1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
|
/* Decimal 64-bit format module for the decNumber C Library.
Copyright (C) 2005, 2007 Free Software Foundation, Inc.
Contributed by IBM Corporation. Author Mike Cowlishaw.
This file is part of GCC.
GCC is free software; you can redistribute it and/or modify it under
the terms of the GNU General Public License as published by the Free
Software Foundation; either version 2, or (at your option) any later
version.
In addition to the permissions in the GNU General Public License,
the Free Software Foundation gives you unlimited permission to link
the compiled version of this file into combinations with other
programs, and to distribute those combinations without any
restriction coming from the use of this file. (The General Public
License restrictions do apply in other respects; for example, they
cover modification of the file, and distribution when not linked
into a combine executable.)
GCC is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or
FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
for more details.
You should have received a copy of the GNU General Public License
along with GCC; see the file COPYING. If not, write to the Free
Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
02110-1301, USA. */
/* ------------------------------------------------------------------ */
/* Decimal 64-bit format module */
/* ------------------------------------------------------------------ */
/* This module comprises the routines for decimal64 format numbers. */
/* Conversions are supplied to and from decNumber and String. */
/* */
/* This is used when decNumber provides operations, either for all */
/* operations or as a proxy between decNumber and decSingle. */
/* */
/* Error handling is the same as decNumber (qv.). */
/* ------------------------------------------------------------------ */
#include "qemu/osdep.h"
#include "libdecnumber/dconfig.h"
#define DECNUMDIGITS 16 /* make decNumbers with space for 16 */
#include "libdecnumber/decNumber.h"
#include "libdecnumber/decNumberLocal.h"
#include "libdecnumber/dpd/decimal64.h"
/* Utility routines and tables [in decimal64.c]; externs for C++ */
extern const uInt COMBEXP[32], COMBMSD[32];
extern const uByte BIN2CHAR[4001];
extern void decDigitsFromDPD(decNumber *, const uInt *, Int);
extern void decDigitsToDPD(const decNumber *, uInt *, Int);
#if DECTRACE || DECCHECK
void decimal64Show(const decimal64 *); /* for debug */
extern void decNumberShow(const decNumber *); /* .. */
#endif
/* Useful macro */
/* Clear a structure (e.g., a decNumber) */
#define DEC_clear(d) memset(d, 0, sizeof(*d))
/* define and include the tables to use for conversions */
#define DEC_BIN2CHAR 1
#define DEC_DPD2BIN 1
#define DEC_BIN2DPD 1 /* used for all sizes */
#include "libdecnumber/decDPD.h"
/* ------------------------------------------------------------------ */
/* decimal64FromNumber -- convert decNumber to decimal64 */
/* */
/* ds is the target decimal64 */
/* dn is the source number (assumed valid) */
/* set is the context, used only for reporting errors */
/* */
/* The set argument is used only for status reporting and for the */
/* rounding mode (used if the coefficient is more than DECIMAL64_Pmax */
/* digits or an overflow is detected). If the exponent is out of the */
/* valid range then Overflow or Underflow will be raised. */
/* After Underflow a subnormal result is possible. */
/* */
/* DEC_Clamped is set if the number has to be 'folded down' to fit, */
/* by reducing its exponent and multiplying the coefficient by a */
/* power of ten, or if the exponent on a zero had to be clamped. */
