aboutsummaryrefslogtreecommitdiff
path: root/hw/arm/stellaris.c
blob: a9e96c37f89d85381de274f8d57a31bd6902d661 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
/*
 * Luminary Micro Stellaris peripherals
 *
 * Copyright (c) 2006 CodeSourcery.
 * Written by Paul Brook
 *
 * This code is licensed under the GPL.
 */

#include "qemu/osdep.h"
#include "qapi/error.h"
#include "hw/core/split-irq.h"
#include "hw/sysbus.h"
#include "hw/sd/sd.h"
#include "hw/ssi/ssi.h"
#include "hw/arm/boot.h"
#include "qemu/timer.h"
#include "hw/i2c/i2c.h"
#include "net/net.h"
#include "hw/boards.h"
#include "qemu/log.h"
#include "exec/address-spaces.h"
#include "sysemu/sysemu.h"
#include "hw/arm/armv7m.h"
#include "hw/char/pl011.h"
#include "hw/input/gamepad.h"
#include "hw/irq.h"
#include "hw/watchdog/cmsdk-apb-watchdog.h"
#include "migration/vmstate.h"
#include "hw/misc/unimp.h"
#include "hw/timer/stellaris-gptm.h"
#include "hw/qdev-clock.h"
#include "qom/object.h"

#define GPIO_A 0
#define GPIO_B 1
#define GPIO_C 2
#define GPIO_D 3
#define GPIO_E 4
#define GPIO_F 5
#define GPIO_G 6

#define BP_OLED_I2C  0x01
#define BP_OLED_SSI  0x02
#define BP_GAMEPAD   0x04

#define NUM_IRQ_LINES 64

typedef const struct {
    const char *name;
    uint32_t did0;
    uint32_t did1;
    uint32_t dc0;
    uint32_t dc1;
    uint32_t dc2;
    uint32_t dc3;
    uint32_t dc4;
    uint32_t peripherals;
} stellaris_board_info;

/* System controller.  */

#define TYPE_STELLARIS_SYS "stellaris-sys"
OBJECT_DECLARE_SIMPLE_TYPE(ssys_state, STELLARIS_SYS)

struct ssys_state {
    SysBusDevice parent_obj;

    MemoryRegion iomem;
    uint32_t pborctl;
    uint32_t ldopctl;
    uint32_t int_status;
    uint32_t int_mask;
    uint32_t resc;
    uint32_t rcc;
    uint32_t rcc2;
    uint32_t rcgc[3];
    uint32_t scgc[3];
    uint32_t dcgc[3];
    uint32_t clkvclr;
    uint32_t ldoarst;
    qemu_irq irq;
    Clock *sysclk;
    /* Properties (all read-only registers) */
    uint32_t user0;
    uint32_t user1;
    uint32_t did0;
    uint32_t did1;
    uint32_t dc0;
    uint32_t dc1;
    uint32_t dc2;
    uint32_t dc3;
    uint32_t dc4;
};

static void ssys_update(ssys_state *s)
{
  qemu_set_irq(s->irq, (s->int_status & s->int_mask) != 0);
}

static uint32_t pllcfg_sandstorm[16] = {
    0x31c0, /* 1 Mhz */
    0x1ae0, /* 1.8432 Mhz */
    0x18c0, /* 2 Mhz */
    0xd573, /* 2.4576 Mhz */
    0x37a6, /* 3.57954 Mhz */
    0x1ae2, /* 3.6864 Mhz */
    0x0c40, /* 4 Mhz */
    0x98bc, /* 4.906 Mhz */
    0x935b, /* 4.9152 Mhz */
    0x09c0, /* 5 Mhz */
    0x4dee, /* 5.12 Mhz */
    0x0c41, /* 6 Mhz */
    0x75db, /* 6.144 Mhz */
    0x1ae6, /* 7.3728 Mhz */
    0x0600, /* 8 Mhz */
    0x585b /* 8.192 Mhz */
};

static uint32_t pllcfg_fury[16] = {
    0x3200, /* 1 Mhz */
    0x1b20, /* 1.8432 Mhz */
    0x1900, /* 2 Mhz */
    0xf42b, /* 2.4576 Mhz */
    0x37e3, /* 3.57954 Mhz */
    0x1b21, /* 3.6864 Mhz */
    0x0c80, /* 4 Mhz */
    0x98ee, /* 4.906 Mhz */
    0xd5b4, /* 4.9152 Mhz */
    0x0a00, /* 5 Mhz */
    0x4e27, /* 5.12 Mhz */
    0x1902, /* 6 Mhz */
    0xec1c, /* 6.144 Mhz */
    0x1b23, /* 7.3728 Mhz */
    0x0640, /* 8 Mhz */
    0xb11c /* 8.192 Mhz */
};

#define DID0_VER_MASK        0x70000000
#define DID0_VER_0           0x00000000
#define DID0_VER_1           0x10000000

#define DID0_CLASS_MASK      0x00FF0000
#define DID0_CLASS_SANDSTORM 0x00000000
#define DID0_CLASS_FURY      0x00010000

static int ssys_board_class(const ssys_state *s)
{
    uint32_t did0 = s->did0;
    switch (did0 & DID0_VER_MASK) {
    case DID0_VER_0:
        return DID0_CLASS_SANDSTORM;
    case DID0_VER_1:
        switch (did0 & DID0_CLASS_MASK) {
        case DID0_CLASS_SANDSTORM:
        case DID0_CLASS_FURY:
            return did0 & DID0_CLASS_MASK;
        }
        /* for unknown classes, fall through */
    default:
        /* This can only happen if the hardwired constant did0 value
         * in this board's stellaris_board_info struct is wrong.
         */
        g_assert_not_reached();
    }
}

static uint64_t ssys_read(void *opaque, hwaddr offset,
                          unsigned size)
{
    ssys_state *s = (ssys_state *)opaque;

