aboutsummaryrefslogtreecommitdiff
path: root/hw/timer/sse-counter.c
blob: daceedf964ef4799e92d61be14a7495422c2735a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
/*
 * Arm SSE Subsystem System Counter
 *
 * Copyright (c) 2020 Linaro Limited
 * Written by Peter Maydell
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 or
 * (at your option) any later version.
 */

/*
 * This is a model of the "System counter" which is documented in
 * the Arm SSE-123 Example Subsystem Technical Reference Manual:
 * https://developer.arm.com/documentation/101370/latest/
 *
 * The system counter is a non-stop 64-bit up-counter. It provides
 * this count value to other devices like the SSE system timer,
 * which are driven by this system timestamp rather than directly
 * from a clock. Internally to the counter the count is actually
 * 88-bit precision (64.24 fixed point), with a programmable scale factor.
 *
 * The hardware has the optional feature that it supports dynamic
 * clock switching, where two clock inputs are connected, and which
 * one is used is selected via a CLKSEL input signal. Since the
 * users of this device in QEMU don't use this feature, we only model
 * the HWCLKSW=0 configuration.
 */
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/timer.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/timer/sse-counter.h"
#include "hw/sysbus.h"
#include "hw/registerfields.h"
#include "hw/clock.h"
#include "hw/qdev-clock.h"
#include "migration/vmstate.h"

/* Registers in the control frame */
REG32(CNTCR, 0x0)
    FIELD(CNTCR, EN, 0, 1)
    FIELD(CNTCR, HDBG, 1, 1)
    FIELD(CNTCR, SCEN, 2, 1)
    FIELD(CNTCR, INTRMASK, 3, 1)
    FIELD(CNTCR, PSLVERRDIS, 4, 1)
    FIELD(CNTCR, INTRCLR, 5, 1)
/*
 * Although CNTCR defines interrupt-related bits, the counter doesn't
 * appear to actually have an interrupt output. So INTRCLR is
 * effectively a RAZ/WI bit, as are the reserved bits [31:6].
 */
#define CNTCR_VALID_MASK (R_CNTCR_EN_MASK | R_CNTCR_HDBG_MASK | \
                          R_CNTCR_SCEN_MASK | R_CNTCR_INTRMASK_MASK | \
                          R_CNTCR_PSLVERRDIS_MASK)
REG32(CNTSR, 0x4)
REG32(CNTCV_LO, 0x8)
REG32(CNTCV_HI, 0xc)
REG32(CNTSCR, 0x10) /* Aliased with CNTSCR0 */
REG32(CNTID, 0x1c)
    FIELD(CNTID, CNTSC, 0, 4)
    FIELD(CNTID, CNTCS, 16, 1)
    FIELD(CNTID, CNTSELCLK, 17, 2)
    FIELD(CNTID, CNTSCR_OVR, 19, 1)
REG32(CNTSCR0, 0xd0)
REG32(CNTSCR1, 0xd4)

/* Registers in the status frame */
REG32(STATUS_CNTCV_LO, 0x0)
REG32(STATUS_CNTCV_HI, 0x4)

/* Standard ID registers, present in both frames */
REG32(PID4, 0xFD0)
REG32(PID5, 0xFD4)
REG32(PID6, 0xFD8)
REG32(PID7, 0xFDC)
REG32(PID0, 0xFE0)
REG32(PID1, 0xFE4)
REG32(PID2, 0xFE8)
REG32(PID3, 0xFEC)
REG32(CID0, 0xFF0)
REG32(CID1, 0xFF4)
REG32(CID2, 0xFF8)
REG32(CID3, 0xFFC)

/* PID/CID values */
static const int control_id[] = {
    0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
    0xba, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
    0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
};

static const int status_id[] = {
    0x04, 0x00, 0x00, 0x00, /* PID4..PID7 */
    0xbb, 0xb0, 0x0b, 0x00, /* PID0..PID3 */
    0x0d, 0xf0, 0x05, 0xb1, /* CID0..CID3 */
};

static void sse_counter_notify_users(SSECounter *s)
{
    /*
     * Notify users of the count timestamp that they may
     * need to recalculate.
     */
    notifier_list_notify(&s->notifier_list, NULL);
}

static bool sse_counter_enabled(SSECounter *s)
{
    return (s->cntcr & R_CNTCR_EN_MASK) != 0;
}

uint64_t sse_counter_tick_to_time(SSECounter *s, uint64_t tick)
{
    if (!sse_counter_enabled(s)) {
        return UINT64_MAX;
    }

    tick -= s->ticks_then;

    if (s->cntcr & R_CNTCR_SCEN_MASK) {
        /* Adjust the tick count to account for the scale factor */
        tick = muldiv64(tick, 0x01000000, s->cntscr0);
    }

    return s->ns_then + clock_ticks_to_ns(s->clk, tick);
}

void sse_counter_register_consumer(SSECounter *s, Notifier *notifier)
{
    /*
     * For the moment we assume that both we and the devices
     * which consume us last for the life of the simulation,
     * and so there is no mechanism for removing a notifier.
     */
    notifier_list_add(&s->notifier_list, notifier);
}