/* ------------------------------------------------------------------ */
decimal64 * decimal64FromNumber(decimal64 *d64, const decNumber *dn,
decContext *set) {
uInt status=0; /* status accumulator */
Int ae; /* adjusted exponent */
decNumber dw; /* work */
decContext dc; /* .. */
uInt *pu; /* .. */
uInt comb, exp; /* .. */
uInt targar[2]={0, 0}; /* target 64-bit */
#define targhi targar[1] /* name the word with the sign */
#define targlo targar[0] /* and the other */
/* If the number has too many digits, or the exponent could be */
/* out of range then reduce the number under the appropriate */
/* constraints. This could push the number to Infinity or zero, */
/* so this check and rounding must be done before generating the */
/* decimal64] */
ae=dn->exponent+dn->digits-1; /* [0 if special] */
if (dn->digits>DECIMAL64_Pmax /* too many digits */
|| ae>DECIMAL64_Emax /* likely overflow */
|| ae<DECIMAL64_Emin) { /* likely underflow */
decContextDefault(&dc, DEC_INIT_DECIMAL64); /* [no traps] */
dc.round=set->round; /* use supplied rounding */
decNumberPlus(&dw, dn, &dc); /* (round and check) */
/* [this changes -0 to 0, so enforce the sign...] */
dw.bits|=dn->bits&DECNEG;
status=dc.status; /* save status */
dn=&dw; /* use the work number */
} /* maybe out of range */
if (dn->bits&DECSPECIAL) { /* a special value */
if (dn->bits&DECINF) targhi=DECIMAL_Inf<<24;
else { /* sNaN or qNaN */
if ((*dn->lsu!=0 || dn->digits>1) /* non-zero coefficient */
&& (dn->digits<DECIMAL64_Pmax)) { /* coefficient fits */
decDigitsToDPD(dn, targar, 0);
}
if (dn->bits&DECNAN) targhi|=DECIMAL_NaN<<24;
else targhi|=DECIMAL_sNaN<<24;
} /* a NaN */
} /* special */
else { /* is finite */
if (decNumberIsZero(dn)) { /* is a zero */
/* set and clamp exponent */
if (dn->exponent<-DECIMAL64_Bias) {
exp=0; /* low clamp */
status|=DEC_Clamped;
}
else {
exp=dn->exponent+DECIMAL64_Bias; /* bias exponent */
if (exp>DECIMAL64_Ehigh) { /* top clamp */
exp=DECIMAL64_Ehigh;
status|=DEC_Clamped;
}
}
comb=(exp>>5) & 0x18; /* msd=0, exp top 2 bits .. */
}
else { /* non-zero finite number */
uInt msd; /* work */
Int pad=0; /* coefficient pad digits */
/* the dn is known to fit, but it may need to be padded */
exp=(uInt)(dn->exponent+DECIMAL64_Bias); /* bias exponent */
if (exp>DECIMAL64_Ehigh) { /* fold-down case */
pad=exp-DECIMAL64_Ehigh;
exp=DECIMAL64_Ehigh; /* [to maximum] */
status|=DEC_Clamped;
}
/* fastpath common case */
if (DECDPUN==3 && pad==0) {
uInt dpd[6]={0,0,0,0,0,0};
uInt i;
Int d=dn->digits;
for (i=0; d>0; i++, d-=3) dpd[i]=BIN2DPD[dn->lsu[i]];
targlo =dpd[0];
targlo|=dpd[1]<<10;
targlo|=dpd[2]<<20;
if (dn->digits>6) {
targlo|=dpd[3]<<30;
targhi =dpd[3]>>2;
targhi|=dpd[4]<<8;
}
msd=dpd[5]; /* [did not really need conversion] */
}
else { /* general case */
decDigitsToDPD(dn, targar, pad);
/* save and clear the top digit */
msd=targhi>>18;
targhi&=0x0003ffff;
}
/* create the combination field */
if (msd>=8) comb=0x18 | ((exp>>7) & 0x06) | (msd & 0x01);
else comb=((exp>>5) & 0x18) | msd;
}
targhi|=comb<<26; /* add combination field .. */
targhi|=(exp&0xff)<<18; /* .. and exponent continuation */
} /* finite */
if (dn->bits&DECNEG) targhi|=0x80000000; /* add sign bit */
/* now write to storage; this is now always endian */
pu=(uInt *)d64->bytes; /* overlay */
if (DECLITEND) {
pu[0]=targar[0]; /* directly store the low int */
pu[1]=targar[1]; /* then the high int */
}
else {
pu[0]=targar[1]; /* directly store the high int */
pu[1]=targar[0]; /* then the low int */
}
if (status!=0) decContextSetStatus(set, status); /* pass on status */
/* decimal64Show(d64); */
return d64;