    switch (offset) {
    case 0x000: /* DID0 */
        return s->did0;
    case 0x004: /* DID1 */
        return s->did1;
    case 0x008: /* DC0 */
        return s->dc0;
    case 0x010: /* DC1 */
        return s->dc1;
    case 0x014: /* DC2 */
        return s->dc2;
    case 0x018: /* DC3 */
        return s->dc3;
    case 0x01c: /* DC4 */
        return s->dc4;
    case 0x030: /* PBORCTL */
        return s->pborctl;
    case 0x034: /* LDOPCTL */
        return s->ldopctl;
    case 0x040: /* SRCR0 */
        return 0;
    case 0x044: /* SRCR1 */
        return 0;
    case 0x048: /* SRCR2 */
        return 0;
    case 0x050: /* RIS */
        return s->int_status;
    case 0x054: /* IMC */
        return s->int_mask;
    case 0x058: /* MISC */
        return s->int_status & s->int_mask;
    case 0x05c: /* RESC */
        return s->resc;
    case 0x060: /* RCC */
        return s->rcc;
    case 0x064: /* PLLCFG */
        {
            int xtal;
            xtal = (s->rcc >> 6) & 0xf;
            switch (ssys_board_class(s)) {
            case DID0_CLASS_FURY:
                return pllcfg_fury[xtal];
            case DID0_CLASS_SANDSTORM:
                return pllcfg_sandstorm[xtal];
            default:
                g_assert_not_reached();
            }
        }
    case 0x070: /* RCC2 */
        return s->rcc2;
    case 0x100: /* RCGC0 */
        return s->rcgc[0];
    case 0x104: /* RCGC1 */
        return s->rcgc[1];
    case 0x108: /* RCGC2 */
        return s->rcgc[2];
    case 0x110: /* SCGC0 */
        return s->scgc[0];
    case 0x114: /* SCGC1 */
        return s->scgc[1];
    case 0x118: /* SCGC2 */
        return s->scgc[2];
    case 0x120: /* DCGC0 */
        return s->dcgc[0];
    case 0x124: /* DCGC1 */
        return s->dcgc[1];
    case 0x128: /* DCGC2 */
        return s->dcgc[2];
    case 0x150: /* CLKVCLR */
        return s->clkvclr;
    case 0x160: /* LDOARST */
        return s->ldoarst;
    case 0x1e0: /* USER0 */
        return s->user0;
    case 0x1e4: /* USER1 */
        return s->user1;
    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "SSYS: read at bad offset 0x%x\n", (int)offset);
        return 0;
    }
}

static bool ssys_use_rcc2(ssys_state *s)
{
    return (s->rcc2 >> 31) & 0x1;
}

/*
 * Calculate the system clock period. We only want to propagate
 * this change to the rest of the system if we're not being called
 * from migration post-load.
 */
static void ssys_calculate_system_clock(ssys_state *s, bool propagate_clock)
{
    int period_ns;
    /*
     * SYSDIV field specifies divisor: 0 == /1, 1 == /2, etc.  Input
     * clock is 200MHz, which is a period of 5 ns. Dividing the clock
     * frequency by X is the same as multiplying the period by X.
     */
    if (ssys_use_rcc2(s)) {
        period_ns = 5 * (((s->rcc2 >> 23) & 0x3f) + 1);
    } else {
        period_ns = 5 * (((s->rcc >> 23) & 0xf) + 1);
    }
    clock_set_ns(s->sysclk, period_ns);
    if (propagate_clock) {
        clock_propagate(s->sysclk);
    }
}

static void ssys_write(void *opaque, hwaddr offset,
                       uint64_t value, unsigned size)
{
    ssys_state *s = (ssys_state *)opaque;

    switch (offset) {
    case 0x030: /* PBORCTL */
        s->pborctl = value & 0xffff;
        break;
    case 0x034: /* LDOPCTL */
        s->ldopctl = value & 0x1f;
        break;
    case 0x040: /* SRCR0 */
    case 0x044: /* SRCR1 */
    case 0x048: /* SRCR2 */
        qemu_log_mask(LOG_UNIMP, "Peripheral reset not implemented\n");
        break;
    case 0x054: /* IMC */
        s->int_mask = value & 0x7f;
        break;
    case 0x058: /* MISC */
        s->int_status &= ~value;
        break;
    case 0x05c: /* RESC */
        s->resc = value & 0x3f;
        break;
    case 0x060: /* RCC */
        if ((s->rcc & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
            /* PLL enable.  */
            s->int_status |= (1 << 6);
        }
        s->rcc = value;
        ssys_calculate_system_clock(s, true);
        break;
    case 0x070: /* RCC2 */
        if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
            break;
        }

        if ((s->rcc2 & (1 << 13)) != 0 && (value & (1 << 13)) == 0) {
            /* PLL enable.  */
            s->int_status |= (1 << 6);
        }
        s->rcc2 = value;
        ssys_calculate_system_clock(s, true);
        break;
    case 0x100: /* RCGC0 */
        s->rcgc[0] = value;
        break;
    case 0x104: /* RCGC1 */
        s->rcgc[1] = value;
        break;
    case 0x108: /* RCGC2 */
        s->rcgc[2] = value;
        break;
    case 0x110: /* SCGC0 */
        s->scgc[0] = value;
        break;
    case 0x114: /* SCGC1 */
        s->scgc[1] = value;
        break;
    case 0x118: /* SCGC2 */
        s->scgc[2] = value;
        break;
    case 0x120: /* DCGC0 */
        s->dcgc[0] = value;
        break;
    case 0x124: /* DCGC1 */
        s->dcgc[1] = value;
        break;
    case 0x128: /* DCGC2 */
        s->dcgc[2] = value;
        break;
    case 0x150: /* CLKVCLR */
        s->clkvclr = value;
        break;
    case 0x160: /* LDOARST */
        s->ldoarst = value;
        break;
    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "SSYS: write at bad offset 0x%x\n", (int)offset);
    }
    ssys_update(s);
}

static const MemoryRegionOps ssys_ops = {
    .read = ssys_read,
    .write = ssys_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static void stellaris_sys_reset_enter(Object *obj, ResetType type)
{
    ssys_state *s = STELLARIS_SYS(obj);

    s->pborctl = 0x7ffd;
    s->rcc = 0x078e3ac0;

    if (ssys_board_class(s) == DID0_CLASS_SANDSTORM) {
        s->rcc2 = 0;
    } else {
        s->rcc2 = 0x07802810;
    }
    s->rcgc[0] = 1;
    s->scgc[0] = 1;
    s->dcgc[0] = 1;
}

static void stellaris_sys_reset_hold(Object *obj)
{
    ssys_state *s = STELLARIS_SYS(obj);

