1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
|
/*
* Arm Musca-B1 test chip board emulation
*
* Copyright (c) 2019 Linaro Limited
* Written by Peter Maydell
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 or
* (at your option) any later version.
*/
/*
* The Musca boards are a reference implementation of a system using
* the SSE-200 subsystem for embedded:
* https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-a-test-chip-board
* https://developer.arm.com/products/system-design/development-boards/iot-test-chips-and-boards/musca-b-test-chip-board
* We model the A and B1 variants of this board, as described in the TRMs:
* http://infocenter.arm.com/help/topic/com.arm.doc.101107_0000_00_en/index.html
* http://infocenter.arm.com/help/topic/com.arm.doc.101312_0000_00_en/index.html
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "exec/address-spaces.h"
#include "sysemu/sysemu.h"
#include "hw/arm/boot.h"
#include "hw/arm/armsse.h"
#include "hw/boards.h"
#include "hw/char/pl011.h"
#include "hw/core/split-irq.h"
#include "hw/misc/tz-mpc.h"
#include "hw/misc/tz-ppc.h"
#include "hw/misc/unimp.h"
#include "hw/rtc/pl031.h"
#define MUSCA_NUMIRQ_MAX 96
#define MUSCA_PPC_MAX 3
#define MUSCA_MPC_MAX 5
typedef struct MPCInfo MPCInfo;
typedef enum MuscaType {
MUSCA_A,
MUSCA_B1,
} MuscaType;
typedef struct {
MachineClass parent;
MuscaType type;
uint32_t init_svtor;
int sram_addr_width;
int num_irqs;
const MPCInfo *mpc_info;
int num_mpcs;
} MuscaMachineClass;
typedef struct {
MachineState parent;
ARMSSE sse;
/* RAM and flash */
MemoryRegion ram[MUSCA_MPC_MAX];
SplitIRQ cpu_irq_splitter[MUSCA_NUMIRQ_MAX];
SplitIRQ sec_resp_splitter;
TZPPC ppc[MUSCA_PPC_MAX];
MemoryRegion container;
UnimplementedDeviceState eflash[2];
UnimplementedDeviceState qspi;
TZMPC mpc[MUSCA_MPC_MAX];
UnimplementedDeviceState mhu[2];
UnimplementedDeviceState pwm[3];
UnimplementedDeviceState i2s;
PL011State uart[2];
UnimplementedDeviceState i2c[2];
UnimplementedDeviceState spi;
UnimplementedDeviceState scc;
UnimplementedDeviceState timer;
PL031State rtc;
UnimplementedDeviceState pvt;
UnimplementedDeviceState sdio;
UnimplementedDeviceState gpio;
UnimplementedDeviceState cryptoisland;
} MuscaMachineState;
#define TYPE_MUSCA_MACHINE "musca"
#define TYPE_MUSCA_A_MACHINE MACHINE_TYPE_NAME("musca-a")
#define TYPE_MUSCA_B1_MACHINE MACHINE_TYPE_NAME("musca-b1")
#define MUSCA_MACHINE(obj) \
OBJECT_CHECK(MuscaMachineState, obj, TYPE_MUSCA_MACHINE)
#define MUSCA_MACHINE_GET_CLASS(obj) \
OBJECT_GET_CLASS(MuscaMachineClass, obj, TYPE_MUSCA_MACHINE)
#define MUSCA_MACHINE_CLASS(klass) \
OBJECT_CLASS_CHECK(MuscaMachineClass, klass, TYPE_MUSCA_MACHINE)
/*
* Main SYSCLK frequency in Hz
* TODO this should really be different for the two cores, but we
* don't model that in our SSE-200 model yet.
*/
#define SYSCLK_FRQ 40000000
static qemu_irq get_sse_irq_in(MuscaMachineState *mms, int irqno)
{
/* Return a qemu_irq which will signal IRQ n to all CPUs in the SSE. */
assert(irqno < MUSCA_NUMIRQ_MAX);
return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0);
}
/*
* Most of the devices in the Musca board sit behind Peripheral Protection
* Controllers. These data structures define the layout of which devices
* sit behind which PPCs.
* The devfn for each port is a function which creates, configures
* and initializes the device, returning the MemoryRegion which
* needs to be plugged into the downstream end of the PPC port.