} /* decimal64FromNumber */
/* ------------------------------------------------------------------ */
/* decimal64ToNumber -- convert decimal64 to decNumber */
/* d64 is the source decimal64 */
/* dn is the target number, with appropriate space */
/* No error is possible. */
/* ------------------------------------------------------------------ */
decNumber * decimal64ToNumber(const decimal64 *d64, decNumber *dn) {
uInt msd; /* coefficient MSD */
uInt exp; /* exponent top two bits */
uInt comb; /* combination field */
const uInt *pu; /* work */
Int need; /* .. */
uInt sourar[2]; /* source 64-bit */
#define sourhi sourar[1] /* name the word with the sign */
#define sourlo sourar[0] /* and the lower word */
/* load source from storage; this is endian */
pu=(const uInt *)d64->bytes; /* overlay */
if (DECLITEND) {
sourlo=pu[0]; /* directly load the low int */
sourhi=pu[1]; /* then the high int */
}
else {
sourhi=pu[0]; /* directly load the high int */
sourlo=pu[1]; /* then the low int */
}
comb=(sourhi>>26)&0x1f; /* combination field */
decNumberZero(dn); /* clean number */
if (sourhi&0x80000000) dn->bits=DECNEG; /* set sign if negative */
msd=COMBMSD[comb]; /* decode the combination field */
exp=COMBEXP[comb]; /* .. */
if (exp==3) { /* is a special */
if (msd==0) {
dn->bits|=DECINF;
return dn; /* no coefficient needed */
}
else if (sourhi&0x02000000) dn->bits|=DECSNAN;
else dn->bits|=DECNAN;
msd=0; /* no top digit */
}
else { /* is a finite number */
dn->exponent=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias; /* unbiased */
}
/* get the coefficient */
sourhi&=0x0003ffff; /* clean coefficient continuation */
if (msd) { /* non-zero msd */
sourhi|=msd<<18; /* prefix to coefficient */
need=6; /* process 6 declets */
}
else { /* msd=0 */
if (!sourhi) { /* top word 0 */
if (!sourlo) return dn; /* easy: coefficient is 0 */
need=3; /* process at least 3 declets */
if (sourlo&0xc0000000) need++; /* process 4 declets */
/* [could reduce some more, here] */
}
else { /* some bits in top word, msd=0 */
need=4; /* process at least 4 declets */
if (sourhi&0x0003ff00) need++; /* top declet!=0, process 5 */
}
} /*msd=0 */
decDigitsFromDPD(dn, sourar, need); /* process declets */
return dn;
} /* decimal64ToNumber */
/* ------------------------------------------------------------------ */
/* to-scientific-string -- conversion to numeric string */
/* to-engineering-string -- conversion to numeric string */
/* */
/* decimal64ToString(d64, string); */
/* decimal64ToEngString(d64, string); */
/* */
/* d64 is the decimal64 format number to convert */
/* string is the string where the result will be laid out */
/* */
/* string must be at least 24 characters */
/* */
/* No error is possible, and no status can be set. */
/* ------------------------------------------------------------------ */
char * decimal64ToEngString(const decimal64 *d64, char *string){
decNumber dn; /* work */
decimal64ToNumber(d64, &dn);
decNumberToEngString(&dn, string);
return string;
} /* decimal64ToEngString */
char * decimal64ToString(const decimal64 *d64, char *string){
uInt msd; /* coefficient MSD */
Int exp; /* exponent top two bits or full */
uInt comb; /* combination field */
char *cstart; /* coefficient start */
char *c; /* output pointer in string */
const uInt *pu; /* work */
char *s, *t; /* .. (source, target) */
Int dpd; /* .. */
Int pre, e; /* .. */
const uByte *u; /* .. */
uInt sourar[2]; /* source 64-bit */
#define sourhi sourar[1] /* name the word with the sign */
#define sourlo sourar[0] /* and the lower word */
/* load source from storage; this is endian */
pu=(const uInt *)d64->bytes; /* overlay */