    /* OK to propagate clocks from the hold phase */
    ssys_calculate_system_clock(s, true);
}

static void stellaris_sys_reset_exit(Object *obj)
{
}

static int stellaris_sys_post_load(void *opaque, int version_id)
{
    ssys_state *s = opaque;

    ssys_calculate_system_clock(s, false);

    return 0;
}

static const VMStateDescription vmstate_stellaris_sys = {
    .name = "stellaris_sys",
    .version_id = 2,
    .minimum_version_id = 1,
    .post_load = stellaris_sys_post_load,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32(pborctl, ssys_state),
        VMSTATE_UINT32(ldopctl, ssys_state),
        VMSTATE_UINT32(int_mask, ssys_state),
        VMSTATE_UINT32(int_status, ssys_state),
        VMSTATE_UINT32(resc, ssys_state),
        VMSTATE_UINT32(rcc, ssys_state),
        VMSTATE_UINT32_V(rcc2, ssys_state, 2),
        VMSTATE_UINT32_ARRAY(rcgc, ssys_state, 3),
        VMSTATE_UINT32_ARRAY(scgc, ssys_state, 3),
        VMSTATE_UINT32_ARRAY(dcgc, ssys_state, 3),
        VMSTATE_UINT32(clkvclr, ssys_state),
        VMSTATE_UINT32(ldoarst, ssys_state),
        /* No field for sysclk -- handled in post-load instead */
        VMSTATE_END_OF_LIST()
    }
};

static Property stellaris_sys_properties[] = {
    DEFINE_PROP_UINT32("user0", ssys_state, user0, 0),
    DEFINE_PROP_UINT32("user1", ssys_state, user1, 0),
    DEFINE_PROP_UINT32("did0", ssys_state, did0, 0),
    DEFINE_PROP_UINT32("did1", ssys_state, did1, 0),
    DEFINE_PROP_UINT32("dc0", ssys_state, dc0, 0),
    DEFINE_PROP_UINT32("dc1", ssys_state, dc1, 0),
    DEFINE_PROP_UINT32("dc2", ssys_state, dc2, 0),
    DEFINE_PROP_UINT32("dc3", ssys_state, dc3, 0),
    DEFINE_PROP_UINT32("dc4", ssys_state, dc4, 0),
    DEFINE_PROP_END_OF_LIST()
};

static void stellaris_sys_instance_init(Object *obj)
{
    ssys_state *s = STELLARIS_SYS(obj);
    SysBusDevice *sbd = SYS_BUS_DEVICE(s);

    memory_region_init_io(&s->iomem, obj, &ssys_ops, s, "ssys", 0x00001000);
    sysbus_init_mmio(sbd, &s->iomem);
    sysbus_init_irq(sbd, &s->irq);
    s->sysclk = qdev_init_clock_out(DEVICE(s), "SYSCLK");
}

/* I2C controller.  */

#define TYPE_STELLARIS_I2C "stellaris-i2c"
OBJECT_DECLARE_SIMPLE_TYPE(stellaris_i2c_state, STELLARIS_I2C)

struct stellaris_i2c_state {
    SysBusDevice parent_obj;

    I2CBus *bus;
    qemu_irq irq;
    MemoryRegion iomem;
    uint32_t msa;
    uint32_t mcs;
    uint32_t mdr;
    uint32_t mtpr;
    uint32_t mimr;
    uint32_t mris;
    uint32_t mcr;
};

#define STELLARIS_I2C_MCS_BUSY    0x01
#define STELLARIS_I2C_MCS_ERROR   0x02
#define STELLARIS_I2C_MCS_ADRACK  0x04
#define STELLARIS_I2C_MCS_DATACK  0x08
#define STELLARIS_I2C_MCS_ARBLST  0x10
#define STELLARIS_I2C_MCS_IDLE    0x20
#define STELLARIS_I2C_MCS_BUSBSY  0x40

static uint64_t stellaris_i2c_read(void *opaque, hwaddr offset,
                                   unsigned size)
{
    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;

    switch (offset) {
    case 0x00: /* MSA */
        return s->msa;
    case 0x04: /* MCS */
        /* We don't emulate timing, so the controller is never busy.  */
        return s->mcs | STELLARIS_I2C_MCS_IDLE;
    case 0x08: /* MDR */
        return s->mdr;
    case 0x0c: /* MTPR */
        return s->mtpr;
    case 0x10: /* MIMR */
        return s->mimr;
    case 0x14: /* MRIS */
        return s->mris;
    case 0x18: /* MMIS */
        return s->mris & s->mimr;
    case 0x20: /* MCR */
        return s->mcr;
    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "stellaris_i2c: read at bad offset 0x%x\n", (int)offset);
        return 0;
    }
}

static void stellaris_i2c_update(stellaris_i2c_state *s)
{
    int level;

    level = (s->mris & s->mimr) != 0;
    qemu_set_irq(s->irq, level);
}

static void stellaris_i2c_write(void *opaque, hwaddr offset,
                                uint64_t value, unsigned size)
{
    stellaris_i2c_state *s = (stellaris_i2c_state *)opaque;

    switch (offset) {
    case 0x00: /* MSA */
        s->msa = value & 0xff;
        break;
    case 0x04: /* MCS */
        if ((s->mcr & 0x10) == 0) {
            /* Disabled.  Do nothing.  */
            break;
        }
        /* Grab the bus if this is starting a transfer.  */
        if ((value & 2) && (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
            if (i2c_start_transfer(s->bus, s->msa >> 1, s->msa & 1)) {
                s->mcs |= STELLARIS_I2C_MCS_ARBLST;
            } else {
                s->mcs &= ~STELLARIS_I2C_MCS_ARBLST;
                s->mcs |= STELLARIS_I2C_MCS_BUSBSY;
            }
        }
        /* If we don't have the bus then indicate an error.  */
        if (!i2c_bus_busy(s->bus)
                || (s->mcs & STELLARIS_I2C_MCS_BUSBSY) == 0) {
            s->mcs |= STELLARIS_I2C_MCS_ERROR;
            break;
        }
        s->mcs &= ~STELLARIS_I2C_MCS_ERROR;
        if (value & 1) {
            /* Transfer a byte.  */
            /* TODO: Handle errors.  */
            if (s->msa & 1) {
                /* Recv */
                s->mdr = i2c_recv(s->bus);
            } else {
                /* Send */
                i2c_send(s->bus, s->mdr);
            }
            /* Raise an interrupt.  */
            s->mris |= 1;
        }
        if (value & 4) {
            /* Finish transfer.  */
            i2c_end_transfer(s->bus);
            s->mcs &= ~STELLARIS_I2C_MCS_BUSBSY;
        }
        break;
    case 0x08: /* MDR */
        s->mdr = value & 0xff;
        break;
    case 0x0c: /* MTPR */
        s->mtpr = value & 0xff;
        break;
    case 0x10: /* MIMR */
        s->mimr = 1;
        break;
    case 0x1c: /* MICR */
        s->mris &= ~value;
        break;
    case 0x20: /* MCR */
        if (value & 1) {
            qemu_log_mask(LOG_UNIMP,
                          "stellaris_i2c: Loopback not implemented\n");
        }
        if (value & 0x20) {
            qemu_log_mask(LOG_UNIMP,
                          "stellaris_i2c: Slave mode not implemented\n");
        }
        s->mcr = value & 0x31;
        break;
    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "stellaris_i2c: write at bad offset 0x%x\n", (int)offset);
    }
    stellaris_i2c_update(s);
}