uint64_t sse_counter_for_timestamp(SSECounter *s, uint64_t now)
{
    /* Return the CNTCV value for a particular timestamp (clock ns value). */
    uint64_t ticks;

    if (!sse_counter_enabled(s)) {
        /* Counter is disabled and does not increment */
        return s->ticks_then;
    }

    ticks = clock_ns_to_ticks(s->clk, now - s->ns_then);
    if (s->cntcr & R_CNTCR_SCEN_MASK) {
        /*
         * Scaling is enabled. The CNTSCR value is the amount added to
         * the underlying 88-bit counter for every tick of the
         * underlying clock; CNTCV is the top 64 bits of that full
         * 88-bit value. Multiplying the tick count by CNTSCR tells us
         * how much the full 88-bit counter has moved on; we then
         * divide that by 0x01000000 to find out how much the 64-bit
         * visible portion has advanced. muldiv64() gives us the
         * necessary at-least-88-bit precision for the intermediate
         * result.
         */
        ticks = muldiv64(ticks, s->cntscr0, 0x01000000);
    }
    return s->ticks_then + ticks;
}

static uint64_t sse_cntcv(SSECounter *s)
{
    /* Return the CNTCV value for the current time */
    return sse_counter_for_timestamp(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
}

static void sse_write_cntcv(SSECounter *s, uint32_t value, unsigned startbit)
{
    /*
     * Write one 32-bit half of the counter value; startbit is the
     * bit position of this half in the 64-bit word, either 0 or 32.
     */
    uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    uint64_t cntcv = sse_counter_for_timestamp(s, now);

    cntcv = deposit64(cntcv, startbit, 32, value);
    s->ticks_then = cntcv;
    s->ns_then = now;
    sse_counter_notify_users(s);
}

static uint64_t sse_counter_control_read(void *opaque, hwaddr offset,
                                         unsigned size)
{
    SSECounter *s = SSE_COUNTER(opaque);
    uint64_t r;

    switch (offset) {
    case A_CNTCR:
        r = s->cntcr;
        break;
    case A_CNTSR:
        /*
         * The only bit here is DBGH, indicating that the counter has been
         * halted via the Halt-on-Debug signal. We don't implement halting
         * debug, so the whole register always reads as zero.
         */
        r = 0;
        break;
    case A_CNTCV_LO:
        r = extract64(sse_cntcv(s), 0, 32);
        break;
    case A_CNTCV_HI:
        r = extract64(sse_cntcv(s), 32, 32);
        break;
    case A_CNTID:
        /*
         * For our implementation:
         *  - CNTSCR can only be written when CNTCR.EN == 0
         *  - HWCLKSW=0, so selected clock is always CLK0
         *  - counter scaling is implemented
         */
        r = (1 << R_CNTID_CNTSELCLK_SHIFT) | (1 << R_CNTID_CNTSC_SHIFT);
        break;
    case A_CNTSCR:
    case A_CNTSCR0:
        r = s->cntscr0;
        break;
    case A_CNTSCR1:
        /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
        r = 0;
        break;
    case A_PID4 ... A_CID3:
        r = control_id[(offset - A_PID4) / 4];
        break;
    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "SSE System Counter control frame read: bad offset 0x%x",
                      (unsigned)offset);
        r = 0;
        break;
    }

    trace_sse_counter_control_read(offset, r, size);
    return r;
}

static void sse_counter_control_write(void *opaque, hwaddr offset,
                                      uint64_t value, unsigned size)
{
    SSECounter *s = SSE_COUNTER(opaque);

    trace_sse_counter_control_write(offset, value, size);

    switch (offset) {
    case A_CNTCR:
        /*
         * Although CNTCR defines interrupt-related bits, the counter doesn't
         * appear to actually have an interrupt output. So INTRCLR is
         * effectively a RAZ/WI bit, as are the reserved bits [31:6].
         * The documentation does not explicitly say so, but we assume
         * that changing the scale factor while the counter is enabled
         * by toggling CNTCR.SCEN has the same behaviour (making the counter
         * value UNKNOWN) as changing it by writing to CNTSCR, and so we
         * don't need to try to recalculate for that case.
         */
        value &= CNTCR_VALID_MASK;
        if ((value ^ s->cntcr) & R_CNTCR_EN_MASK) {
            /*
             * Whether the counter is being enabled or disabled, the
             * required action is the same: sync the (ns_then, ticks_then)
             * tuple.
             */
            uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
            s->ticks_then = sse_counter_for_timestamp(s, now);
            s->ns_then = now;
            sse_counter_notify_users(s);
        }
        s->cntcr = value;
        break;
    case A_CNTCV_LO:
        sse_write_cntcv(s, value, 0);
        break;
    case A_CNTCV_HI:
        sse_write_cntcv(s, value, 32);
        break;
    case A_CNTSCR:
    case A_CNTSCR0:
        /*
         * If the scale registers are changed when the counter is enabled,
         * the count value becomes UNKNOWN. So we don't try to recalculate
         * anything here but only do it on a write to CNTCR.EN.
         */
        s->cntscr0 = value;
        break;
    case A_CNTSCR1:
        /* If HWCLKSW == 0, CNTSCR1 is RAZ/WI */
        break;
    case A_CNTSR:
    case A_CNTID:
    case A_PID4 ... A_CID3:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "SSE System Counter control frame: write to RO offset 0x%x\n",
                      (unsigned)offset);
        break;
    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "SSE System Counter control frame: write to bad offset 0x%x\n",
                      (unsigned)offset);
        break;
    }
}