*/
typedef MemoryRegion *MakeDevFn(MuscaMachineState *mms, void *opaque,
const char *name, hwaddr size);
typedef struct PPCPortInfo {
const char *name;
MakeDevFn *devfn;
void *opaque;
hwaddr addr;
hwaddr size;
} PPCPortInfo;
typedef struct PPCInfo {
const char *name;
PPCPortInfo ports[TZ_NUM_PORTS];
} PPCInfo;
static MemoryRegion *make_unimp_dev(MuscaMachineState *mms,
void *opaque, const char *name, hwaddr size)
{
/*
* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE,
* and return a pointer to its MemoryRegion.
*/
UnimplementedDeviceState *uds = opaque;
sysbus_init_child_obj(OBJECT(mms), name, uds,
sizeof(UnimplementedDeviceState),
TYPE_UNIMPLEMENTED_DEVICE);
qdev_prop_set_string(DEVICE(uds), "name", name);
qdev_prop_set_uint64(DEVICE(uds), "size", size);
object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
}
typedef enum MPCInfoType {
MPC_RAM,
MPC_ROM,
MPC_CRYPTOISLAND,
} MPCInfoType;
struct MPCInfo {
const char *name;
hwaddr addr;
hwaddr size;
MPCInfoType type;
};
/* Order of the MPCs here must match the order of the bits in SECMPCINTSTATUS */
static const MPCInfo a_mpc_info[] = { {
.name = "qspi",
.type = MPC_ROM,
.addr = 0x00200000,
.size = 0x00800000,
}, {
.name = "sram",
.type = MPC_RAM,
.addr = 0x00000000,
.size = 0x00200000,
}
};
static const MPCInfo b1_mpc_info[] = { {
.name = "qspi",
.type = MPC_ROM,
.addr = 0x00000000,
.size = 0x02000000,
}, {
.name = "sram",
.type = MPC_RAM,
.addr = 0x0a400000,
.size = 0x00080000,
}, {
.name = "eflash0",
.type = MPC_ROM,
.addr = 0x0a000000,
.size = 0x00200000,
}, {
.name = "eflash1",
.type = MPC_ROM,
.addr = 0x0a200000,
.size = 0x00200000,
}, {
.name = "cryptoisland",
.type = MPC_CRYPTOISLAND,
.addr = 0x0a000000,
.size = 0x00200000,
}
};
static MemoryRegion *make_mpc(MuscaMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
/*
* Create an MPC and the RAM or flash behind it.
* MPC 0: eFlash 0
* MPC 1: eFlash 1
* MPC 2: SRAM
* MPC 3: QSPI flash
* MPC 4: CryptoIsland
* For now we implement the flash regions as ROM (ie not programmable)
* (with their control interface memory regions being unimplemented
* stubs behind the PPCs).
* The whole CryptoIsland region behind its MPC is an unimplemented stub.
*/
MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
TZMPC *mpc = opaque;
int i = mpc - &mms->mpc[0];
MemoryRegion *downstream;
MemoryRegion *upstream;
UnimplementedDeviceState *uds;
char *mpcname;
const MPCInfo *mpcinfo = mmc->mpc_info;
mpcname = g_strdup_printf("%s-mpc", mpcinfo[i].name);
switch (mpcinfo[i].type) {
case MPC_ROM:
downstream = &mms->ram[i];
memory_region_init_rom(downstream, NULL, mpcinfo[i].name,
mpcinfo[i].size, &error_fatal);
break;
case MPC_RAM:
downstream = &mms->ram[i];
memory_region_init_ram(downstream, NULL, mpcinfo[i].name,
mpcinfo[i].size, &error_fatal);
break;
case MPC_CRYPTOISLAND:
/* We don't implement the CryptoIsland yet */
uds = &mms->cryptoisland;
sysbus_init_child_obj(OBJECT(mms), name, uds,
sizeof(UnimplementedDeviceState),
TYPE_UNIMPLEMENTED_DEVICE);
qdev_prop_set_string(DEVICE(uds), "name", mpcinfo[i].name);
qdev_prop_set_uint64(DEVICE(uds), "size", mpcinfo[i].size);
object_property_set_bool(OBJECT(uds), true, "realized", &error_fatal);
downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0);
break;
default:
g_assert_not_reached();
}
sysbus_init_child_obj(OBJECT(mms), mpcname, mpc, sizeof(mms->mpc[0]),
TYPE_TZ_MPC);
object_property_set_link(OBJECT(mpc), OBJECT(downstream),
"downstream", &error_fatal);
object_property_set_bool(OBJECT(mpc), true, "realized", &error_fatal);
