aboutsummaryrefslogtreecommitdiff
path: root/hw/core/clock.c
blob: 916875e07a2675a679a9a6a10e276fcac5054e3e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
/*
 * Hardware Clocks
 *
 * Copyright GreenSocs 2016-2020
 *
 * Authors:
 *  Frederic Konrad
 *  Damien Hedde
 *
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
 * See the COPYING file in the top-level directory.
 */

#include "qemu/osdep.h"
#include "qemu/cutils.h"
#include "hw/clock.h"
#include "trace.h"

#define CLOCK_PATH(_clk) (_clk->canonical_path)

void clock_setup_canonical_path(Clock *clk)
{
    g_free(clk->canonical_path);
    clk->canonical_path = object_get_canonical_path(OBJECT(clk));
}

Clock *clock_new(Object *parent, const char *name)
{
    Object *obj;
    Clock *clk;

    obj = object_new(TYPE_CLOCK);
    object_property_add_child(parent, name, obj);
    object_unref(obj);

    clk = CLOCK(obj);
    clock_setup_canonical_path(clk);

    return clk;
}

void clock_set_callback(Clock *clk, ClockCallback *cb, void *opaque,
                        unsigned int events)
{
    clk->callback = cb;
    clk->callback_opaque = opaque;
    clk->callback_events = events;
}

void clock_clear_callback(Clock *clk)
{
    clock_set_callback(clk, NULL, NULL, 0);
}

bool clock_set(Clock *clk, uint64_t period)
{
    if (clk->period == period) {
        return false;
    }
    trace_clock_set(CLOCK_PATH(clk), CLOCK_PERIOD_TO_HZ(clk->period),
                    CLOCK_PERIOD_TO_HZ(period));
    clk->period = period;

    return true;
}

static uint64_t clock_get_child_period(Clock *clk)
{
    /*
     * Return the period to be used for child clocks, which is the parent
     * clock period adjusted for for multiplier and divider effects.
     */
    return muldiv64(clk->period, clk->multiplier, clk->divider);
}

static void clock_call_callback(Clock *clk, ClockEvent event)
{
    /*
     * Call the Clock's callback for this event, if it has one and
     * is interested in this event.
     */
    if (clk->callback && (clk->callback_events & event)) {
        clk->callback(clk->callback_opaque, event);
    }
}

static void clock_propagate_period(Clock *clk, bool call_callbacks)
{
    Clock *child;
    uint64_t child_period = clock_get_child_period(clk);

    QLIST_FOREACH(child, &clk->children, sibling) {
        if (child->period != child_period) {
            if (call_callbacks) {
                clock_call_callback(child, ClockPreUpdate);
            }
            child->period = child_period;
            trace_clock_update(CLOCK_PATH(child), CLOCK_PATH(clk),
                               CLOCK_PERIOD_TO_HZ(child->period),
                               call_callbacks);
            if (call_callbacks) {
                clock_call_callback(child, ClockUpdate);
            }
            clock_propagate_period(child, call_callbacks);
        }
    }
}

void clock_propagate(Clock *clk)
{
    assert(clk->source == NULL);
    trace_clock_propagate(CLOCK_PATH(clk));
    clock_propagate_period(clk, true);
}

void clock_set_source(Clock *clk, Clock *src)
{
    /* changing clock source is not supported */
    assert(!clk->source);

    trace_clock_set_source(CLOCK_PATH(clk), CLOCK_PATH(src));

    clk->period = clock_get_child_period(src);
    QLIST_INSERT_HEAD(&src->children, clk, sibling);
    clk->source = src;
    clock_propagate_period(clk, false);
}

static void clock_disconnect(Clock *clk)
{
    if (clk->source == NULL) {
        return;
    }

    trace_clock_disconnect(CLOCK_PATH(clk));

    clk->source = NULL;
    QLIST_REMOVE(clk, sibling);
}

char *clock_display_freq(Clock *clk)
{
    return freq_to_str(clock_get_hz(clk));
}

void clock_set_mul_div(Clock *clk, uint32_t multiplier, uint32_t divider)
{
    assert(divider != 0);

    trace_clock_set_mul_div(CLOCK_PATH(clk), clk->multiplier, multiplier,
                            clk->divider, divider);
    clk->multiplier = multiplier;
    clk->divider = divider;
}

static void clock_initfn(Object *obj)
{
    Clock *clk = CLOCK(obj);

    clk->multiplier = 1;
    clk->divider = 1;

    QLIST_INIT(&clk->children);
}

static void clock_finalizefn(Object *obj)
{
    Clock *clk = CLOCK(obj);
    Clock *child, *next;

    /* clear our list of children */
    QLIST_FOREACH_SAFE(child, &clk->children, sibling, next) {
        clock_disconnect(child);
    }

    /* remove us from source's children list */
    clock_disconnect(clk);

    g_free(clk->canonical_path);
}

static const TypeInfo clock_info = {
    .name              = TYPE_CLOCK,
    .parent            = TYPE_OBJECT,
    .instance_size     = sizeof(Clock),
    .instance_init     = clock_initfn,
    .instance_finalize = clock_finalizefn,
};

static void clock_register_types(void)
{
    type_register_static(&clock_info);
}

type_init(clock_register_types)