if (DECLITEND) {
sourlo=pu[0]; /* directly load the low int */
sourhi=pu[1]; /* then the high int */
}
else {
sourhi=pu[0]; /* directly load the high int */
sourlo=pu[1]; /* then the low int */
}
c=string; /* where result will go */
if (((Int)sourhi)<0) *c++='-'; /* handle sign */
comb=(sourhi>>26)&0x1f; /* combination field */
msd=COMBMSD[comb]; /* decode the combination field */
exp=COMBEXP[comb]; /* .. */
if (exp==3) {
if (msd==0) { /* infinity */
strcpy(c, "Inf");
strcpy(c+3, "inity");
return string; /* easy */
}
if (sourhi&0x02000000) *c++='s'; /* sNaN */
strcpy(c, "NaN"); /* complete word */
c+=3; /* step past */
if (sourlo==0 && (sourhi&0x0003ffff)==0) return string; /* zero payload */
/* otherwise drop through to add integer; set correct exp */
exp=0; msd=0; /* setup for following code */
}
else exp=(exp<<8)+((sourhi>>18)&0xff)-DECIMAL64_Bias;
/* convert 16 digits of significand to characters */
cstart=c; /* save start of coefficient */
if (msd) *c++='0'+(char)msd; /* non-zero most significant digit */
/* Now decode the declets. After extracting each one, it is */
/* decoded to binary and then to a 4-char sequence by table lookup; */
/* the 4-chars are a 1-char length (significant digits, except 000 */
/* has length 0). This allows us to left-align the first declet */
/* with non-zero content, then remaining ones are full 3-char */
/* length. We use fixed-length memcpys because variable-length */
/* causes a subroutine call in GCC. (These are length 4 for speed */
/* and are safe because the array has an extra terminator byte.) */
#define dpd2char u=&BIN2CHAR[DPD2BIN[dpd]*4]; \
if (c!=cstart) {memcpy(c, u+1, 4); c+=3;} \
else if (*u) {memcpy(c, u+4-*u, 4); c+=*u;}
dpd=(sourhi>>8)&0x3ff; /* declet 1 */
dpd2char;
dpd=((sourhi&0xff)<<2) | (sourlo>>30); /* declet 2 */
dpd2char;
dpd=(sourlo>>20)&0x3ff; /* declet 3 */
dpd2char;
dpd=(sourlo>>10)&0x3ff; /* declet 4 */
dpd2char;
dpd=(sourlo)&0x3ff; /* declet 5 */
dpd2char;
if (c==cstart) *c++='0'; /* all zeros -- make 0 */
if (exp==0) { /* integer or NaN case -- easy */
*c='\0'; /* terminate */
return string;
}
/* non-0 exponent */
e=0; /* assume no E */
pre=c-cstart+exp;
/* [here, pre-exp is the digits count (==1 for zero)] */
if (exp>0 || pre<-5) { /* need exponential form */
e=pre-1; /* calculate E value */
pre=1; /* assume one digit before '.' */
} /* exponential form */
/* modify the coefficient, adding 0s, '.', and E+nn as needed */
s=c-1; /* source (LSD) */
if (pre>0) { /* ddd.ddd (plain), perhaps with E */
char *dotat=cstart+pre;
if (dotat<c) { /* if embedded dot needed... */
t=c; /* target */
for (; s>=dotat; s--, t--) *t=*s; /* open the gap; leave t at gap */
*t='.'; /* insert the dot */
c++; /* length increased by one */
}
/* finally add the E-part, if needed; it will never be 0, and has */
/* a maximum length of 3 digits */
if (e!=0) {
*c++='E'; /* starts with E */
*c++='+'; /* assume positive */
if (e<0) {
*(c-1)='-'; /* oops, need '-' */
e=-e; /* uInt, please */
}
u=&BIN2CHAR[e*4]; /* -> length byte */
memcpy(c, u+4-*u, 4); /* copy fixed 4 characters [is safe] */
c+=*u; /* bump pointer appropriately */
}
*c='\0'; /* add terminator */
/*printf("res %s\n", string); */
return string;
} /* pre>0 */
/* -5<=pre<=0: here for plain 0.ddd or 0.000ddd forms (can never have E) */
t=c+1-pre;
*(t+1)='\0'; /* can add terminator now */
for (; s>=cstart; s--, t--) *t=*s; /* shift whole coefficient right */
c=cstart;
*c++='0'; /* always starts with 0. */
*c++='.';
for (; pre<0; pre++) *c++='0'; /* add any 0's after '.' */
/*printf("res %s\n", string); */
return string;
} /* decimal64ToString */