/* Map the upstream end of the MPC into system memory */
upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1);
memory_region_add_subregion(get_system_memory(), mpcinfo[i].addr, upstream);
/* and connect its interrupt to the SSE-200 */
qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0,
qdev_get_gpio_in_named(DEVICE(&mms->sse),
"mpcexp_status", i));
g_free(mpcname);
/* Return the register interface MR for our caller to map behind the PPC */
return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0);
}
static MemoryRegion *make_rtc(MuscaMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
PL031State *rtc = opaque;
sysbus_init_child_obj(OBJECT(mms), name, rtc, sizeof(mms->rtc), TYPE_PL031);
object_property_set_bool(OBJECT(rtc), true, "realized", &error_fatal);
sysbus_connect_irq(SYS_BUS_DEVICE(rtc), 0, get_sse_irq_in(mms, 39));
return sysbus_mmio_get_region(SYS_BUS_DEVICE(rtc), 0);
}
static MemoryRegion *make_uart(MuscaMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
PL011State *uart = opaque;
int i = uart - &mms->uart[0];
int irqbase = 7 + i * 6;
SysBusDevice *s;
sysbus_init_child_obj(OBJECT(mms), name, uart, sizeof(mms->uart[0]),
TYPE_PL011);
qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i));
object_property_set_bool(OBJECT(uart), true, "realized", &error_fatal);
s = SYS_BUS_DEVICE(uart);
sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqbase + 5)); /* combined */
sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqbase + 0)); /* RX */
sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqbase + 1)); /* TX */
sysbus_connect_irq(s, 3, get_sse_irq_in(mms, irqbase + 2)); /* RT */
sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqbase + 3)); /* MS */
sysbus_connect_irq(s, 5, get_sse_irq_in(mms, irqbase + 4)); /* E */
return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0);
}
static MemoryRegion *make_musca_a_devs(MuscaMachineState *mms, void *opaque,
const char *name, hwaddr size)
{
/*
* Create the container MemoryRegion for all the devices that live
* behind the Musca-A PPC's single port. These devices don't have a PPC
* port each, but we use the PPCPortInfo struct as a convenient way
* to describe them. Note that addresses here are relative to the base
* address of the PPC port region: 0x40100000, and devices appear both
* at the 0x4... NS region and the 0x5... S region.
*/
int i;
MemoryRegion *container = &mms->container;
const PPCPortInfo devices[] = {
{ "uart0", make_uart, &mms->uart[0], 0x1000, 0x1000 },
{ "uart1", make_uart, &mms->uart[1], 0x2000, 0x1000 },
{ "spi", make_unimp_dev, &mms->spi, 0x3000, 0x1000 },
{ "i2c0", make_unimp_dev, &mms->i2c[0], 0x4000, 0x1000 },
{ "i2c1", make_unimp_dev, &mms->i2c[1], 0x5000, 0x1000 },
{ "i2s", make_unimp_dev, &mms->i2s, 0x6000, 0x1000 },
{ "pwm0", make_unimp_dev, &mms->pwm[0], 0x7000, 0x1000 },
{ "rtc", make_rtc, &mms->rtc, 0x8000, 0x1000 },
{ "qspi", make_unimp_dev, &mms->qspi, 0xa000, 0x1000 },
{ "timer", make_unimp_dev, &mms->timer, 0xb000, 0x1000 },
{ "scc", make_unimp_dev, &mms->scc, 0xc000, 0x1000 },
{ "pwm1", make_unimp_dev, &mms->pwm[1], 0xe000, 0x1000 },
{ "pwm2", make_unimp_dev, &mms->pwm[2], 0xf000, 0x1000 },
{ "gpio", make_unimp_dev, &mms->gpio, 0x10000, 0x1000 },
{ "mpc0", make_mpc, &mms->mpc[0], 0x12000, 0x1000 },
{ "mpc1", make_mpc, &mms->mpc[1], 0x13000, 0x1000 },
};
memory_region_init(container, OBJECT(mms), "musca-device-container", size);
for (i = 0; i < ARRAY_SIZE(devices); i++) {
const PPCPortInfo *pinfo = &devices[i];