static void stellaris_i2c_reset(stellaris_i2c_state *s)
{
    if (s->mcs & STELLARIS_I2C_MCS_BUSBSY)
        i2c_end_transfer(s->bus);

    s->msa = 0;
    s->mcs = 0;
    s->mdr = 0;
    s->mtpr = 1;
    s->mimr = 0;
    s->mris = 0;
    s->mcr = 0;
    stellaris_i2c_update(s);
}

static const MemoryRegionOps stellaris_i2c_ops = {
    .read = stellaris_i2c_read,
    .write = stellaris_i2c_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static const VMStateDescription vmstate_stellaris_i2c = {
    .name = "stellaris_i2c",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32(msa, stellaris_i2c_state),
        VMSTATE_UINT32(mcs, stellaris_i2c_state),
        VMSTATE_UINT32(mdr, stellaris_i2c_state),
        VMSTATE_UINT32(mtpr, stellaris_i2c_state),
        VMSTATE_UINT32(mimr, stellaris_i2c_state),
        VMSTATE_UINT32(mris, stellaris_i2c_state),
        VMSTATE_UINT32(mcr, stellaris_i2c_state),
        VMSTATE_END_OF_LIST()
    }
};

static void stellaris_i2c_init(Object *obj)
{
    DeviceState *dev = DEVICE(obj);
    stellaris_i2c_state *s = STELLARIS_I2C(obj);
    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    I2CBus *bus;

    sysbus_init_irq(sbd, &s->irq);
    bus = i2c_init_bus(dev, "i2c");
    s->bus = bus;

    memory_region_init_io(&s->iomem, obj, &stellaris_i2c_ops, s,
                          "i2c", 0x1000);
    sysbus_init_mmio(sbd, &s->iomem);
    /* ??? For now we only implement the master interface.  */
    stellaris_i2c_reset(s);
}

/* Analogue to Digital Converter.  This is only partially implemented,
   enough for applications that use a combined ADC and timer tick.  */

#define STELLARIS_ADC_EM_CONTROLLER 0
#define STELLARIS_ADC_EM_COMP       1
#define STELLARIS_ADC_EM_EXTERNAL   4
#define STELLARIS_ADC_EM_TIMER      5
#define STELLARIS_ADC_EM_PWM0       6
#define STELLARIS_ADC_EM_PWM1       7
#define STELLARIS_ADC_EM_PWM2       8

#define STELLARIS_ADC_FIFO_EMPTY    0x0100
#define STELLARIS_ADC_FIFO_FULL     0x1000

#define TYPE_STELLARIS_ADC "stellaris-adc"
typedef struct StellarisADCState stellaris_adc_state;
DECLARE_INSTANCE_CHECKER(stellaris_adc_state, STELLARIS_ADC,
                         TYPE_STELLARIS_ADC)

struct StellarisADCState {
    SysBusDevice parent_obj;

    MemoryRegion iomem;
    uint32_t actss;
    uint32_t ris;
    uint32_t im;
    uint32_t emux;
    uint32_t ostat;
    uint32_t ustat;
    uint32_t sspri;
    uint32_t sac;
    struct {
        uint32_t state;
        uint32_t data[16];
    } fifo[4];
    uint32_t ssmux[4];
    uint32_t ssctl[4];
    uint32_t noise;
    qemu_irq irq[4];
};

static uint32_t stellaris_adc_fifo_read(stellaris_adc_state *s, int n)
{
    int tail;

    tail = s->fifo[n].state & 0xf;
    if (s->fifo[n].state & STELLARIS_ADC_FIFO_EMPTY) {
        s->ustat |= 1 << n;
    } else {
        s->fifo[n].state = (s->fifo[n].state & ~0xf) | ((tail + 1) & 0xf);
        s->fifo[n].state &= ~STELLARIS_ADC_FIFO_FULL;
        if (tail + 1 == ((s->fifo[n].state >> 4) & 0xf))
            s->fifo[n].state |= STELLARIS_ADC_FIFO_EMPTY;
    }
    return s->fifo[n].data[tail];
}

static void stellaris_adc_fifo_write(stellaris_adc_state *s, int n,
                                     uint32_t value)
{
    int head;

    /* TODO: Real hardware has limited size FIFOs.  We have a full 16 entry 
       FIFO fir each sequencer.  */
    head = (s->fifo[n].state >> 4) & 0xf;
    if (s->fifo[n].state & STELLARIS_ADC_FIFO_FULL) {
        s->ostat |= 1 << n;
        return;
    }
    s->fifo[n].data[head] = value;
    head = (head + 1) & 0xf;
    s->fifo[n].state &= ~STELLARIS_ADC_FIFO_EMPTY;
    s->fifo[n].state = (s->fifo[n].state & ~0xf0) | (head << 4);
    if ((s->fifo[n].state & 0xf) == head)
        s->fifo[n].state |= STELLARIS_ADC_FIFO_FULL;
}

static void stellaris_adc_update(stellaris_adc_state *s)
{
    int level;
    int n;

    for (n = 0; n < 4; n++) {
        level = (s->ris & s->im & (1 << n)) != 0;
        qemu_set_irq(s->irq[n], level);
    }
}

static void stellaris_adc_trigger(void *opaque, int irq, int level)
{
    stellaris_adc_state *s = (stellaris_adc_state *)opaque;
    int n;

    for (n = 0; n < 4; n++) {
        if ((s->actss & (1 << n)) == 0) {
            continue;
        }

        if (((s->emux >> (n * 4)) & 0xff) != 5) {
            continue;
        }

        /* Some applications use the ADC as a random number source, so introduce
           some variation into the signal.  */
        s->noise = s->noise * 314159 + 1;
        /* ??? actual inputs not implemented.  Return an arbitrary value.  */
        stellaris_adc_fifo_write(s, n, 0x200 + ((s->noise >> 16) & 7));
        s->ris |= (1 << n);
        stellaris_adc_update(s);
    }
}

static void stellaris_adc_reset(stellaris_adc_state *s)
{
    int n;

    for (n = 0; n < 4; n++) {
        s->ssmux[n] = 0;
        s->ssctl[n] = 0;
        s->fifo[n].state = STELLARIS_ADC_FIFO_EMPTY;
    }
}

static uint64_t stellaris_adc_read(void *opaque, hwaddr offset,
                                   unsigned size)
{
    stellaris_adc_state *s = (stellaris_adc_state *)opaque;