/* ------------------------------------------------------------------ */
/* to-number -- conversion from numeric string */
/* */
/* decimal64FromString(result, string, set); */
/* */
/* result is the decimal64 format number which gets the result of */
/* the conversion */
/* *string is the character string which should contain a valid */
/* number (which may be a special value) */
/* set is the context */
/* */
/* The context is supplied to this routine is used for error handling */
/* (setting of status and traps) and for the rounding mode, only. */
/* If an error occurs, the result will be a valid decimal64 NaN. */
/* ------------------------------------------------------------------ */
decimal64 * decimal64FromString(decimal64 *result, const char *string,
decContext *set) {
decContext dc; /* work */
decNumber dn; /* .. */
decContextDefault(&dc, DEC_INIT_DECIMAL64); /* no traps, please */
dc.round=set->round; /* use supplied rounding */
decNumberFromString(&dn, string, &dc); /* will round if needed */
decimal64FromNumber(result, &dn, &dc);
if (dc.status!=0) { /* something happened */
decContextSetStatus(set, dc.status); /* .. pass it on */
}
return result;
} /* decimal64FromString */
/* ------------------------------------------------------------------ */
/* decimal64IsCanonical -- test whether encoding is canonical */
/* d64 is the source decimal64 */
/* returns 1 if the encoding of d64 is canonical, 0 otherwise */
/* No error is possible. */
/* ------------------------------------------------------------------ */
uint32_t decimal64IsCanonical(const decimal64 *d64) {
decNumber dn; /* work */
decimal64 canon; /* .. */
decContext dc; /* .. */
decContextDefault(&dc, DEC_INIT_DECIMAL64);
decimal64ToNumber(d64, &dn);
decimal64FromNumber(&canon, &dn, &dc);/* canon will now be canonical */
return memcmp(d64, &canon, DECIMAL64_Bytes)==0;
} /* decimal64IsCanonical */
/* ------------------------------------------------------------------ */
/* decimal64Canonical -- copy an encoding, ensuring it is canonical */
/* d64 is the source decimal64 */
/* result is the target (may be the same decimal64) */
/* returns result */
/* No error is possible. */
/* ------------------------------------------------------------------ */
decimal64 * decimal64Canonical(decimal64 *result, const decimal64 *d64) {
decNumber dn; /* work */
decContext dc; /* .. */
decContextDefault(&dc, DEC_INIT_DECIMAL64);
decimal64ToNumber(d64, &dn);
decimal64FromNumber(result, &dn, &dc);/* result will now be canonical */
return result;
} /* decimal64Canonical */
#if DECTRACE || DECCHECK
/* Macros for accessing decimal64 fields. These assume the
argument is a reference (pointer) to the decimal64 structure,
and the decimal64 is in network byte order (big-endian) */
/* Get sign */
#define decimal64Sign(d) ((unsigned)(d)->bytes[0]>>7)
/* Get combination field */
#define decimal64Comb(d) (((d)->bytes[0] & 0x7c)>>2)
/* Get exponent continuation [does not remove bias] */
#define decimal64ExpCon(d) ((((d)->bytes[0] & 0x03)<<6) \
| ((unsigned)(d)->bytes[1]>>2))
/* Set sign [this assumes sign previously 0] */
#define decimal64SetSign(d, b) { \
(d)->bytes[0]|=((unsigned)(b)<<7);}
/* Set exponent continuation [does not apply bias] */
/* This assumes range has been checked and exponent previously 0; */
/* type of exponent must be unsigned */
#define decimal64SetExpCon(d, e) { \
(d)->bytes[0]|=(uint8_t)((e)>>6); \
(d)->bytes[1]|=(uint8_t)(((e)&0x3F)<<2);}
/* ------------------------------------------------------------------ */
/* decimal64Show -- display a decimal64 in hexadecimal [debug aid] */
/* d64 -- the number to show */
