 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
/*
 * Multifd RAM migration without compression
 *
 * Copyright (c) 2019-2020 Red Hat Inc
 *
 * Authors:
 *  Juan Quintela <quintela@redhat.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 */

#include "qemu/osdep.h"
#include "exec/ramblock.h"
#include "exec/target_page.h"
#include "file.h"
#include "migration-stats.h"
#include "multifd.h"
#include "options.h"
#include "qapi/error.h"
#include "qemu/cutils.h"
#include "qemu/error-report.h"
#include "trace.h"
#include "qemu-file.h"

static MultiFDSendData *multifd_ram_send;

void multifd_ram_payload_alloc(MultiFDPages_t *pages)
{
    pages->offset = g_new0(ram_addr_t, multifd_ram_page_count());
}

void multifd_ram_payload_free(MultiFDPages_t *pages)
{
    g_clear_pointer(&pages->offset, g_free);
}

void multifd_ram_save_setup(void)
{
    multifd_ram_send = multifd_send_data_alloc();
}

void multifd_ram_save_cleanup(void)
{
    g_clear_pointer(&multifd_ram_send, multifd_send_data_free);
}

static void multifd_set_file_bitmap(MultiFDSendParams *p)
{
    MultiFDPages_t *pages = &p->data->u.ram;

    assert(pages->block);

    for (int i = 0; i < pages->normal_num; i++) {
        ramblock_set_file_bmap_atomic(pages->block, pages->offset[i], true);
    }

    for (int i = pages->normal_num; i < pages->num; i++) {
        ramblock_set_file_bmap_atomic(pages->block, pages->offset[i], false);
    }
}

static int multifd_nocomp_send_setup(MultiFDSendParams *p, Error **errp)
{
    uint32_t page_count = multifd_ram_page_count();

    if (migrate_zero_copy_send()) {
        p->write_flags |= QIO_CHANNEL_WRITE_FLAG_ZERO_COPY;
    }

    if (!migrate_mapped_ram()) {
        /* We need one extra place for the packet header */
        p->iov = g_new0(struct iovec, page_count + 1);
    } else {
        p->iov = g_new0(struct iovec, page_count);
    }

    return 0;
}

static void multifd_nocomp_send_cleanup(MultiFDSendParams *p, Error **errp)
{
    g_free(p->iov);
    p->iov = NULL;
    return;
}

static void multifd_ram_prepare_header(MultiFDSendParams *p)
{
    p->iov[0].iov_len = p->packet_len;
    p->iov[0].iov_base = p->packet;
    p->iovs_num++;
}

static void multifd_send_prepare_iovs(MultiFDSendParams *p)
{
    MultiFDPages_t *pages = &p->data->u.ram;
    uint32_t page_size = multifd_ram_page_size();

    for (int i = 0; i < pages->normal_num; i++) {
        p->iov[p->iovs_num].iov_base = pages->block->host + pages->offset[i];
        p->iov[p->iovs_num].iov_len = page_size;
        p->iovs_num++;
    }

    p->next_packet_size = pages->normal_num * page_size;
}

static int multifd_nocomp_send_prepare(MultiFDSendParams *p, Error **errp)
{
    bool use_zero_copy_send = migrate_zero_copy_send();
    int ret;

    multifd_send_zero_page_detect(p);

    if (migrate_mapped_ram()) {
        multifd_send_prepare_iovs(p);
        multifd_set_file_bitmap(p);

        return 0;
    }

    if (!use_zero_copy_send) {
        /*
         * Only !zerocopy needs the header in IOV; zerocopy will
         * send it separately.
         */
        multifd_ram_prepare_header(p);
    }

    multifd_send_prepare_iovs(p);
    p->flags |= MULTIFD_FLAG_NOCOMP;

    multifd_send_fill_packet(p);

    if (use_zero_copy_send) {
        /* Send header first, without zerocopy */
        ret = qio_channel_write_all(p->c, (void *)p->packet,
                                    p->packet_len, errp);
        if (ret != 0) {
            return -1;
        }

        stat64_add(&mig_stats.multifd_bytes, p->packet_len);
    }

    return 0;
}

static int multifd_nocomp_recv_setup(MultiFDRecvParams *p, Error **errp)
{
    p->iov = g_new0(struct iovec, multifd_ram_page_count());
    return 0;
}

static void multifd_nocomp_recv_cleanup(MultiFDRecvParams *p)
{
    g_free(p->iov);
    p->iov = NULL;
}

static int multifd_nocomp_recv(MultiFDRecvParams *p, Error **errp)
{
    uint32_t flags;

