aboutsummaryrefslogtreecommitdiff
path: root/hw/ufs/lu.c
blob: 74ff52ad0963cbaca5d6a14b8b127b7940aef585 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
/*
 * QEMU UFS Logical Unit
 *
 * Copyright (c) 2023 Samsung Electronics Co., Ltd. All rights reserved.
 *
 * Written by Jeuk Kim <jeuk20.kim@samsung.com>
 *
 * This code is licensed under the GNU GPL v2 or later.
 */

#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "qemu/memalign.h"
#include "hw/scsi/scsi.h"
#include "scsi/constants.h"
#include "sysemu/block-backend.h"
#include "qemu/cutils.h"
#include "trace.h"
#include "ufs.h"

#define SCSI_COMMAND_FAIL (-1)

static void ufs_build_upiu_sense_data(UfsRequest *req, uint8_t *sense,
                                      uint32_t sense_len)
{
    req->rsp_upiu.sr.sense_data_len = cpu_to_be16(sense_len);
    assert(sense_len <= SCSI_SENSE_LEN);
    memcpy(req->rsp_upiu.sr.sense_data, sense, sense_len);
}

static void ufs_build_scsi_response_upiu(UfsRequest *req, uint8_t *sense,
                                         uint32_t sense_len,
                                         uint32_t transfered_len,
                                         int16_t status)
{
    uint32_t expected_len = be32_to_cpu(req->req_upiu.sc.exp_data_transfer_len);
    uint8_t flags = 0, response = UFS_COMMAND_RESULT_SUCCESS;
    uint16_t data_segment_length;

    if (expected_len > transfered_len) {
        req->rsp_upiu.sr.residual_transfer_count =
            cpu_to_be32(expected_len - transfered_len);
        flags |= UFS_UPIU_FLAG_UNDERFLOW;
    } else if (expected_len < transfered_len) {
        req->rsp_upiu.sr.residual_transfer_count =
            cpu_to_be32(transfered_len - expected_len);
        flags |= UFS_UPIU_FLAG_OVERFLOW;
    }

    if (status != 0) {
        ufs_build_upiu_sense_data(req, sense, sense_len);
        response = UFS_COMMAND_RESULT_FAIL;
    }

    data_segment_length =
        cpu_to_be16(sense_len + sizeof(req->rsp_upiu.sr.sense_data_len));
    ufs_build_upiu_header(req, UFS_UPIU_TRANSACTION_RESPONSE, flags, response,
                          status, data_segment_length);
}

static void ufs_scsi_command_complete(SCSIRequest *scsi_req, size_t resid)
{
    UfsRequest *req = scsi_req->hba_private;
    int16_t status = scsi_req->status;

    uint32_t transfered_len = scsi_req->cmd.xfer - resid;

    ufs_build_scsi_response_upiu(req, scsi_req->sense, scsi_req->sense_len,
                                 transfered_len, status);

    ufs_complete_req(req, UFS_REQUEST_SUCCESS);

    scsi_req->hba_private = NULL;
    scsi_req_unref(scsi_req);
}

static QEMUSGList *ufs_get_sg_list(SCSIRequest *scsi_req)
{
    UfsRequest *req = scsi_req->hba_private;
    return req->sg;
}

static const struct SCSIBusInfo ufs_scsi_info = {
    .tcq = true,
    .max_target = 0,
    .max_lun = UFS_MAX_LUS,
    .max_channel = 0,

    .get_sg_list = ufs_get_sg_list,
    .complete = ufs_scsi_command_complete,
};

static int ufs_emulate_report_luns(UfsRequest *req, uint8_t *outbuf,
                                   uint32_t outbuf_len)
{
    UfsHc *u = req->hc;
    int len = 0;

    /* TODO: Support for cases where SELECT REPORT is 1 and 2 */
    if (req->req_upiu.sc.cdb[2] != 0) {
        return SCSI_COMMAND_FAIL;
    }

    len += 8;

    for (uint8_t lun = 0; lun < UFS_MAX_LUS; ++lun) {
        if (u->lus[lun]) {
            if (len + 8 > outbuf_len) {
                break;
            }

            memset(outbuf + len, 0, 8);
            outbuf[len] = 0;
            outbuf[len + 1] = lun;
            len += 8;
        }
    }