    /* TODO: Implement this.  */
    if (offset >= 0x40 && offset < 0xc0) {
        int n;
        n = (offset - 0x40) >> 5;
        switch (offset & 0x1f) {
        case 0x00: /* SSMUX */
            return s->ssmux[n];
        case 0x04: /* SSCTL */
            return s->ssctl[n];
        case 0x08: /* SSFIFO */
            return stellaris_adc_fifo_read(s, n);
        case 0x0c: /* SSFSTAT */
            return s->fifo[n].state;
        default:
            break;
        }
    }
    switch (offset) {
    case 0x00: /* ACTSS */
        return s->actss;
    case 0x04: /* RIS */
        return s->ris;
    case 0x08: /* IM */
        return s->im;
    case 0x0c: /* ISC */
        return s->ris & s->im;
    case 0x10: /* OSTAT */
        return s->ostat;
    case 0x14: /* EMUX */
        return s->emux;
    case 0x18: /* USTAT */
        return s->ustat;
    case 0x20: /* SSPRI */
        return s->sspri;
    case 0x30: /* SAC */
        return s->sac;
    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "stellaris_adc: read at bad offset 0x%x\n", (int)offset);
        return 0;
    }
}

static void stellaris_adc_write(void *opaque, hwaddr offset,
                                uint64_t value, unsigned size)
{
    stellaris_adc_state *s = (stellaris_adc_state *)opaque;

    /* TODO: Implement this.  */
    if (offset >= 0x40 && offset < 0xc0) {
        int n;
        n = (offset - 0x40) >> 5;
        switch (offset & 0x1f) {
        case 0x00: /* SSMUX */
            s->ssmux[n] = value & 0x33333333;
            return;
        case 0x04: /* SSCTL */
            if (value != 6) {
                qemu_log_mask(LOG_UNIMP,
                              "ADC: Unimplemented sequence %" PRIx64 "\n",
                              value);
            }
            s->ssctl[n] = value;
            return;
        default:
            break;
        }
    }
    switch (offset) {
    case 0x00: /* ACTSS */
        s->actss = value & 0xf;
        break;
    case 0x08: /* IM */
        s->im = value;
        break;
    case 0x0c: /* ISC */
        s->ris &= ~value;
        break;
    case 0x10: /* OSTAT */
        s->ostat &= ~value;
        break;
    case 0x14: /* EMUX */
        s->emux = value;
        break;
    case 0x18: /* USTAT */
        s->ustat &= ~value;
        break;
    case 0x20: /* SSPRI */
        s->sspri = value;
        break;
    case 0x28: /* PSSI */
        qemu_log_mask(LOG_UNIMP, "ADC: sample initiate unimplemented\n");
        break;
    case 0x30: /* SAC */
        s->sac = value;
        break;
    default:
        qemu_log_mask(LOG_GUEST_ERROR,
                      "stellaris_adc: write at bad offset 0x%x\n", (int)offset);
    }
    stellaris_adc_update(s);
}

static const MemoryRegionOps stellaris_adc_ops = {
    .read = stellaris_adc_read,
    .write = stellaris_adc_write,
    .endianness = DEVICE_NATIVE_ENDIAN,
};

static const VMStateDescription vmstate_stellaris_adc = {
    .name = "stellaris_adc",
    .version_id = 1,
    .minimum_version_id = 1,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32(actss, stellaris_adc_state),
        VMSTATE_UINT32(ris, stellaris_adc_state),
        VMSTATE_UINT32(im, stellaris_adc_state),
        VMSTATE_UINT32(emux, stellaris_adc_state),
        VMSTATE_UINT32(ostat, stellaris_adc_state),
        VMSTATE_UINT32(ustat, stellaris_adc_state),
        VMSTATE_UINT32(sspri, stellaris_adc_state),
        VMSTATE_UINT32(sac, stellaris_adc_state),
        VMSTATE_UINT32(fifo[0].state, stellaris_adc_state),
        VMSTATE_UINT32_ARRAY(fifo[0].data, stellaris_adc_state, 16),
        VMSTATE_UINT32(ssmux[0], stellaris_adc_state),
        VMSTATE_UINT32(ssctl[0], stellaris_adc_state),
        VMSTATE_UINT32(fifo[1].state, stellaris_adc_state),
        VMSTATE_UINT32_ARRAY(fifo[1].data, stellaris_adc_state, 16),
        VMSTATE_UINT32(ssmux[1], stellaris_adc_state),
        VMSTATE_UINT32(ssctl[1], stellaris_adc_state),
        VMSTATE_UINT32(fifo[2].state, stellaris_adc_state),
        VMSTATE_UINT32_ARRAY(fifo[2].data, stellaris_adc_state, 16),
        VMSTATE_UINT32(ssmux[2], stellaris_adc_state),
        VMSTATE_UINT32(ssctl[2], stellaris_adc_state),
        VMSTATE_UINT32(fifo[3].state, stellaris_adc_state),
        VMSTATE_UINT32_ARRAY(fifo[3].data, stellaris_adc_state, 16),
        VMSTATE_UINT32(ssmux[3], stellaris_adc_state),
        VMSTATE_UINT32(ssctl[3], stellaris_adc_state),
        VMSTATE_UINT32(noise, stellaris_adc_state),
        VMSTATE_END_OF_LIST()
    }
};

static void stellaris_adc_init(Object *obj)
{
    DeviceState *dev = DEVICE(obj);
    stellaris_adc_state *s = STELLARIS_ADC(obj);
    SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
    int n;

    for (n = 0; n < 4; n++) {
        sysbus_init_irq(sbd, &s->irq[n]);
    }

    memory_region_init_io(&s->iomem, obj, &stellaris_adc_ops, s,
                          "adc", 0x1000);
    sysbus_init_mmio(sbd, &s->iomem);
    stellaris_adc_reset(s);
    qdev_init_gpio_in(dev, stellaris_adc_trigger, 1);
}