/* ------------------------------------------------------------------ */
/* Also shows sign/cob/expconfields extracted */
void decimal64Show(const decimal64 *d64) {
char buf[DECIMAL64_Bytes*2+1];
Int i, j=0;
if (DECLITEND) {
for (i=0; i<DECIMAL64_Bytes; i++, j+=2) {
sprintf(&buf[j], "%02x", d64->bytes[7-i]);
}
printf(" D64> %s [S:%d Cb:%02x Ec:%02x] LittleEndian\n", buf,
d64->bytes[7]>>7, (d64->bytes[7]>>2)&0x1f,
((d64->bytes[7]&0x3)<<6)| (d64->bytes[6]>>2));
}
else { /* big-endian */
for (i=0; i<DECIMAL64_Bytes; i++, j+=2) {
sprintf(&buf[j], "%02x", d64->bytes[i]);
}
printf(" D64> %s [S:%d Cb:%02x Ec:%02x] BigEndian\n", buf,
decimal64Sign(d64), decimal64Comb(d64), decimal64ExpCon(d64));
}
} /* decimal64Show */
#endif
/* ================================================================== */
/* Shared utility routines and tables */
/* ================================================================== */
/* define and include the conversion tables to use for shared code */
#if DECDPUN==3
#define DEC_DPD2BIN 1
#else
#define DEC_DPD2BCD 1
#endif
#include "libdecnumber/decDPD.h"
/* The maximum number of decNumberUnits needed for a working copy of */
/* the units array is the ceiling of digits/DECDPUN, where digits is */
/* the maximum number of digits in any of the formats for which this */
/* is used. decimal128.h must not be included in this module, so, as */
/* a very special case, that number is defined as a literal here. */
#define DECMAX754 34
#define DECMAXUNITS ((DECMAX754+DECDPUN-1)/DECDPUN)
/* ------------------------------------------------------------------ */
/* Combination field lookup tables (uInts to save measurable work) */
/* */
/* COMBEXP - 2-bit most-significant-bits of exponent */
/* [11 if an Infinity or NaN] */
/* COMBMSD - 4-bit most-significant-digit */
/* [0=Infinity, 1=NaN if COMBEXP=11] */
/* */
/* Both are indexed by the 5-bit combination field (0-31) */
/* ------------------------------------------------------------------ */
const uInt COMBEXP[32]={0, 0, 0, 0, 0, 0, 0, 0,
1, 1, 1, 1, 1, 1, 1, 1,
2, 2, 2, 2, 2, 2, 2, 2,
0, 0, 1, 1, 2, 2, 3, 3};
const uInt COMBMSD[32]={0, 1, 2, 3, 4, 5, 6, 7,
0, 1, 2, 3, 4, 5, 6, 7,
0, 1, 2, 3, 4, 5, 6, 7,
8, 9, 8, 9, 8, 9, 0, 1};
/* ------------------------------------------------------------------ */
/* decDigitsToDPD -- pack coefficient into DPD form */
/* */
/* dn is the source number (assumed valid, max DECMAX754 digits) */
/* targ is 1, 2, or 4-element uInt array, which the caller must */
/* have cleared to zeros */
/* shift is the number of 0 digits to add on the right (normally 0) */
/* */
/* The coefficient must be known small enough to fit. The full */
/* coefficient is copied, including the leading 'odd' digit. This */
/* digit is retrieved and packed into the combination field by the */
/* caller. */
/* */
/* The target uInts are altered only as necessary to receive the */
/* digits of the decNumber. When more than one uInt is needed, they */
/* are filled from left to right (that is, the uInt at offset 0 will */
/* end up with the least-significant digits). */
/* */
/* shift is used for 'fold-down' padding. */
/* */
/* No error is possible. */
/* ------------------------------------------------------------------ */
#if DECDPUN<=4
/* Constant multipliers for divide-by-power-of five using reciprocal */
/* multiply, after removing powers of 2 by shifting, and final shift */
/* of 17 [we only need up to **4] */
static const uInt multies[]={131073, 26215, 5243, 1049, 210};
/* QUOT10 -- macro to return the quotient of unit u divided by 10**n */
#define QUOT10(u, n) ((((uInt)(u)>>(n))*multies[n])>>17)
#endif