    /* store the LUN list length */
    stl_be_p(outbuf, len - 8);

    return len;
}

static int ufs_scsi_emulate_vpd_page(UfsRequest *req, uint8_t *outbuf,
                                     uint32_t outbuf_len)
{
    uint8_t page_code = req->req_upiu.sc.cdb[2];
    int start, buflen = 0;

    outbuf[buflen++] = TYPE_WLUN;
    outbuf[buflen++] = page_code;
    outbuf[buflen++] = 0x00;
    outbuf[buflen++] = 0x00;
    start = buflen;

    switch (page_code) {
    case 0x00: /* Supported page codes, mandatory */
    {
        outbuf[buflen++] = 0x00; /* list of supported pages (this page) */
        outbuf[buflen++] = 0x87; /* mode page policy */
        break;
    }
    case 0x87: /* Mode Page Policy, mandatory */
    {
        outbuf[buflen++] = 0x3f; /* apply to all mode pages and subpages */
        outbuf[buflen++] = 0xff;
        outbuf[buflen++] = 0; /* shared */
        outbuf[buflen++] = 0;
        break;
    }
    default:
        return SCSI_COMMAND_FAIL;
    }
    /* done with EVPD */
    assert(buflen - start <= 255);
    outbuf[start - 1] = buflen - start;
    return buflen;
}

static int ufs_emulate_wlun_inquiry(UfsRequest *req, uint8_t *outbuf,
                                    uint32_t outbuf_len)
{
    if (outbuf_len < SCSI_INQUIRY_LEN) {
        return 0;
    }

    if (req->req_upiu.sc.cdb[1] & 0x1) {
        /* Vital product data */
        return ufs_scsi_emulate_vpd_page(req, outbuf, outbuf_len);
    }

    /* Standard INQUIRY data */
    if (req->req_upiu.sc.cdb[2] != 0) {
        return SCSI_COMMAND_FAIL;
    }

    outbuf[0] = TYPE_WLUN;
    outbuf[1] = 0;
    outbuf[2] = 0x6; /* SPC-4 */
    outbuf[3] = 0x2;
    outbuf[4] = 31;
    outbuf[5] = 0;
    outbuf[6] = 0;
    outbuf[7] = 0x2;
    strpadcpy((char *)&outbuf[8], 8, "QEMU", ' ');
    strpadcpy((char *)&outbuf[16], 16, "QEMU UFS", ' ');
    memset(&outbuf[32], 0, 4);

    return SCSI_INQUIRY_LEN;
}

static UfsReqResult ufs_emulate_scsi_cmd(UfsLu *lu, UfsRequest *req)
{
    uint8_t lun = lu->lun;
    uint8_t outbuf[4096];
    uint8_t sense_buf[UFS_SENSE_SIZE];
    uint8_t scsi_status;
    int len = 0;

    switch (req->req_upiu.sc.cdb[0]) {
    case REPORT_LUNS:
        len = ufs_emulate_report_luns(req, outbuf, sizeof(outbuf));
        if (len == SCSI_COMMAND_FAIL) {
            scsi_build_sense(sense_buf, SENSE_CODE(INVALID_FIELD));
            scsi_status = CHECK_CONDITION;
        } else {
            scsi_status = GOOD;
        }
        break;
    case INQUIRY:
        len = ufs_emulate_wlun_inquiry(req, outbuf, sizeof(outbuf));
        if (len == SCSI_COMMAND_FAIL) {
            scsi_build_sense(sense_buf, SENSE_CODE(INVALID_FIELD));
            scsi_status = CHECK_CONDITION;
        } else {
            scsi_status = GOOD;
        }
        break;
    case REQUEST_SENSE:
        /* Just return no sense data */
        len = scsi_build_sense_buf(outbuf, sizeof(outbuf), SENSE_CODE(NO_SENSE),
                                   true);
        scsi_status = GOOD;
        break;
    case START_STOP:
        /* TODO: Revisit it when Power Management is implemented */
        if (lun == UFS_UPIU_UFS_DEVICE_WLUN) {
            scsi_status = GOOD;
            break;
        }
        /* fallthrough */
    default:
        scsi_build_sense(sense_buf, SENSE_CODE(INVALID_OPCODE));
        scsi_status = CHECK_CONDITION;
    }