/* Board init.  */
static stellaris_board_info stellaris_boards[] = {
  { "LM3S811EVB",
    0,
    0x0032000e,
    0x001f001f, /* dc0 */
    0x001132bf,
    0x01071013,
    0x3f0f01ff,
    0x0000001f,
    BP_OLED_I2C
  },
  { "LM3S6965EVB",
    0x10010002,
    0x1073402e,
    0x00ff007f, /* dc0 */
    0x001133ff,
    0x030f5317,
    0x0f0f87ff,
    0x5000007f,
    BP_OLED_SSI | BP_GAMEPAD
  }
};

static void stellaris_init(MachineState *ms, stellaris_board_info *board)
{
    static const int uart_irq[] = {5, 6, 33, 34};
    static const int timer_irq[] = {19, 21, 23, 35};
    static const uint32_t gpio_addr[7] =
      { 0x40004000, 0x40005000, 0x40006000, 0x40007000,
        0x40024000, 0x40025000, 0x40026000};
    static const int gpio_irq[7] = {0, 1, 2, 3, 4, 30, 31};

    /* Memory map of SoC devices, from
     * Stellaris LM3S6965 Microcontroller Data Sheet (rev I)
     * http://www.ti.com/lit/ds/symlink/lm3s6965.pdf
     *
     * 40000000 wdtimer
     * 40002000 i2c (unimplemented)
     * 40004000 GPIO
     * 40005000 GPIO
     * 40006000 GPIO
     * 40007000 GPIO
     * 40008000 SSI
     * 4000c000 UART
     * 4000d000 UART
     * 4000e000 UART
     * 40020000 i2c
     * 40021000 i2c (unimplemented)
     * 40024000 GPIO
     * 40025000 GPIO
     * 40026000 GPIO
     * 40028000 PWM (unimplemented)
     * 4002c000 QEI (unimplemented)
     * 4002d000 QEI (unimplemented)
     * 40030000 gptimer
     * 40031000 gptimer
     * 40032000 gptimer
     * 40033000 gptimer
     * 40038000 ADC
     * 4003c000 analogue comparator (unimplemented)
     * 40048000 ethernet
     * 400fc000 hibernation module (unimplemented)
     * 400fd000 flash memory control (unimplemented)
     * 400fe000 system control
     */

    DeviceState *gpio_dev[7], *nvic;
    qemu_irq gpio_in[7][8];
    qemu_irq gpio_out[7][8];
    qemu_irq adc;
    int sram_size;
    int flash_size;
    I2CBus *i2c;
    DeviceState *dev;
    DeviceState *ssys_dev;
    int i;
    int j;
    const uint8_t *macaddr;

    MemoryRegion *sram = g_new(MemoryRegion, 1);
    MemoryRegion *flash = g_new(MemoryRegion, 1);
    MemoryRegion *system_memory = get_system_memory();

    flash_size = (((board->dc0 & 0xffff) + 1) << 1) * 1024;
    sram_size = ((board->dc0 >> 18) + 1) * 1024;

    /* Flash programming is done via the SCU, so pretend it is ROM.  */
    memory_region_init_rom(flash, NULL, "stellaris.flash", flash_size,
                           &error_fatal);
    memory_region_add_subregion(system_memory, 0, flash);

    memory_region_init_ram(sram, NULL, "stellaris.sram", sram_size,
                           &error_fatal);
    memory_region_add_subregion(system_memory, 0x20000000, sram);

    /*
     * Create the system-registers object early, because we will
     * need its sysclk output.
     */
    ssys_dev = qdev_new(TYPE_STELLARIS_SYS);
    /* Most devices come preprogrammed with a MAC address in the user data. */
    macaddr = nd_table[0].macaddr.a;
    qdev_prop_set_uint32(ssys_dev, "user0",
                         macaddr[0] | (macaddr[1] << 8) | (macaddr[2] << 16));
    qdev_prop_set_uint32(ssys_dev, "user1",
                         macaddr[3] | (macaddr[4] << 8) | (macaddr[5] << 16));
    qdev_prop_set_uint32(ssys_dev, "did0", board->did0);
    qdev_prop_set_uint32(ssys_dev, "did1", board->did1);
    qdev_prop_set_uint32(ssys_dev, "dc0", board->dc0);
    qdev_prop_set_uint32(ssys_dev, "dc1", board->dc1);
    qdev_prop_set_uint32(ssys_dev, "dc2", board->dc2);
    qdev_prop_set_uint32(ssys_dev, "dc3", board->dc3);
    qdev_prop_set_uint32(ssys_dev, "dc4", board->dc4);
    sysbus_realize_and_unref(SYS_BUS_DEVICE(ssys_dev), &error_fatal);

    nvic = qdev_new(TYPE_ARMV7M);
    qdev_prop_set_uint32(nvic, "num-irq", NUM_IRQ_LINES);
    qdev_prop_set_string(nvic, "cpu-type", ms->cpu_type);
    qdev_prop_set_bit(nvic, "enable-bitband", true);
    qdev_connect_clock_in(nvic, "cpuclk",
                          qdev_get_clock_out(ssys_dev, "SYSCLK"));
    /* This SoC does not connect the systick reference clock */
    object_property_set_link(OBJECT(nvic), "memory",
                             OBJECT(get_system_memory()), &error_abort);
    /* This will exit with an error if the user passed us a bad cpu_type */
    sysbus_realize_and_unref(SYS_BUS_DEVICE(nvic), &error_fatal);

    /* Now we can wire up the IRQ and MMIO of the system registers */
    sysbus_mmio_map(SYS_BUS_DEVICE(ssys_dev), 0, 0x400fe000);
    sysbus_connect_irq(SYS_BUS_DEVICE(ssys_dev), 0, qdev_get_gpio_in(nvic, 28));

    if (board->dc1 & (1 << 16)) {
        dev = sysbus_create_varargs(TYPE_STELLARIS_ADC, 0x40038000,
                                    qdev_get_gpio_in(nvic, 14),
                                    qdev_get_gpio_in(nvic, 15),
                                    qdev_get_gpio_in(nvic, 16),
                                    qdev_get_gpio_in(nvic, 17),
                                    NULL);
        adc = qdev_get_gpio_in(dev, 0);
    } else {
        adc = NULL;
    }
    for (i = 0; i < 4; i++) {
        if (board->dc2 & (0x10000 << i)) {
            SysBusDevice *sbd;

            dev = qdev_new(TYPE_STELLARIS_GPTM);
            sbd = SYS_BUS_DEVICE(dev);
            qdev_connect_clock_in(dev, "clk",
                                  qdev_get_clock_out(ssys_dev, "SYSCLK"));
            sysbus_realize_and_unref(sbd, &error_fatal);
            sysbus_mmio_map(sbd, 0, 0x40030000 + i * 0x1000);
            sysbus_connect_irq(sbd, 0, qdev_get_gpio_in(nvic, timer_irq[i]));
            /* TODO: This is incorrect, but we get away with it because
               the ADC output is only ever pulsed.  */
            qdev_connect_gpio_out(dev, 0, adc);
        }
    }