static uint64_t sse_counter_status_read(void *opaque, hwaddr offset,
                                        unsigned size)
{
    SSECounter *s = SSE_COUNTER(opaque);
    uint64_t r;

    switch (offset) {
    case A_STATUS_CNTCV_LO:
        r = extract64(sse_cntcv(s), 0, 32);
        break;
    case A_STATUS_CNTCV_HI:
        r = extract64(sse_cntcv(s), 32, 32);
        break;
    case A_PID4 ... A_CID3:
        r = status_id[(offset - A_PID4) / 4];
        break;
    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "SSE System Counter status frame read: bad offset 0x%x",
                      (unsigned)offset);
        r = 0;
        break;
    }

    trace_sse_counter_status_read(offset, r, size);
    return r;
}

static void sse_counter_status_write(void *opaque, hwaddr offset,
                                     uint64_t value, unsigned size)
{
    trace_sse_counter_status_write(offset, value, size);

    switch (offset) {
    case A_STATUS_CNTCV_LO:
    case A_STATUS_CNTCV_HI:
    case A_PID4 ... A_CID3:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "SSE System Counter status frame: write to RO offset 0x%x\n",
                      (unsigned)offset);
        break;
    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "SSE System Counter status frame: write to bad offset 0x%x\n",
                      (unsigned)offset);
        break;
    }
}

static const MemoryRegionOps sse_counter_control_ops = {
    .read = sse_counter_control_read,
    .write = sse_counter_control_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
    .valid.min_access_size = 4,
    .valid.max_access_size = 4,
};

static const MemoryRegionOps sse_counter_status_ops = {
    .read = sse_counter_status_read,
    .write = sse_counter_status_write,
    .endianness = DEVICE_LITTLE_ENDIAN,
    .valid.min_access_size = 4,
    .valid.max_access_size = 4,
};

static void sse_counter_reset(DeviceState *dev)
{
    SSECounter *s = SSE_COUNTER(dev);

    trace_sse_counter_reset();

    s->cntcr = 0;
    s->cntscr0 = 0x01000000;
    s->ns_then = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
    s->ticks_then = 0;
}

static void sse_clk_callback(void *opaque, ClockEvent event)
{
    SSECounter *s = SSE_COUNTER(opaque);
    uint64_t now;

    switch (event) {
    case ClockPreUpdate:
        /*
         * Before the clock period updates, set (ticks_then, ns_then)
         * to the current time and tick count (as calculated with
         * the old clock period).
         */
        if (sse_counter_enabled(s)) {
            now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
            s->ticks_then = sse_counter_for_timestamp(s, now);
            s->ns_then = now;
        }
        break;
    case ClockUpdate:
        sse_counter_notify_users(s);
        break;
    default:
        break;
    }
}

static void sse_counter_init(Object *obj)
{
    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    SSECounter *s = SSE_COUNTER(obj);

    notifier_list_init(&s->notifier_list);

    s->clk = qdev_init_clock_in(DEVICE(obj), "CLK", sse_clk_callback, s,
                                ClockPreUpdate | ClockUpdate);
    memory_region_init_io(&s->control_mr, obj, &sse_counter_control_ops,
                          s, "sse-counter-control", 0x1000);
    memory_region_init_io(&s->status_mr, obj, &sse_counter_status_ops,
                          s, "sse-counter-status", 0x1000);
    sysbus_init_mmio(sbd, &s->control_mr);
    sysbus_init_mmio(sbd, &s->status_mr);
}

static void sse_counter_realize(DeviceState *dev, Error **errp)
{
    SSECounter *s = SSE_COUNTER(dev);

    if (!clock_has_source(s->clk)) {
        error_setg(errp, "SSE system counter: CLK must be connected");
        return;
    }
}

static const VMStateDescription sse_counter_vmstate = {
    .name = "sse-counter",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (const VMStateField[]) {
        VMSTATE_CLOCK(clk, SSECounter),
        VMSTATE_END_OF_LIST()
    }
};

static void sse_counter_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    dc->realize = sse_counter_realize;
    dc->vmsd = &sse_counter_vmstate;
    dc->reset = sse_counter_reset;
}

static const TypeInfo sse_counter_info = {
    .name = TYPE_SSE_COUNTER,
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(SSECounter),
    .instance_init = sse_counter_init,
    .class_init = sse_counter_class_init,
};

static void sse_counter_register_types(void)
{
    type_register_static(&sse_counter_info);
}

type_init(sse_counter_register_types);