void decDigitsToDPD(const decNumber *dn, uInt *targ, Int shift) {
Int cut; /* work */
Int digits=dn->digits; /* digit countdown */
uInt dpd; /* densely packed decimal value */
uInt bin; /* binary value 0-999 */
uInt *uout=targ; /* -> current output uInt */
uInt uoff=0; /* -> current output offset [from right] */
const Unit *inu=dn->lsu; /* -> current input unit */
Unit uar[DECMAXUNITS]; /* working copy of units, iff shifted */
#if DECDPUN!=3 /* not fast path */
Unit in; /* current unit */
#endif
if (shift!=0) { /* shift towards most significant required */
/* shift the units array to the left by pad digits and copy */
/* [this code is a special case of decShiftToMost, which could */
/* be used instead if exposed and the array were copied first] */
const Unit *source; /* .. */
Unit *target, *first; /* .. */
uInt next=0; /* work */
source=dn->lsu+D2U(digits)-1; /* where msu comes from */
target=uar+D2U(digits)-1+D2U(shift);/* where upper part of first cut goes */
cut=DECDPUN-MSUDIGITS(shift); /* where to slice */
if (cut==0) { /* unit-boundary case */
for (; source>=dn->lsu; source--, target--) *target=*source;
}
else {
first=uar+D2U(digits+shift)-1; /* where msu will end up */
for (; source>=dn->lsu; source--, target--) {
/* split the source Unit and accumulate remainder for next */
#if DECDPUN<=4
uInt quot=QUOT10(*source, cut);
uInt rem=*source-quot*DECPOWERS[cut];
next+=quot;
#else
uInt rem=*source%DECPOWERS[cut];
next+=*source/DECPOWERS[cut];
#endif
if (target<=first) *target=(Unit)next; /* write to target iff valid */
next=rem*DECPOWERS[DECDPUN-cut]; /* save remainder for next Unit */
}
} /* shift-move */
/* propagate remainder to one below and clear the rest */
for (; target>=uar; target--) {
*target=(Unit)next;
next=0;
}
digits+=shift; /* add count (shift) of zeros added */
inu=uar; /* use units in working array */
}
/* now densely pack the coefficient into DPD declets */
#if DECDPUN!=3 /* not fast path */
in=*inu; /* current unit */
cut=0; /* at lowest digit */
bin=0; /* [keep compiler quiet] */
#endif
while (digits > 0) { /* each output bunch */
#if DECDPUN==3 /* fast path, 3-at-a-time */
bin=*inu; /* 3 digits ready for convert */
digits-=3; /* [may go negative] */
inu++; /* may need another */
#else /* must collect digit-by-digit */
Unit dig; /* current digit */
Int j; /* digit-in-declet count */
for (j=0; j<3; j++) {
#if DECDPUN<=4
Unit temp=(Unit)((uInt)(in*6554)>>16);
dig=(Unit)(in-X10(temp));
in=temp;
#else
dig=in%10;
in=in/10;
#endif
if (j==0) bin=dig;
else if (j==1) bin+=X10(dig);
else /* j==2 */ bin+=X100(dig);
digits--;
if (digits==0) break; /* [also protects *inu below] */
cut++;
if (cut==DECDPUN) {inu++; in=*inu; cut=0;}
}
#endif
/* here there are 3 digits in bin, or have used all input digits */
dpd=BIN2DPD[bin];
/* write declet to uInt array */
*uout|=dpd<<uoff;
uoff+=10;
if (uoff<32) continue; /* no uInt boundary cross */
uout++;
uoff-=32;
*uout|=dpd>>(10-uoff); /* collect top bits */
} /* n declets */
return;
} /* decDigitsToDPD */
/* ------------------------------------------------------------------ */
/* decDigitsFromDPD -- unpack a format's coefficient */
/* */
/* dn is the target number, with 7, 16, or 34-digit space. */
/* sour is a 1, 2, or 4-element uInt array containing only declets */
/* declets is the number of (right-aligned) declets in sour to */
/* be processed. This may be 1 more than the obvious number in */
/* a format, as any top digit is prefixed to the coefficient */
/* continuation field. It also may be as small as 1, as the */
/* caller may pre-process leading zero declets. */
/* */
/* When doing the 'extra declet' case care is taken to avoid writing */