    if (board->dc1 & (1 << 3)) { /* watchdog present */
        dev = qdev_new(TYPE_LUMINARY_WATCHDOG);

        qdev_connect_clock_in(dev, "WDOGCLK",
                              qdev_get_clock_out(ssys_dev, "SYSCLK"));

        sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
        sysbus_mmio_map(SYS_BUS_DEVICE(dev),
                        0,
                        0x40000000u);
        sysbus_connect_irq(SYS_BUS_DEVICE(dev),
                           0,
                           qdev_get_gpio_in(nvic, 18));
    }


    for (i = 0; i < 7; i++) {
        if (board->dc4 & (1 << i)) {
            gpio_dev[i] = sysbus_create_simple("pl061_luminary", gpio_addr[i],
                                               qdev_get_gpio_in(nvic,
                                                                gpio_irq[i]));
            for (j = 0; j < 8; j++) {
                gpio_in[i][j] = qdev_get_gpio_in(gpio_dev[i], j);
                gpio_out[i][j] = NULL;
            }
        }
    }

    if (board->dc2 & (1 << 12)) {
        dev = sysbus_create_simple(TYPE_STELLARIS_I2C, 0x40020000,
                                   qdev_get_gpio_in(nvic, 8));
        i2c = (I2CBus *)qdev_get_child_bus(dev, "i2c");
        if (board->peripherals & BP_OLED_I2C) {
            i2c_slave_create_simple(i2c, "ssd0303", 0x3d);
        }
    }

    for (i = 0; i < 4; i++) {
        if (board->dc2 & (1 << i)) {
            pl011_luminary_create(0x4000c000 + i * 0x1000,
                                  qdev_get_gpio_in(nvic, uart_irq[i]),
                                  serial_hd(i));
        }
    }
    if (board->dc2 & (1 << 4)) {
        dev = sysbus_create_simple("pl022", 0x40008000,
                                   qdev_get_gpio_in(nvic, 7));
        if (board->peripherals & BP_OLED_SSI) {
            void *bus;
            DeviceState *sddev;
            DeviceState *ssddev;
            DriveInfo *dinfo;
            DeviceState *carddev;
            DeviceState *gpio_d_splitter;
            BlockBackend *blk;

            /*
             * Some boards have both an OLED controller and SD card connected to
             * the same SSI port, with the SD card chip select connected to a
             * GPIO pin.  Technically the OLED chip select is connected to the
             * SSI Fss pin.  We do not bother emulating that as both devices
             * should never be selected simultaneously, and our OLED controller
             * ignores stray 0xff commands that occur when deselecting the SD
             * card.
             *
             * The h/w wiring is:
             *  - GPIO pin D0 is wired to the active-low SD card chip select
             *  - GPIO pin A3 is wired to the active-low OLED chip select
             *  - The SoC wiring of the PL061 "auxiliary function" for A3 is
             *    SSI0Fss ("frame signal"), which is an output from the SoC's
             *    SSI controller. The SSI controller takes SSI0Fss low when it
             *    transmits a frame, so it can work as a chip-select signal.
             *  - GPIO A4 is aux-function SSI0Rx, and wired to the SD card Tx
             *    (the OLED never sends data to the CPU, so no wiring needed)
             *  - GPIO A5 is aux-function SSI0Tx, and wired to the SD card Rx
             *    and the OLED display-data-in
             *  - GPIO A2 is aux-function SSI0Clk, wired to SD card and OLED
             *    serial-clock input
             * So a guest that wants to use the OLED can configure the PL061
             * to make pins A2, A3, A5 aux-function, so they are connected
             * directly to the SSI controller. When the SSI controller sends
             * data it asserts SSI0Fss which selects the OLED.
             * A guest that wants to use the SD card configures A2, A4 and A5
             * as aux-function, but leaves A3 as a software-controlled GPIO
             * line. It asserts the SD card chip-select by using the PL061
             * to control pin D0, and lets the SSI controller handle Clk, Tx
             * and Rx. (The SSI controller asserts Fss during tx cycles as
             * usual, but because A3 is not set to aux-function this is not
             * forwarded to the OLED, and so the OLED stays unselected.)
             *
             * The QEMU implementation instead is:
             *  - GPIO pin D0 is wired to the active-low SD card chip select,
             *    and also to the OLED chip-select which is implemented
             *    as *active-high*
             *  - SSI controller signals go to the devices regardless of
             *    whether the guest programs A2, A4, A5 as aux-function or not
             *
             * The problem with this implementation is if the guest doesn't
             * care about the SD card and only uses the OLED. In that case it
             * may choose never to do anything with D0 (leaving it in its
             * default floating state, which reliably leaves the card disabled
             * because an SD card has a pullup on CS within the card itself),
             * and only set up A2, A3, A5. This for us would mean the OLED
             * never gets the chip-select assert it needs. We work around
             * this with a manual raise of D0 here (despite board creation
             * code being the wrong place to raise IRQ lines) to put the OLED
             * into an initially selected state.
             *
             * In theory the right way to model this would be:
             *  - Implement aux-function support in the PL061, with an
             *    extra set of AFIN and AFOUT GPIO lines (set up so that
             *    if a GPIO line is in auxfn mode the main GPIO in and out
             *    track the AFIN and AFOUT lines)
             *  - Wire the AFOUT for D0 up to either a line from the
             *    SSI controller that's pulled low around every transmit,
             *    or at least to an always-0 line here on the board
             *  - Make the ssd0323 OLED controller chipselect active-low
             */
            bus = qdev_get_child_bus(dev, "ssi");
            sddev = ssi_create_peripheral(bus, "ssi-sd");

            dinfo = drive_get(IF_SD, 0, 0);
            blk = dinfo ? blk_by_legacy_dinfo(dinfo) : NULL;
            carddev = qdev_new(TYPE_SD_CARD);
            qdev_prop_set_drive_err(carddev, "drive", blk, &error_fatal);
            qdev_prop_set_bit(carddev, "spi", true);
            qdev_realize_and_unref(carddev,
                                   qdev_get_child_bus(sddev, "sd-bus"),
                                   &error_fatal);

            ssddev = ssi_create_peripheral(bus, "ssd0323");

            gpio_d_splitter = qdev_new(TYPE_SPLIT_IRQ);
            qdev_prop_set_uint32(gpio_d_splitter, "num-lines", 2);
            qdev_realize_and_unref(gpio_d_splitter, NULL, &error_fatal);
            qdev_connect_gpio_out(
                    gpio_d_splitter, 0,
                    qdev_get_gpio_in_named(sddev, SSI_GPIO_CS, 0));
            qdev_connect_gpio_out(
                    gpio_d_splitter, 1,
                    qdev_get_gpio_in_named(ssddev, SSI_GPIO_CS, 0));
            gpio_out[GPIO_D][0] = qdev_get_gpio_in(gpio_d_splitter, 0);

            gpio_out[GPIO_C][7] = qdev_get_gpio_in(ssddev, 0);

