aboutsummaryrefslogtreecommitdiff
path: root/hw/s390x/sclp.c
blob: 02b32751323de1b5055549b3d78693b99893b880 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
/*
 * SCLP Support
 *
 * Copyright IBM, Corp. 2012
 *
 * Authors:
 *  Christian Borntraeger <borntraeger@de.ibm.com>
 *  Heinz Graalfs <graalfs@linux.vnet.ibm.com>
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or (at your
 * option) any later version.  See the COPYING file in the top-level directory.
 *
 */

#include "cpu.h"
#include "sysemu/kvm.h"
#include "exec/memory.h"
#include "sysemu/sysemu.h"
#include "exec/address-spaces.h"
#include "qemu/config-file.h"
#include "hw/s390x/sclp.h"
#include "hw/s390x/event-facility.h"

static inline SCLPEventFacility *get_event_facility(void)
{
    ObjectProperty *op = object_property_find(qdev_get_machine(),
                                              TYPE_SCLP_EVENT_FACILITY,
                                              NULL);
    assert(op);
    return op->opaque;
}

/* Provide information about the configuration, CPUs and storage */
static void read_SCP_info(SCCB *sccb)
{
    ReadInfo *read_info = (ReadInfo *) sccb;
    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
    CPUState *cpu;
    int cpu_count = 0;
    int i = 0;
    int increment_size = 20;
    int rnsize, rnmax;
    QemuOpts *opts = qemu_opts_find(qemu_find_opts("memory"), NULL);
    int slots = qemu_opt_get_number(opts, "slots", 0);
    int max_avail_slots = s390_get_memslot_count(kvm_state);

    if (slots > max_avail_slots) {
        slots = max_avail_slots;
    }

    CPU_FOREACH(cpu) {
        cpu_count++;
    }

    /* CPU information */
    read_info->entries_cpu = cpu_to_be16(cpu_count);
    read_info->offset_cpu = cpu_to_be16(offsetof(ReadInfo, entries));
    read_info->highest_cpu = cpu_to_be16(max_cpus);

    for (i = 0; i < cpu_count; i++) {
        read_info->entries[i].address = i;
        read_info->entries[i].type = 0;
    }

    read_info->facilities = cpu_to_be64(SCLP_HAS_CPU_INFO);

    /*
     * The storage increment size is a multiple of 1M and is a power of 2.
     * The number of storage increments must be MAX_STORAGE_INCREMENTS or fewer.
     */
    while ((ram_size >> increment_size) > MAX_STORAGE_INCREMENTS) {
        increment_size++;
    }
    rnmax = ram_size >> increment_size;

    /* Memory Hotplug is only supported for the ccw machine type */
    if (mhd) {
        while ((mhd->standby_mem_size >> increment_size) >
               MAX_STORAGE_INCREMENTS) {
            increment_size++;
        }
        assert(increment_size == mhd->increment_size);

        mhd->standby_subregion_size = MEM_SECTION_SIZE;
        /* Deduct the memory slot already used for core */
        if (slots > 0) {
            while ((mhd->standby_subregion_size * (slots - 1)
                    < mhd->standby_mem_size)) {
                mhd->standby_subregion_size = mhd->standby_subregion_size << 1;
            }
        }
        /*
         * Initialize mapping of guest standby memory sections indicating which
         * are and are not online. Assume all standby memory begins offline.
         */
        if (mhd->standby_state_map == 0) {
            if (mhd->standby_mem_size % mhd->standby_subregion_size) {
                mhd->standby_state_map = g_malloc0((mhd->standby_mem_size /
                                             mhd->standby_subregion_size + 1) *
                                             (mhd->standby_subregion_size /
                                             MEM_SECTION_SIZE));
            } else {
                mhd->standby_state_map = g_malloc0(mhd->standby_mem_size /
                                                   MEM_SECTION_SIZE);
            }
        }
        mhd->padded_ram_size = ram_size + mhd->pad_size;
        mhd->rzm = 1 << mhd->increment_size;
        rnmax = ((ram_size + mhd->standby_mem_size + mhd->pad_size)
             >> mhd->increment_size);

