1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
|
/*
* qemu user cpu loop
*
* Copyright (c) 2003-2008 Fabrice Bellard
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu.h"
#include "qemu/timer.h"
#include "user-internals.h"
#include "cpu_loop-common.h"
#include "signal-common.h"
#include "user-mmap.h"
/***********************************************************/
/* CPUX86 core interface */
uint64_t cpu_get_tsc(CPUX86State *env)
{
return cpu_get_host_ticks();
}
static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
int flags)
{
unsigned int e1, e2;
uint32_t *p;
e1 = (addr << 16) | (limit & 0xffff);
e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
e2 |= flags;
p = ptr;
p[0] = tswap32(e1);
p[1] = tswap32(e2);
}
static uint64_t *idt_table;
static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
uint64_t addr, unsigned int sel)
{
uint32_t *p, e1, e2;
e1 = (addr & 0xffff) | (sel << 16);
e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
p = ptr;
p[0] = tswap32(e1);
p[1] = tswap32(e2);
p[2] = tswap32(addr >> 32);
p[3] = 0;
}
#ifdef TARGET_X86_64
/* only dpl matters as we do only user space emulation */
static void set_idt(int n, unsigned int dpl, bool is64)
{
set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
}
#else
static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
uint32_t addr, unsigned int sel)
{
uint32_t *p, e1, e2;
e1 = (addr & 0xffff) | (sel << 16);
e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
p = ptr;
p[0] = tswap32(e1);
p[1] = tswap32(e2);
}
/* only dpl matters as we do only user space emulation */
static void set_idt(int n, unsigned int dpl, bool is64)
{
if (is64) {
set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
} else {
set_gate(idt_table + n, 0, dpl, 0, 0);
}
}
#endif
#ifdef TARGET_X86_64
static bool write_ok_or_segv(CPUX86State *env, abi_ptr addr, size_t len)
{
/*
* For all the vsyscalls, NULL means "don't write anything" not
* "write it at address 0".
*/
if (addr == 0 || access_ok(env_cpu(env), VERIFY_WRITE, addr, len)) {
return true;
}
env->error_code = PG_ERROR_W_MASK | PG_ERROR_U_MASK;
force_sig_fault(TARGET_SIGSEGV, TARGET_SEGV_MAPERR, addr);
return false;
}
/*
* Since v3.1, the kernel traps and emulates the vsyscall page.
* Entry points other than the official generate SIGSEGV.
*/
static void emulate_vsyscall(CPUX86State *env)
{
int syscall;
abi_ulong ret;
uint64_t caller;
/*
* Validate the entry point. We have already validated the page
* during translation to get here; now verify the offset.
*/
switch (env->eip & ~TARGET_PAGE_MASK) {
case 0x000:
syscall = TARGET_NR_gettimeofday;
break;
case 0x400:
syscall = TARGET_NR_time;
break;
case 0x800:
syscall = TARGET_NR_getcpu;
break;
default:
goto sigsegv;
}
/*
* Validate the return address.
* Note that the kernel treats this the same as an invalid entry point.
*/
if (get_user_u64(caller, env->regs[R_ESP])) {
goto sigsegv;
}
/*
* Validate the pointer arguments.
*/
switch (syscall) {
case TARGET_NR_gettimeofday:
if (!write_ok_or_segv(env, env->regs[R_EDI],
sizeof(struct target_timeval)) ||
!write_ok_or_segv(env, env->regs[R_ESI],
sizeof(struct target_timezone))) {
return;
}
break;
case TARGET_NR_time:
if (!write_ok_or_segv(env, env->regs[R_EDI], sizeof(abi_long))) {
return;
}
break;
case TARGET_NR_getcpu:
if (!write_ok_or_segv(env, env->regs[R_EDI], sizeof(uint32_t)) ||
!write_ok_or_segv(env, env->regs[R_ESI], sizeof(uint32_t))) {
return;
}
break;
default:
g_assert_not_reached();
}
/*
* Perform the syscall. None of the vsyscalls should need restarting.