    if (migrate_mapped_ram()) {
        return multifd_file_recv_data(p, errp);
    }

    flags = p->flags & MULTIFD_FLAG_COMPRESSION_MASK;

    if (flags != MULTIFD_FLAG_NOCOMP) {
        error_setg(errp, "multifd %u: flags received %x flags expected %x",
                   p->id, flags, MULTIFD_FLAG_NOCOMP);
        return -1;
    }

    multifd_recv_zero_page_process(p);

    if (!p->normal_num) {
        return 0;
    }

    for (int i = 0; i < p->normal_num; i++) {
        p->iov[i].iov_base = p->host + p->normal[i];
        p->iov[i].iov_len = multifd_ram_page_size();
        ramblock_recv_bitmap_set_offset(p->block, p->normal[i]);
    }
    return qio_channel_readv_all(p->c, p->iov, p->normal_num, errp);
}

static void multifd_pages_reset(MultiFDPages_t *pages)
{
    /*
     * We don't need to touch offset[] array, because it will be
     * overwritten later when reused.
     */
    pages->num = 0;
    pages->normal_num = 0;
    pages->block = NULL;
}

void multifd_ram_fill_packet(MultiFDSendParams *p)
{
    MultiFDPacket_t *packet = p->packet;
    MultiFDPages_t *pages = &p->data->u.ram;
    uint32_t zero_num = pages->num - pages->normal_num;

    packet->pages_alloc = cpu_to_be32(multifd_ram_page_count());
    packet->normal_pages = cpu_to_be32(pages->normal_num);
    packet->zero_pages = cpu_to_be32(zero_num);

    if (pages->block) {
        pstrcpy(packet->ramblock, sizeof(packet->ramblock),
                pages->block->idstr);
    }

    for (int i = 0; i < pages->num; i++) {
        /* there are architectures where ram_addr_t is 32 bit */
        uint64_t temp = pages->offset[i];

        packet->offset[i] = cpu_to_be64(temp);
    }

    trace_multifd_send_ram_fill(p->id, pages->normal_num,
                                zero_num);
}

int multifd_ram_unfill_packet(MultiFDRecvParams *p, Error **errp)
{
    MultiFDPacket_t *packet = p->packet;
    uint32_t page_count = multifd_ram_page_count();
    uint32_t page_size = multifd_ram_page_size();
    uint32_t pages_per_packet = be32_to_cpu(packet->pages_alloc);
    int i;

    if (pages_per_packet > page_count) {
        error_setg(errp, "multifd: received packet with %u pages, expected %u",
                   pages_per_packet, page_count);
        return -1;
    }

    p->normal_num = be32_to_cpu(packet->normal_pages);
    if (p->normal_num > pages_per_packet) {
        error_setg(errp, "multifd: received packet with %u non-zero pages, "
                   "which exceeds maximum expected pages %u",
                   p->normal_num, pages_per_packet);
        return -1;
    }

    p->zero_num = be32_to_cpu(packet->zero_pages);
    if (p->zero_num > pages_per_packet - p->normal_num) {
        error_setg(errp,
                   "multifd: received packet with %u zero pages, expected maximum %u",
                   p->zero_num, pages_per_packet - p->normal_num);
        return -1;
    }

    if (p->normal_num == 0 && p->zero_num == 0) {
        return 0;
    }

    /* make sure that ramblock is 0 terminated */
    packet->ramblock[255] = 0;
    p->block = qemu_ram_block_by_name(packet->ramblock);
    if (!p->block) {
        error_setg(errp, "multifd: unknown ram block %s",
                   packet->ramblock);
        return -1;
    }

    p->host = p->block->host;
    for (i = 0; i < p->normal_num; i++) {
        uint64_t offset = be64_to_cpu(packet->offset[i]);

        if (offset > (p->block->used_length - page_size)) {
            error_setg(errp, "multifd: offset too long %" PRIu64
                       " (max " RAM_ADDR_FMT ")",
                       offset, p->block->used_length);
            return -1;
        }
        p->normal[i] = offset;
    }

    for (i = 0; i < p->zero_num; i++) {
        uint64_t offset = be64_to_cpu(packet->offset[p->normal_num + i]);

        if (offset > (p->block->used_length - page_size)) {
            error_setg(errp, "multifd: offset too long %" PRIu64
                       " (max " RAM_ADDR_FMT ")",
                       offset, p->block->used_length);
            return -1;
        }
        p->zero[i] = offset;
    }

    return 0;
}

static inline bool multifd_queue_empty(MultiFDPages_t *pages)
{
    return pages->num == 0;
}

static inline bool multifd_queue_full(MultiFDPages_t *pages)
{
    return pages->num == multifd_ram_page_count();
}

static inline void multifd_enqueue(MultiFDPages_t *pages, ram_addr_t offset)
{
    pages->offset[pages->num++] = offset;
}