    len = MIN(len, (int)req->data_len);
    if (scsi_status == GOOD && len > 0 &&
        dma_buf_read(outbuf, len, NULL, req->sg, MEMTXATTRS_UNSPECIFIED) !=
            MEMTX_OK) {
        return UFS_REQUEST_FAIL;
    }

    ufs_build_scsi_response_upiu(req, sense_buf, sizeof(sense_buf), len,
                                 scsi_status);
    return UFS_REQUEST_SUCCESS;
}

static UfsReqResult ufs_process_scsi_cmd(UfsLu *lu, UfsRequest *req)
{
    uint8_t task_tag = req->req_upiu.header.task_tag;

    /*
     * Each ufs-lu has its own independent virtual SCSI bus. Therefore, we can't
     * use scsi_target_emulate_report_luns() which gets all lu information over
     * the SCSI bus. Therefore, we use ufs_emulate_scsi_cmd() like the
     * well-known lu.
     */
    if (req->req_upiu.sc.cdb[0] == REPORT_LUNS) {
        return ufs_emulate_scsi_cmd(lu, req);
    }

    SCSIRequest *scsi_req =
        scsi_req_new(lu->scsi_dev, task_tag, lu->lun, req->req_upiu.sc.cdb,
                     UFS_CDB_SIZE, req);

    uint32_t len = scsi_req_enqueue(scsi_req);
    if (len) {
        scsi_req_continue(scsi_req);
    }

    return UFS_REQUEST_NO_COMPLETE;
}

static const Property ufs_lu_props[] = {
    DEFINE_PROP_DRIVE("drive", UfsLu, conf.blk),
    DEFINE_PROP_UINT8("lun", UfsLu, lun, 0),
    DEFINE_PROP_END_OF_LIST(),
};

static bool ufs_add_lu(UfsHc *u, UfsLu *lu, Error **errp)
{
    BlockBackend *blk = lu->conf.blk;
    int64_t brdv_len = blk_getlength(blk);
    uint64_t raw_dev_cap =
        be64_to_cpu(u->geometry_desc.total_raw_device_capacity);

    if (u->device_desc.number_lu >= UFS_MAX_LUS) {
        error_setg(errp, "ufs host controller has too many logical units.");
        return false;
    }

    if (u->lus[lu->lun] != NULL) {
        error_setg(errp, "ufs logical unit %d already exists.", lu->lun);
        return false;
    }

    u->lus[lu->lun] = lu;
    u->device_desc.number_lu++;
    raw_dev_cap += (brdv_len >> UFS_GEOMETRY_CAPACITY_SHIFT);
    u->geometry_desc.total_raw_device_capacity = cpu_to_be64(raw_dev_cap);
    return true;
}

void ufs_init_wlu(UfsLu *wlu, uint8_t wlun)
{
    wlu->lun = wlun;
    wlu->scsi_op = &ufs_emulate_scsi_cmd;
}

static void ufs_init_lu(UfsLu *lu)
{
    BlockBackend *blk = lu->conf.blk;
    int64_t brdv_len = blk_getlength(blk);

    memset(&lu->unit_desc, 0, sizeof(lu->unit_desc));
    lu->unit_desc.length = sizeof(UnitDescriptor);
    lu->unit_desc.descriptor_idn = UFS_QUERY_DESC_IDN_UNIT;
    lu->unit_desc.lu_enable = 0x01;
    lu->unit_desc.logical_block_size = UFS_BLOCK_SIZE_SHIFT;
    lu->unit_desc.unit_index = lu->lun;
    lu->unit_desc.logical_block_count =
        cpu_to_be64(brdv_len / (1 << lu->unit_desc.logical_block_size));