MemoryRegion *mr;
mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
memory_region_add_subregion(container, pinfo->addr, mr);
}
return &mms->container;
}
static void musca_init(MachineState *machine)
{
MuscaMachineState *mms = MUSCA_MACHINE(machine);
MuscaMachineClass *mmc = MUSCA_MACHINE_GET_CLASS(mms);
MachineClass *mc = MACHINE_GET_CLASS(machine);
MemoryRegion *system_memory = get_system_memory();
DeviceState *ssedev;
DeviceState *dev_splitter;
const PPCInfo *ppcs;
int num_ppcs;
int i;
assert(mmc->num_irqs <= MUSCA_NUMIRQ_MAX);
assert(mmc->num_mpcs <= MUSCA_MPC_MAX);
if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) {
error_report("This board can only be used with CPU %s",
mc->default_cpu_type);
exit(1);
}
sysbus_init_child_obj(OBJECT(machine), "sse-200", &mms->sse,
sizeof(mms->sse), TYPE_SSE200);
ssedev = DEVICE(&mms->sse);
object_property_set_link(OBJECT(&mms->sse), OBJECT(system_memory),
"memory", &error_fatal);
qdev_prop_set_uint32(ssedev, "EXP_NUMIRQ", mmc->num_irqs);
qdev_prop_set_uint32(ssedev, "init-svtor", mmc->init_svtor);
qdev_prop_set_uint32(ssedev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width);
qdev_prop_set_uint32(ssedev, "MAINCLK", SYSCLK_FRQ);
/*
* Musca-A takes the default SSE-200 FPU/DSP settings (ie no for
* CPU0 and yes for CPU1); Musca-B1 explicitly enables them for CPU0.
*/
if (mmc->type == MUSCA_B1) {
qdev_prop_set_bit(ssedev, "CPU0_FPU", true);
qdev_prop_set_bit(ssedev, "CPU0_DSP", true);
}
object_property_set_bool(OBJECT(&mms->sse), true, "realized",
&error_fatal);
/*
* We need to create splitters to feed the IRQ inputs
* for each CPU in the SSE-200 from each device in the board.
*/
for (i = 0; i < mmc->num_irqs; i++) {
char *name = g_strdup_printf("musca-irq-splitter%d", i);
SplitIRQ *splitter = &mms->cpu_irq_splitter[i];
object_initialize_child(OBJECT(machine), name,
splitter, sizeof(*splitter),
TYPE_SPLIT_IRQ, &error_fatal, NULL);
g_free(name);
object_property_set_int(OBJECT(splitter), 2, "num-lines",
&error_fatal);
object_property_set_bool(OBJECT(splitter), true, "realized",
&error_fatal);
qdev_connect_gpio_out(DEVICE(splitter), 0,
qdev_get_gpio_in_named(ssedev, "EXP_IRQ", i));
qdev_connect_gpio_out(DEVICE(splitter), 1,
qdev_get_gpio_in_named(ssedev,
"EXP_CPU1_IRQ", i));
}
/*
* The sec_resp_cfg output from the SSE-200 must be split into multiple
* lines, one for each of the PPCs we create here.
*/
object_initialize_child(OBJECT(machine), "sec-resp-splitter",
&mms->sec_resp_splitter,
sizeof(mms->sec_resp_splitter),
TYPE_SPLIT_IRQ, &error_fatal, NULL);
object_property_set_int(OBJECT(&mms->sec_resp_splitter),
ARRAY_SIZE(mms->ppc), "num-lines", &error_fatal);
object_property_set_bool(OBJECT(&mms->sec_resp_splitter), true,
"realized", &error_fatal);
dev_splitter = DEVICE(&mms->sec_resp_splitter);
qdev_connect_gpio_out_named(ssedev, "sec_resp_cfg", 0,
qdev_get_gpio_in(dev_splitter, 0));
/*
* Most of the devices in the board are behind Peripheral Protection
* Controllers. The required order for initializing things is:
* + initialize the PPC
* + initialize, configure and realize downstream devices
* + connect downstream device MemoryRegions to the PPC
* + realize the PPC
* + map the PPC's MemoryRegions to the places in the address map
* where the downstream devices should appear
* + wire up the PPC's control lines to the SSE object
*
* The PPC mapping differs for the -A and -B1 variants; the -A version
* is much simpler, using only a single port of a single PPC and putting
* all the devices behind that.