        read_info->facilities |= cpu_to_be64(SCLP_FC_ASSIGN_ATTACH_READ_STOR);
    }

    rnsize = 1 << (increment_size - 20);
    if (rnsize <= 128) {
        read_info->rnsize = rnsize;
    } else {
        read_info->rnsize = 0;
        read_info->rnsize2 = cpu_to_be32(rnsize);
    }

    if (rnmax < 0x10000) {
        read_info->rnmax = cpu_to_be16(rnmax);
    } else {
        read_info->rnmax = cpu_to_be16(0);
        read_info->rnmax2 = cpu_to_be64(rnmax);
    }

    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
}

static void read_storage_element0_info(SCCB *sccb)
{
    int i, assigned;
    int subincrement_id = SCLP_STARTING_SUBINCREMENT_ID;
    ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();

    assert(mhd);

    if ((ram_size >> mhd->increment_size) >= 0x10000) {
        sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
        return;
    }

    /* Return information regarding core memory */
    storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
    assigned = ram_size >> mhd->increment_size;
    storage_info->assigned = cpu_to_be16(assigned);

    for (i = 0; i < assigned; i++) {
        storage_info->entries[i] = cpu_to_be32(subincrement_id);
        subincrement_id += SCLP_INCREMENT_UNIT;
    }
    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
}

static void read_storage_element1_info(SCCB *sccb)
{
    ReadStorageElementInfo *storage_info = (ReadStorageElementInfo *) sccb;
    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();

    assert(mhd);

    if ((mhd->standby_mem_size >> mhd->increment_size) >= 0x10000) {
        sccb->h.response_code = cpu_to_be16(SCLP_RC_SCCB_BOUNDARY_VIOLATION);
        return;
    }

    /* Return information regarding standby memory */
    storage_info->max_id = cpu_to_be16(mhd->standby_mem_size ? 1 : 0);
    storage_info->assigned = cpu_to_be16(mhd->standby_mem_size >>
                                         mhd->increment_size);
    storage_info->standby = cpu_to_be16(mhd->standby_mem_size >>
                                        mhd->increment_size);
    sccb->h.response_code = cpu_to_be16(SCLP_RC_STANDBY_READ_COMPLETION);
}

static void attach_storage_element(SCCB *sccb, uint16_t element)
{
    int i, assigned, subincrement_id;
    AttachStorageElement *attach_info = (AttachStorageElement *) sccb;
    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();

    assert(mhd);

    if (element != 1) {
        sccb->h.response_code = cpu_to_be16(SCLP_RC_INVALID_SCLP_COMMAND);
        return;
    }

    assigned = mhd->standby_mem_size >> mhd->increment_size;
    attach_info->assigned = cpu_to_be16(assigned);
    subincrement_id = ((ram_size >> mhd->increment_size) << 16)
                      + SCLP_STARTING_SUBINCREMENT_ID;
    for (i = 0; i < assigned; i++) {
        attach_info->entries[i] = cpu_to_be32(subincrement_id);
        subincrement_id += SCLP_INCREMENT_UNIT;
    }
    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
}

static void assign_storage(SCCB *sccb)
{
    MemoryRegion *mr = NULL;
    uint64_t this_subregion_size;
    AssignStorage *assign_info = (AssignStorage *) sccb;
    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
    assert(mhd);
    ram_addr_t assign_addr = (assign_info->rn - 1) * mhd->rzm;
    MemoryRegion *sysmem = get_system_memory();

    if ((assign_addr % MEM_SECTION_SIZE == 0) &&
        (assign_addr >= mhd->padded_ram_size)) {
        /* Re-use existing memory region if found */
        mr = memory_region_find(sysmem, assign_addr, 1).mr;
        if (!mr) {

            MemoryRegion *standby_ram = g_new(MemoryRegion, 1);

            /* offset to align to standby_subregion_size for allocation */
            ram_addr_t offset = assign_addr -
                                (assign_addr - mhd->padded_ram_size)
                                % mhd->standby_subregion_size;