*/
ret = do_syscall(env, syscall, env->regs[R_EDI], env->regs[R_ESI],
env->regs[R_EDX], env->regs[10], env->regs[8],
env->regs[9], 0, 0);
g_assert(ret != -QEMU_ERESTARTSYS);
g_assert(ret != -QEMU_ESIGRETURN);
if (ret == -TARGET_EFAULT) {
goto sigsegv;
}
env->regs[R_EAX] = ret;
/* Emulate a ret instruction to leave the vsyscall page. */
env->eip = caller;
env->regs[R_ESP] += 8;
return;
sigsegv:
force_sig(TARGET_SIGSEGV);
}
#endif
static bool maybe_handle_vm86_trap(CPUX86State *env, int trapnr)
{
#ifndef TARGET_X86_64
if (env->eflags & VM_MASK) {
handle_vm86_trap(env, trapnr);
return true;
}
#endif
return false;
}
void cpu_loop(CPUX86State *env)
{
CPUState *cs = env_cpu(env);
int trapnr;
abi_ulong ret;
for(;;) {
cpu_exec_start(cs);
trapnr = cpu_exec(cs);
cpu_exec_end(cs);
process_queued_cpu_work(cs);
switch(trapnr) {
case 0x80:
#ifndef TARGET_X86_64
case EXCP_SYSCALL:
#endif
/* linux syscall from int $0x80 */
ret = do_syscall(env,
env->regs[R_EAX],
env->regs[R_EBX],
env->regs[R_ECX],
env->regs[R_EDX],
env->regs[R_ESI],
env->regs[R_EDI],
env->regs[R_EBP],
0, 0);
if (ret == -QEMU_ERESTARTSYS) {
env->eip -= 2;
} else if (ret != -QEMU_ESIGRETURN) {
env->regs[R_EAX] = ret;
}
break;
#ifdef TARGET_X86_64
case EXCP_SYSCALL:
/* linux syscall from syscall instruction. */
ret = do_syscall(env,
env->regs[R_EAX],
env->regs[R_EDI],
env->regs[R_ESI],
env->regs[R_EDX],
env->regs[10],
env->regs[8],
env->regs[9],
0, 0);
if (ret == -QEMU_ERESTARTSYS) {
env->eip -= 2;
} else if (ret != -QEMU_ESIGRETURN) {
env->regs[R_EAX] = ret;
}
break;
case EXCP_VSYSCALL:
emulate_vsyscall(env);
break;
#endif
case EXCP0B_NOSEG:
case EXCP0C_STACK:
force_sig(TARGET_SIGBUS);
break;
case EXCP0D_GPF:
/* XXX: potential problem if ABI32 */
if (maybe_handle_vm86_trap(env, trapnr)) {
break;
}
force_sig(TARGET_SIGSEGV);
break;
case EXCP0E_PAGE:
force_sig_fault(TARGET_SIGSEGV,
(env->error_code & PG_ERROR_P_MASK ?