    lu->scsi_op = &ufs_process_scsi_cmd;
}

static bool ufs_lu_check_constraints(UfsLu *lu, Error **errp)
{
    if (!lu->conf.blk) {
        error_setg(errp, "drive property not set");
        return false;
    }

    if (lu->lun >= UFS_MAX_LUS) {
        error_setg(errp, "lun must be between 0 and %d", UFS_MAX_LUS - 1);
        return false;
    }

    return true;
}

static void ufs_init_scsi_device(UfsLu *lu, BlockBackend *blk, Error **errp)
{
    DeviceState *scsi_dev;

    scsi_bus_init(&lu->bus, sizeof(lu->bus), DEVICE(lu), &ufs_scsi_info);

    blk_ref(blk);
    blk_detach_dev(blk, DEVICE(lu));
    lu->conf.blk = NULL;

    /*
     * The ufs-lu is the device that is wrapping the scsi-hd. It owns a virtual
     * SCSI bus that serves the scsi-hd.
     */
    scsi_dev = qdev_new("scsi-hd");
    object_property_add_child(OBJECT(&lu->bus), "ufs-scsi", OBJECT(scsi_dev));

    qdev_prop_set_uint32(scsi_dev, "physical_block_size", UFS_BLOCK_SIZE);
    qdev_prop_set_uint32(scsi_dev, "logical_block_size", UFS_BLOCK_SIZE);
    qdev_prop_set_uint32(scsi_dev, "scsi-id", 0);
    qdev_prop_set_uint32(scsi_dev, "lun", lu->lun);
    if (!qdev_prop_set_drive_err(scsi_dev, "drive", blk, errp)) {
        object_unparent(OBJECT(scsi_dev));
        return;
    }

    if (!qdev_realize_and_unref(scsi_dev, &lu->bus.qbus, errp)) {
        object_unparent(OBJECT(scsi_dev));
        return;
    }

    blk_unref(blk);
    lu->scsi_dev = SCSI_DEVICE(scsi_dev);
}

static void ufs_lu_realize(DeviceState *dev, Error **errp)
{
    UfsLu *lu = DO_UPCAST(UfsLu, qdev, dev);
    BusState *s = qdev_get_parent_bus(dev);
    UfsHc *u = UFS(s->parent);
    BlockBackend *blk = lu->conf.blk;

    if (!ufs_lu_check_constraints(lu, errp)) {
        return;
    }

    if (!blk) {
        error_setg(errp, "drive property not set");
        return;
    }

    if (!blkconf_blocksizes(&lu->conf, errp)) {
        return;
    }

    if (!blkconf_apply_backend_options(&lu->conf, !blk_supports_write_perm(blk),
                                       true, errp)) {
        return;
    }

    ufs_init_lu(lu);
    if (!ufs_add_lu(u, lu, errp)) {
        return;
    }

    ufs_init_scsi_device(lu, blk, errp);
}

static void ufs_lu_unrealize(DeviceState *dev)
{
    UfsLu *lu = DO_UPCAST(UfsLu, qdev, dev);

    if (lu->scsi_dev) {
        object_unref(OBJECT(lu->scsi_dev));
        lu->scsi_dev = NULL;
    }
}

static void ufs_lu_class_init(ObjectClass *oc, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(oc);

    dc->realize = ufs_lu_realize;
    dc->unrealize = ufs_lu_unrealize;
    dc->bus_type = TYPE_UFS_BUS;
    device_class_set_props(dc, ufs_lu_props);
    dc->desc = "Virtual UFS logical unit";
}

static const TypeInfo ufs_lu_info = {
    .name = TYPE_UFS_LU,
    .parent = TYPE_DEVICE,
    .class_init = ufs_lu_class_init,
    .instance_size = sizeof(UfsLu),
};

static void ufs_lu_register_types(void)
{
    type_register_static(&ufs_lu_info);
}

type_init(ufs_lu_register_types)