*/
const PPCInfo a_ppcs[] = { {
.name = "ahb_ppcexp0",
.ports = {
{ "musca-devices", make_musca_a_devs, 0, 0x40100000, 0x100000 },
},
},
};
/*
* Devices listed with an 0x4.. address appear in both the NS 0x4.. region
* and the 0x5.. S region. Devices listed with an 0x5.. address appear
* only in the S region.
*/
const PPCInfo b1_ppcs[] = { {
.name = "apb_ppcexp0",
.ports = {
{ "eflash0", make_unimp_dev, &mms->eflash[0],
0x52400000, 0x1000 },
{ "eflash1", make_unimp_dev, &mms->eflash[1],
0x52500000, 0x1000 },
{ "qspi", make_unimp_dev, &mms->qspi, 0x42800000, 0x100000 },
{ "mpc0", make_mpc, &mms->mpc[0], 0x52000000, 0x1000 },
{ "mpc1", make_mpc, &mms->mpc[1], 0x52100000, 0x1000 },
{ "mpc2", make_mpc, &mms->mpc[2], 0x52200000, 0x1000 },
{ "mpc3", make_mpc, &mms->mpc[3], 0x52300000, 0x1000 },
{ "mhu0", make_unimp_dev, &mms->mhu[0], 0x42600000, 0x100000 },
{ "mhu1", make_unimp_dev, &mms->mhu[1], 0x42700000, 0x100000 },
{ }, /* port 9: unused */
{ }, /* port 10: unused */
{ }, /* port 11: unused */
{ }, /* port 12: unused */
{ }, /* port 13: unused */
{ "mpc4", make_mpc, &mms->mpc[4], 0x52e00000, 0x1000 },
},
}, {
.name = "apb_ppcexp1",
.ports = {
{ "pwm0", make_unimp_dev, &mms->pwm[0], 0x40101000, 0x1000 },
{ "pwm1", make_unimp_dev, &mms->pwm[1], 0x40102000, 0x1000 },
{ "pwm2", make_unimp_dev, &mms->pwm[2], 0x40103000, 0x1000 },
{ "i2s", make_unimp_dev, &mms->i2s, 0x40104000, 0x1000 },
{ "uart0", make_uart, &mms->uart[0], 0x40105000, 0x1000 },
{ "uart1", make_uart, &mms->uart[1], 0x40106000, 0x1000 },
{ "i2c0", make_unimp_dev, &mms->i2c[0], 0x40108000, 0x1000 },
{ "i2c1", make_unimp_dev, &mms->i2c[1], 0x40109000, 0x1000 },
{ "spi", make_unimp_dev, &mms->spi, 0x4010a000, 0x1000 },
{ "scc", make_unimp_dev, &mms->scc, 0x5010b000, 0x1000 },
{ "timer", make_unimp_dev, &mms->timer, 0x4010c000, 0x1000 },
{ "rtc", make_rtc, &mms->rtc, 0x4010d000, 0x1000 },
{ "pvt", make_unimp_dev, &mms->pvt, 0x4010e000, 0x1000 },
{ "sdio", make_unimp_dev, &mms->sdio, 0x4010f000, 0x1000 },
},
}, {
.name = "ahb_ppcexp0",
.ports = {
{ }, /* port 0: unused */
{ "gpio", make_unimp_dev, &mms->gpio, 0x41000000, 0x1000 },
},
},
};
switch (mmc->type) {
case MUSCA_A:
ppcs = a_ppcs;
num_ppcs = ARRAY_SIZE(a_ppcs);
break;
case MUSCA_B1:
ppcs = b1_ppcs;
num_ppcs = ARRAY_SIZE(b1_ppcs);
break;
default:
g_assert_not_reached();
}
assert(num_ppcs <= MUSCA_PPC_MAX);
for (i = 0; i < num_ppcs; i++) {
const PPCInfo *ppcinfo = &ppcs[i];
TZPPC *ppc = &mms->ppc[i];
DeviceState *ppcdev;
int port;
char *gpioname;
sysbus_init_child_obj(OBJECT(machine), ppcinfo->name, ppc,
sizeof(TZPPC), TYPE_TZ_PPC);
ppcdev = DEVICE(ppc);
for (port = 0; port < TZ_NUM_PORTS; port++) {
const PPCPortInfo *pinfo = &ppcinfo->ports[port];
MemoryRegion *mr;
char *portname;
if (!pinfo->devfn) {
continue;
}
mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size);
portname = g_strdup_printf("port[%d]", port);
object_property_set_link(OBJECT(ppc), OBJECT(mr),
portname, &error_fatal);
g_free(portname);
}
object_property_set_bool(OBJECT(ppc), true, "realized", &error_fatal);
for (port = 0; port < TZ_NUM_PORTS; port++) {