TARGET_SEGV_ACCERR : TARGET_SEGV_MAPERR),
env->cr[2]);
break;
case EXCP00_DIVZ:
if (maybe_handle_vm86_trap(env, trapnr)) {
break;
}
force_sig_fault(TARGET_SIGFPE, TARGET_FPE_INTDIV, env->eip);
break;
case EXCP01_DB:
if (maybe_handle_vm86_trap(env, trapnr)) {
break;
}
force_sig_fault(TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->eip);
break;
case EXCP03_INT3:
if (maybe_handle_vm86_trap(env, trapnr)) {
break;
}
force_sig(TARGET_SIGTRAP);
break;
case EXCP04_INTO:
case EXCP05_BOUND:
if (maybe_handle_vm86_trap(env, trapnr)) {
break;
}
force_sig(TARGET_SIGSEGV);
break;
case EXCP06_ILLOP:
force_sig_fault(TARGET_SIGILL, TARGET_ILL_ILLOPN, env->eip);
break;
case EXCP_INTERRUPT:
/* just indicate that signals should be handled asap */
break;
case EXCP_DEBUG:
force_sig_fault(TARGET_SIGTRAP, TARGET_TRAP_BRKPT, env->eip);
break;
case EXCP_ATOMIC:
cpu_exec_step_atomic(cs);
break;
default:
EXCP_DUMP(env, "qemu: unhandled CPU exception 0x%x - aborting\n",
trapnr);
abort();
}
process_pending_signals(env);
}
}
static void target_cpu_free(void *obj)
{
CPUArchState *env = ((CPUState *)obj)->env_ptr;
target_munmap(env->gdt.base, sizeof(uint64_t) * TARGET_GDT_ENTRIES);
g_free(obj);
}
void target_cpu_copy_regs(CPUArchState *env, struct target_pt_regs *regs)
{
CPUState *cpu = env_cpu(env);
bool is64 = (env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM) != 0;
int i;
OBJECT(cpu)->free = target_cpu_free;
env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
env->hflags |= HF_PE_MASK | HF_CPL_MASK;
if (env->features[FEAT_1_EDX] & CPUID_SSE) {
env->cr[4] |= CR4_OSFXSR_MASK;
env->hflags |= HF_OSFXSR_MASK;
}
/* enable 64 bit mode if possible */
if (is64) {
env->cr[4] |= CR4_PAE_MASK;
env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
env->hflags |= HF_LMA_MASK;
}
#ifndef TARGET_ABI32
else {
fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
exit(EXIT_FAILURE);
}
#endif
/* flags setup : we activate the IRQs by default as in user mode */
env->eflags |= IF_MASK;
/* linux register setup */
#ifndef TARGET_ABI32
env->regs[R_EAX] = regs->rax;
env->regs[R_EBX] = regs->rbx;
env->regs[R_ECX] = regs->rcx;
env->regs[R_EDX] = regs->rdx;
env->regs[R_ESI] = regs->rsi;
env->regs[R_EDI] = regs->rdi;
env->regs[R_EBP] = regs->rbp;
env->regs[R_ESP] = regs->rsp;
env->eip = regs->rip;
#else
env->regs[R_EAX] = regs->eax;
env->regs[R_EBX] = regs->ebx;
env->regs[R_ECX] = regs->ecx;
env->regs[R_EDX] = regs->edx;
env->regs[R_ESI] = regs->esi;
env->regs[R_EDI] = regs->edi;
env->regs[R_EBP] = regs->ebp;
env->regs[R_ESP] = regs->esp;
env->eip = regs->eip;
#endif
/* linux interrupt setup */
#ifndef TARGET_ABI32
env->idt.limit = 511;
#else
env->idt.limit = 255;
#endif
env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
idt_table = g2h_untagged(env->idt.base);
for (i = 0; i < 20; i++) {
set_idt(i, 0, is64);
}
set_idt(3, 3, is64);
set_idt(4, 3, is64);
set_idt(0x80, 3, is64);
/* linux segment setup */
{
uint64_t *gdt_table;
env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
PROT_READ|PROT_WRITE,
MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
gdt_table = g2h_untagged(env->gdt.base);
#ifdef TARGET_ABI32
write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
(3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
#else
/* 64 bit code segment */
write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
DESC_L_MASK |
(3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
#endif
write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
(3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
}
cpu_x86_load_seg(env, R_CS, __USER_CS);
cpu_x86_load_seg(env, R_SS, __USER_DS);
#ifdef TARGET_ABI32
cpu_x86_load_seg(env, R_DS, __USER_DS);
cpu_x86_load_seg(env, R_ES, __USER_DS);
cpu_x86_load_seg(env, R_FS, __USER_DS);
cpu_x86_load_seg(env, R_GS, __USER_DS);
/* This hack makes Wine work... */
env->segs[R_FS].selector = 0;
#else
cpu_x86_load_seg(env, R_DS, 0);
cpu_x86_load_seg(env, R_ES, 0);
cpu_x86_load_seg(env, R_FS, 0);
cpu_x86_load_seg(env, R_GS, 0);
#endif
}
|