/* extra digits when there are leading zeros, as these could overflow */
/* the units array when DECDPUN is not 3. */
/* */
/* The target uInts are used only as necessary to process declets */
/* declets into the decNumber. When more than one uInt is needed, */
/* they are used from left to right (that is, the uInt at offset 0 */
/* provides the least-significant digits). */
/* */
/* dn->digits is set, but not the sign or exponent. */
/* No error is possible [the redundant 888 codes are allowed]. */
/* ------------------------------------------------------------------ */
void decDigitsFromDPD(decNumber *dn, const uInt *sour, Int declets) {
uInt dpd; /* collector for 10 bits */
Int n; /* counter */
Unit *uout=dn->lsu; /* -> current output unit */
Unit *last=uout; /* will be unit containing msd */
const uInt *uin=sour; /* -> current input uInt */
uInt uoff=0; /* -> current input offset [from right] */
#if DECDPUN!=3
uInt bcd; /* BCD result */
uInt nibble; /* work */
Unit out=0; /* accumulator */
Int cut=0; /* power of ten in current unit */
#endif
#if DECDPUN>4
uInt const *pow; /* work */
#endif
/* Expand the densely-packed integer, right to left */
for (n=declets-1; n>=0; n--) { /* count down declets of 10 bits */
dpd=*uin>>uoff;
uoff+=10;
if (uoff>32) { /* crossed uInt boundary */
uin++;
uoff-=32;
dpd|=*uin<<(10-uoff); /* get waiting bits */
}
dpd&=0x3ff; /* clear uninteresting bits */
#if DECDPUN==3
if (dpd==0) *uout=0;
else {
*uout=DPD2BIN[dpd]; /* convert 10 bits to binary 0-999 */
last=uout; /* record most significant unit */
}
uout++;
} /* n */
#else /* DECDPUN!=3 */
if (dpd==0) { /* fastpath [e.g., leading zeros] */
/* write out three 0 digits (nibbles); out may have digit(s) */
cut++;
if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
if (n==0) break; /* [as below, works even if MSD=0] */
cut++;
if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
cut++;
if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
continue;
}
bcd=DPD2BCD[dpd]; /* convert 10 bits to 12 bits BCD */
/* now accumulate the 3 BCD nibbles into units */
nibble=bcd & 0x00f;
if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
cut++;
if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
bcd>>=4;
/* if this is the last declet and the remaining nibbles in bcd */
/* are 00 then process no more nibbles, because this could be */
/* the 'odd' MSD declet and writing any more Units would then */
/* overflow the unit array */
if (n==0 && !bcd) break;
nibble=bcd & 0x00f;
if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
cut++;
if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
bcd>>=4;
nibble=bcd & 0x00f;
if (nibble) out=(Unit)(out+nibble*DECPOWERS[cut]);
cut++;
if (cut==DECDPUN) {*uout=out; if (out) {last=uout; out=0;} uout++; cut=0;}
} /* n */
if (cut!=0) { /* some more left over */
*uout=out; /* write out final unit */
if (out) last=uout; /* and note if non-zero */
}
#endif
/* here, last points to the most significant unit with digits; */
/* inspect it to get the final digits count -- this is essentially */
/* the same code as decGetDigits in decNumber.c */
dn->digits=(last-dn->lsu)*DECDPUN+1; /* floor of digits, plus */
/* must be at least 1 digit */
#if DECDPUN>1
if (*last<10) return; /* common odd digit or 0 */
dn->digits++; /* must be 2 at least */
#if DECDPUN>2
if (*last<100) return; /* 10-99 */
dn->digits++; /* must be 3 at least */
#if DECDPUN>3
if (*last<1000) return; /* 100-999 */
dn->digits++; /* must be 4 at least */
#if DECDPUN>4
for (pow=&DECPOWERS[4]; *last>=*pow; pow++) dn->digits++;
#endif
#endif
#endif
#endif
return;
} /*decDigitsFromDPD */
|