            /* strlen("standby.ram") + 4 (Max of KVM_MEMORY_SLOTS) +  NULL */
            char id[16];
            snprintf(id, 16, "standby.ram%d",
                     (int)((offset - mhd->padded_ram_size) /
                     mhd->standby_subregion_size) + 1);

            /* Allocate a subregion of the calculated standby_subregion_size */
            if (offset + mhd->standby_subregion_size >
                mhd->padded_ram_size + mhd->standby_mem_size) {
                this_subregion_size = mhd->padded_ram_size +
                  mhd->standby_mem_size - offset;
            } else {
                this_subregion_size = mhd->standby_subregion_size;
            }

            memory_region_init_ram(standby_ram, NULL, id, this_subregion_size);
            vmstate_register_ram_global(standby_ram);
            memory_region_add_subregion(sysmem, offset, standby_ram);
        }
        /* The specified subregion is no longer in standby */
        mhd->standby_state_map[(assign_addr - mhd->padded_ram_size)
                               / MEM_SECTION_SIZE] = 1;
    }
    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
}

static void unassign_storage(SCCB *sccb)
{
    MemoryRegion *mr = NULL;
    AssignStorage *assign_info = (AssignStorage *) sccb;
    sclpMemoryHotplugDev *mhd = get_sclp_memory_hotplug_dev();
    assert(mhd);
    ram_addr_t unassign_addr = (assign_info->rn - 1) * mhd->rzm;
    MemoryRegion *sysmem = get_system_memory();

    /* if the addr is a multiple of 256 MB */
    if ((unassign_addr % MEM_SECTION_SIZE == 0) &&
        (unassign_addr >= mhd->padded_ram_size)) {
        mhd->standby_state_map[(unassign_addr -
                           mhd->padded_ram_size) / MEM_SECTION_SIZE] = 0;

        /* find the specified memory region and destroy it */
        mr = memory_region_find(sysmem, unassign_addr, 1).mr;
        if (mr) {
            int i;
            int is_removable = 1;
            ram_addr_t map_offset = (unassign_addr - mhd->padded_ram_size -
                                     (unassign_addr - mhd->padded_ram_size)
                                     % mhd->standby_subregion_size);
            /* Mark all affected subregions as 'standby' once again */
            for (i = 0;
                 i < (mhd->standby_subregion_size / MEM_SECTION_SIZE);
                 i++) {

                if (mhd->standby_state_map[i + map_offset / MEM_SECTION_SIZE]) {
                    is_removable = 0;
                    break;
                }
            }
            if (is_removable) {
                memory_region_del_subregion(sysmem, mr);
                object_unparent(OBJECT(mr));
                g_free(mr);
            }
        }
    }
    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_COMPLETION);
}

/* Provide information about the CPU */
static void sclp_read_cpu_info(SCCB *sccb)
{
    ReadCpuInfo *cpu_info = (ReadCpuInfo *) sccb;
    CPUState *cpu;
    int cpu_count = 0;
    int i = 0;

    CPU_FOREACH(cpu) {
        cpu_count++;
    }

    cpu_info->nr_configured = cpu_to_be16(cpu_count);
    cpu_info->offset_configured = cpu_to_be16(offsetof(ReadCpuInfo, entries));
    cpu_info->nr_standby = cpu_to_be16(0);

    /* The standby offset is 16-byte for each CPU */
    cpu_info->offset_standby = cpu_to_be16(cpu_info->offset_configured
        + cpu_info->nr_configured*sizeof(CPUEntry));

    for (i = 0; i < cpu_count; i++) {
        cpu_info->entries[i].address = i;
        cpu_info->entries[i].type = 0;
    }

    sccb->h.response_code = cpu_to_be16(SCLP_RC_NORMAL_READ_COMPLETION);
}

static void sclp_execute(SCCB *sccb, uint32_t code)
{
    SCLPEventFacility *ef = get_event_facility();
    SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);