            /* Make sure the select pin is high.  */
            qemu_irq_raise(gpio_out[GPIO_D][0]);
        }
    }
    if (board->dc4 & (1 << 28)) {
        DeviceState *enet;

        qemu_check_nic_model(&nd_table[0], "stellaris");

        enet = qdev_new("stellaris_enet");
        qdev_set_nic_properties(enet, &nd_table[0]);
        sysbus_realize_and_unref(SYS_BUS_DEVICE(enet), &error_fatal);
        sysbus_mmio_map(SYS_BUS_DEVICE(enet), 0, 0x40048000);
        sysbus_connect_irq(SYS_BUS_DEVICE(enet), 0, qdev_get_gpio_in(nvic, 42));
    }
    if (board->peripherals & BP_GAMEPAD) {
        qemu_irq gpad_irq[5];
        static const int gpad_keycode[5] = { 0xc8, 0xd0, 0xcb, 0xcd, 0x1d };

        gpad_irq[0] = qemu_irq_invert(gpio_in[GPIO_E][0]); /* up */
        gpad_irq[1] = qemu_irq_invert(gpio_in[GPIO_E][1]); /* down */
        gpad_irq[2] = qemu_irq_invert(gpio_in[GPIO_E][2]); /* left */
        gpad_irq[3] = qemu_irq_invert(gpio_in[GPIO_E][3]); /* right */
        gpad_irq[4] = qemu_irq_invert(gpio_in[GPIO_F][1]); /* select */

        stellaris_gamepad_init(5, gpad_irq, gpad_keycode);
    }
    for (i = 0; i < 7; i++) {
        if (board->dc4 & (1 << i)) {
            for (j = 0; j < 8; j++) {
                if (gpio_out[i][j]) {
                    qdev_connect_gpio_out(gpio_dev[i], j, gpio_out[i][j]);
                }
            }
        }
    }

    /* Add dummy regions for the devices we don't implement yet,
     * so guest accesses don't cause unlogged crashes.
     */
    create_unimplemented_device("i2c-0", 0x40002000, 0x1000);
    create_unimplemented_device("i2c-2", 0x40021000, 0x1000);
    create_unimplemented_device("PWM", 0x40028000, 0x1000);
    create_unimplemented_device("QEI-0", 0x4002c000, 0x1000);
    create_unimplemented_device("QEI-1", 0x4002d000, 0x1000);
    create_unimplemented_device("analogue-comparator", 0x4003c000, 0x1000);
    create_unimplemented_device("hibernation", 0x400fc000, 0x1000);
    create_unimplemented_device("flash-control", 0x400fd000, 0x1000);

    armv7m_load_kernel(ARM_CPU(first_cpu), ms->kernel_filename, 0, flash_size);
}

/* FIXME: Figure out how to generate these from stellaris_boards.  */
static void lm3s811evb_init(MachineState *machine)
{
    stellaris_init(machine, &stellaris_boards[0]);
}

static void lm3s6965evb_init(MachineState *machine)
{
    stellaris_init(machine, &stellaris_boards[1]);
}

static void lm3s811evb_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->desc = "Stellaris LM3S811EVB (Cortex-M3)";
    mc->init = lm3s811evb_init;
    mc->ignore_memory_transaction_failures = true;
    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
}

static const TypeInfo lm3s811evb_type = {
    .name = MACHINE_TYPE_NAME("lm3s811evb"),
    .parent = TYPE_MACHINE,
    .class_init = lm3s811evb_class_init,
};

static void lm3s6965evb_class_init(ObjectClass *oc, void *data)
{
    MachineClass *mc = MACHINE_CLASS(oc);

    mc->desc = "Stellaris LM3S6965EVB (Cortex-M3)";
    mc->init = lm3s6965evb_init;
    mc->ignore_memory_transaction_failures = true;
    mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m3");
}

static const TypeInfo lm3s6965evb_type = {
    .name = MACHINE_TYPE_NAME("lm3s6965evb"),
    .parent = TYPE_MACHINE,
    .class_init = lm3s6965evb_class_init,
};

static void stellaris_machine_init(void)
{
    type_register_static(&lm3s811evb_type);
    type_register_static(&lm3s6965evb_type);
}

type_init(stellaris_machine_init)

static void stellaris_i2c_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    dc->vmsd = &vmstate_stellaris_i2c;
}

static const TypeInfo stellaris_i2c_info = {
    .name          = TYPE_STELLARIS_I2C,
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(stellaris_i2c_state),
    .instance_init = stellaris_i2c_init,
    .class_init    = stellaris_i2c_class_init,
};

static void stellaris_adc_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);

    dc->vmsd = &vmstate_stellaris_adc;
}

static const TypeInfo stellaris_adc_info = {
    .name          = TYPE_STELLARIS_ADC,
    .parent        = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(stellaris_adc_state),
    .instance_init = stellaris_adc_init,
    .class_init    = stellaris_adc_class_init,
};

static void stellaris_sys_class_init(ObjectClass *klass, void *data)
{
    DeviceClass *dc = DEVICE_CLASS(klass);
    ResettableClass *rc = RESETTABLE_CLASS(klass);

    dc->vmsd = &vmstate_stellaris_sys;
    rc->phases.enter = stellaris_sys_reset_enter;
    rc->phases.hold = stellaris_sys_reset_hold;
    rc->phases.exit = stellaris_sys_reset_exit;
    device_class_set_props(dc, stellaris_sys_properties);
}

static const TypeInfo stellaris_sys_info = {
    .name = TYPE_STELLARIS_SYS,
    .parent = TYPE_SYS_BUS_DEVICE,
    .instance_size = sizeof(ssys_state),
    .instance_init = stellaris_sys_instance_init,
    .class_init = stellaris_sys_class_init,
};

static void stellaris_register_types(void)
{
    type_register_static(&stellaris_i2c_info);
    type_register_static(&stellaris_adc_info);
    type_register_static(&stellaris_sys_info);
}

type_init(stellaris_register_types)