const PPCPortInfo *pinfo = &ppcinfo->ports[port];
if (!pinfo->devfn) {
continue;
}
sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr);
gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name);
qdev_connect_gpio_out_named(ssedev, gpioname, port,
qdev_get_gpio_in_named(ppcdev,
"cfg_nonsec",
port));
g_free(gpioname);
gpioname = g_strdup_printf("%s_ap", ppcinfo->name);
qdev_connect_gpio_out_named(ssedev, gpioname, port,
qdev_get_gpio_in_named(ppcdev,
"cfg_ap", port));
g_free(gpioname);
}
gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name);
qdev_connect_gpio_out_named(ssedev, gpioname, 0,
qdev_get_gpio_in_named(ppcdev,
"irq_enable", 0));
g_free(gpioname);
gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name);
qdev_connect_gpio_out_named(ssedev, gpioname, 0,
qdev_get_gpio_in_named(ppcdev,
"irq_clear", 0));
g_free(gpioname);
gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name);
qdev_connect_gpio_out_named(ppcdev, "irq", 0,
qdev_get_gpio_in_named(ssedev,
gpioname, 0));
g_free(gpioname);
qdev_connect_gpio_out(dev_splitter, i,
qdev_get_gpio_in_named(ppcdev,
"cfg_sec_resp", 0));
}
armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, 0x2000000);
}
static void musca_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
mc->default_cpus = 2;
mc->min_cpus = mc->default_cpus;
mc->max_cpus = mc->default_cpus;
mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33");
mc->init = musca_init;
}
static void musca_a_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
mc->desc = "ARM Musca-A board (dual Cortex-M33)";
mmc->type = MUSCA_A;
mmc->init_svtor = 0x10200000;
mmc->sram_addr_width = 15;
mmc->num_irqs = 64;
mmc->mpc_info = a_mpc_info;
mmc->num_mpcs = ARRAY_SIZE(a_mpc_info);
}
static void musca_b1_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
MuscaMachineClass *mmc = MUSCA_MACHINE_CLASS(oc);
mc->desc = "ARM Musca-B1 board (dual Cortex-M33)";
mmc->type = MUSCA_B1;
/*
* This matches the DAPlink firmware which boots from QSPI. There
* is also a firmware blob which boots from the eFlash, which
* uses init_svtor = 0x1A000000. QEMU doesn't currently support that,
* though we could in theory expose a machine property on the command
* line to allow the user to request eFlash boot.
*/
mmc->init_svtor = 0x10000000;
mmc->sram_addr_width = 17;
mmc->num_irqs = 96;
mmc->mpc_info = b1_mpc_info;
mmc->num_mpcs = ARRAY_SIZE(b1_mpc_info);
}
static const TypeInfo musca_info = {
.name = TYPE_MUSCA_MACHINE,
.parent = TYPE_MACHINE,
.abstract = true,
.instance_size = sizeof(MuscaMachineState),
.class_size = sizeof(MuscaMachineClass),
.class_init = musca_class_init,
};
static const TypeInfo musca_a_info = {
.name = TYPE_MUSCA_A_MACHINE,
.parent = TYPE_MUSCA_MACHINE,
.class_init = musca_a_class_init,
};
static const TypeInfo musca_b1_info = {
.name = TYPE_MUSCA_B1_MACHINE,
.parent = TYPE_MUSCA_MACHINE,
.class_init = musca_b1_class_init,
};
static void musca_machine_init(void)
{
type_register_static(&musca_info);
type_register_static(&musca_a_info);
type_register_static(&musca_b1_info);
}
type_init(musca_machine_init);
|