    switch (code & SCLP_CMD_CODE_MASK) {
    case SCLP_CMDW_READ_SCP_INFO:
    case SCLP_CMDW_READ_SCP_INFO_FORCED:
        read_SCP_info(sccb);
        break;
    case SCLP_CMDW_READ_CPU_INFO:
        sclp_read_cpu_info(sccb);
        break;
    case SCLP_READ_STORAGE_ELEMENT_INFO:
        if (code & 0xff00) {
            read_storage_element1_info(sccb);
        } else {
            read_storage_element0_info(sccb);
        }
        break;
    case SCLP_ATTACH_STORAGE_ELEMENT:
        attach_storage_element(sccb, (code & 0xff00) >> 8);
        break;
    case SCLP_ASSIGN_STORAGE:
        assign_storage(sccb);
        break;
    case SCLP_UNASSIGN_STORAGE:
        unassign_storage(sccb);
        break;
    default:
        efc->command_handler(ef, sccb, code);
        break;
    }
}

int sclp_service_call(CPUS390XState *env, uint64_t sccb, uint32_t code)
{
    int r = 0;
    SCCB work_sccb;

    hwaddr sccb_len = sizeof(SCCB);

    /* first some basic checks on program checks */
    if (env->psw.mask & PSW_MASK_PSTATE) {
        r = -PGM_PRIVILEGED;
        goto out;
    }
    if (cpu_physical_memory_is_io(sccb)) {
        r = -PGM_ADDRESSING;
        goto out;
    }
    if ((sccb & ~0x1fffUL) == 0 || (sccb & ~0x1fffUL) == env->psa
        || (sccb & ~0x7ffffff8UL) != 0) {
        r = -PGM_SPECIFICATION;
        goto out;
    }

    /*
     * we want to work on a private copy of the sccb, to prevent guests
     * from playing dirty tricks by modifying the memory content after
     * the host has checked the values
     */
    cpu_physical_memory_read(sccb, &work_sccb, sccb_len);

    /* Valid sccb sizes */
    if (be16_to_cpu(work_sccb.h.length) < sizeof(SCCBHeader) ||
        be16_to_cpu(work_sccb.h.length) > SCCB_SIZE) {
        r = -PGM_SPECIFICATION;
        goto out;
    }

    sclp_execute((SCCB *)&work_sccb, code);

    cpu_physical_memory_write(sccb, &work_sccb,
                              be16_to_cpu(work_sccb.h.length));

    sclp_service_interrupt(sccb);

out:
    return r;
}

void sclp_service_interrupt(uint32_t sccb)
{
    SCLPEventFacility *ef = get_event_facility();
    SCLPEventFacilityClass *efc = EVENT_FACILITY_GET_CLASS(ef);

    uint32_t param = sccb & ~3;

    /* Indicate whether an event is still pending */
    param |= efc->event_pending(ef) ? 1 : 0;

    if (!param) {
        /* No need to send an interrupt, there's nothing to be notified about */
        return;
    }
    s390_sclp_extint(param);
}

/* qemu object creation and initialization functions */

void s390_sclp_init(void)
{
    DeviceState *dev  = qdev_create(NULL, TYPE_SCLP_EVENT_FACILITY);

    object_property_add_child(qdev_get_machine(), TYPE_SCLP_EVENT_FACILITY,
                              OBJECT(dev), NULL);
    qdev_init_nofail(dev);
}

sclpMemoryHotplugDev *init_sclp_memory_hotplug_dev(void)
{
    DeviceState *dev;
    dev = qdev_create(NULL, TYPE_SCLP_MEMORY_HOTPLUG_DEV);
    object_property_add_child(qdev_get_machine(),
                              TYPE_SCLP_MEMORY_HOTPLUG_DEV,
                              OBJECT(dev), NULL);
    qdev_init_nofail(dev);
    return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
                                   TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
}

sclpMemoryHotplugDev *get_sclp_memory_hotplug_dev(void)
{
    return SCLP_MEMORY_HOTPLUG_DEV(object_resolve_path(
                                   TYPE_SCLP_MEMORY_HOTPLUG_DEV, NULL));
}

static TypeInfo sclp_memory_hotplug_dev_info = {
    .name = TYPE_SCLP_MEMORY_HOTPLUG_DEV,
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(sclpMemoryHotplugDev),
};

static void register_types(void)
{
    type_register_static(&sclp_memory_hotplug_dev_info);
}
type_init(register_types);