/* Returns true if enqueue successful, false otherwise */
bool multifd_queue_page(RAMBlock *block, ram_addr_t offset)
{
    MultiFDPages_t *pages;

retry:
    pages = &multifd_ram_send->u.ram;

    if (multifd_payload_empty(multifd_ram_send)) {
        multifd_pages_reset(pages);
        multifd_set_payload_type(multifd_ram_send, MULTIFD_PAYLOAD_RAM);
    }

    /* If the queue is empty, we can already enqueue now */
    if (multifd_queue_empty(pages)) {
        pages->block = block;
        multifd_enqueue(pages, offset);
        return true;
    }

    /*
     * Not empty, meanwhile we need a flush.  It can because of either:
     *
     * (1) The page is not on the same ramblock of previous ones, or,
     * (2) The queue is full.
     *
     * After flush, always retry.
     */
    if (pages->block != block || multifd_queue_full(pages)) {
        if (!multifd_send(&multifd_ram_send)) {
            return false;
        }
        goto retry;
    }

    /* Not empty, and we still have space, do it! */
    multifd_enqueue(pages, offset);
    return true;
}

/*
 * We have two modes for multifd flushes:
 *
 * - Per-section mode: this is the legacy way to flush, it requires one
 *   MULTIFD_FLAG_SYNC message for each RAM_SAVE_FLAG_EOS.
 *
 * - Per-round mode: this is the modern way to flush, it requires one
 *   MULTIFD_FLAG_SYNC message only for each round of RAM scan.  Normally
 *   it's paired with a new RAM_SAVE_FLAG_MULTIFD_FLUSH message in network
 *   based migrations.
 *
 * One thing to mention is mapped-ram always use the modern way to sync.
 */

/* Do we need a per-section multifd flush (legacy way)? */
bool multifd_ram_sync_per_section(void)
{
    if (!migrate_multifd()) {
        return false;
    }

    if (migrate_mapped_ram()) {
        return false;
    }

    return migrate_multifd_flush_after_each_section();
}

/* Do we need a per-round multifd flush (modern way)? */
bool multifd_ram_sync_per_round(void)
{
    if (!migrate_multifd()) {
        return false;
    }

    if (migrate_mapped_ram()) {
        return true;
    }

    return !migrate_multifd_flush_after_each_section();
}

int multifd_ram_flush_and_sync(QEMUFile *f)
{
    MultiFDSyncReq req;
    int ret;

    if (!migrate_multifd()) {
        return 0;
    }

    if (!multifd_payload_empty(multifd_ram_send)) {
        if (!multifd_send(&multifd_ram_send)) {
            error_report("%s: multifd_send fail", __func__);
            return -1;
        }
    }

    /* File migrations only need to sync with threads */
    req = migrate_mapped_ram() ? MULTIFD_SYNC_LOCAL : MULTIFD_SYNC_ALL;

    ret = multifd_send_sync_main(req);
    if (ret) {
        return ret;
    }

    /* If we don't need to sync with remote at all, nothing else to do */
    if (req == MULTIFD_SYNC_LOCAL) {
        return 0;
    }

    /*
     * Old QEMUs don't understand RAM_SAVE_FLAG_MULTIFD_FLUSH, it relies
     * on RAM_SAVE_FLAG_EOS instead.
     */
    if (migrate_multifd_flush_after_each_section()) {
        return 0;
    }

    qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
    qemu_fflush(f);

    return 0;
}

bool multifd_send_prepare_common(MultiFDSendParams *p)
{
    MultiFDPages_t *pages = &p->data->u.ram;
    multifd_ram_prepare_header(p);
    multifd_send_zero_page_detect(p);

    if (!pages->normal_num) {
        p->next_packet_size = 0;
        return false;
    }

    return true;
}

static const MultiFDMethods multifd_nocomp_ops = {
    .send_setup = multifd_nocomp_send_setup,
    .send_cleanup = multifd_nocomp_send_cleanup,
    .send_prepare = multifd_nocomp_send_prepare,
    .recv_setup = multifd_nocomp_recv_setup,
    .recv_cleanup = multifd_nocomp_recv_cleanup,
    .recv = multifd_nocomp_recv
};

static void multifd_nocomp_register(void)
{
    multifd_register_ops(MULTIFD_COMPRESSION_NONE, &multifd_nocomp_ops);
}

migration_init(multifd_nocomp_register);