aboutsummaryrefslogtreecommitdiff
path: root/gdbstub/user.c
blob: b36033bc7a29e38ddae0fbc20c685c2e4f4003c3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
/*
 * gdbstub user-mode helper routines.
 *
 * We know for user-mode we are using TCG so we can call stuff directly.
 *
 * Copyright (c) 2003-2005 Fabrice Bellard
 * Copyright (c) 2022 Linaro Ltd
 *
 * SPDX-License-Identifier: LGPL-2.0+
 */

#include "qemu/osdep.h"
#include "qemu/bitops.h"
#include "qemu/cutils.h"
#include "qemu/sockets.h"
#include "exec/hwaddr.h"
#include "exec/tb-flush.h"
#include "exec/gdbstub.h"
#include "gdbstub/commands.h"
#include "gdbstub/syscalls.h"
#include "gdbstub/user.h"
#include "gdbstub/enums.h"
#include "hw/core/cpu.h"
#include "trace.h"
#include "internals.h"

#define GDB_NR_SYSCALLS 1024
typedef unsigned long GDBSyscallsMask[BITS_TO_LONGS(GDB_NR_SYSCALLS)];

/*
 * Forked child talks to its parent in order to let GDB enforce the
 * follow-fork-mode. This happens inside a start_exclusive() section, so that
 * the other threads, which may be forking too, do not interfere. The
 * implementation relies on GDB not sending $vCont until it has detached
 * either from the parent (follow-fork-mode child) or from the child
 * (follow-fork-mode parent).
 *
 * The parent and the child share the GDB socket; at any given time only one
 * of them is allowed to use it, as is reflected in the respective fork_state.
 * This is negotiated via the fork_sockets pair as a reaction to $Hg.
 *
 * Below is a short summary of the possible state transitions:
 *
 *     ENABLED                     : Terminal state.
 *     DISABLED                    : Terminal state.
 *     ACTIVE                      : Parent initial state.
 *     INACTIVE                    : Child initial state.
 *     ACTIVE       -> DEACTIVATING: On $Hg.
 *     ACTIVE       -> ENABLING    : On $D.
 *     ACTIVE       -> DISABLING   : On $D.
 *     ACTIVE       -> DISABLED    : On communication error.
 *     DEACTIVATING -> INACTIVE    : On gdb_read_byte() return.
 *     DEACTIVATING -> DISABLED    : On communication error.
 *     INACTIVE     -> ACTIVE      : On $Hg in the peer.
 *     INACTIVE     -> ENABLE      : On $D in the peer.
 *     INACTIVE     -> DISABLE     : On $D in the peer.
 *     INACTIVE     -> DISABLED    : On communication error.
 *     ENABLING     -> ENABLED     : On gdb_read_byte() return.
 *     ENABLING     -> DISABLED    : On communication error.
 *     DISABLING    -> DISABLED    : On gdb_read_byte() return.
 */
enum GDBForkState {
    /* Fully owning the GDB socket. */
    GDB_FORK_ENABLED,
    /* Working with the GDB socket; the peer is inactive. */
    GDB_FORK_ACTIVE,
    /* Handing off the GDB socket to the peer. */
    GDB_FORK_DEACTIVATING,
    /* The peer is working with the GDB socket. */
    GDB_FORK_INACTIVE,
    /* Asking the peer to close its GDB socket fd. */
    GDB_FORK_ENABLING,
    /* Asking the peer to take over, closing our GDB socket fd. */
    GDB_FORK_DISABLING,
    /* The peer has taken over, our GDB socket fd is closed. */
    GDB_FORK_DISABLED,
};

enum GDBForkMessage {
    GDB_FORK_ACTIVATE = 'a',
    GDB_FORK_ENABLE = 'e',
    GDB_FORK_DISABLE = 'd',
};

/* User-mode specific state */
typedef struct {
    int fd;
    char *socket_path;
    int running_state;
    /*
     * Store syscalls mask without memory allocation in order to avoid
     * implementing synchronization.
     */
    bool catch_all_syscalls;
    GDBSyscallsMask catch_syscalls_mask;
    bool fork_events;
    enum GDBForkState fork_state;
    int fork_sockets[2];
    pid_t fork_peer_pid, fork_peer_tid;
    uint8_t siginfo[MAX_SIGINFO_LENGTH];
    unsigned long siginfo_len;
} GDBUserState;

static GDBUserState gdbserver_user_state;

int gdb_get_char(void)
{
    uint8_t ch;
    int ret;

    for (;;) {
        ret = recv(gdbserver_user_state.fd, &ch, 1, 0);
        if (ret < 0) {
            if (errno == ECONNRESET) {
                gdbserver_user_state.fd = -1;
            }
            if (errno != EINTR) {
                return -1;
            }
        } else if (ret == 0) {
            close(gdbserver_user_state.fd);
            gdbserver_user_state.fd = -1;
            return -1;
        } else {
            break;
        }
    }
    return ch;
}

bool gdb_got_immediate_ack(void)
{
    int i;

    i = gdb_get_char();
    if (i < 0) {
        /* no response, continue anyway */
        return true;
    }

    if (i == '+') {
        /* received correctly, continue */
        return true;
    }

    /* anything else, including '-' then try again */
    return false;
}

void gdb_put_buffer(const uint8_t *buf, int len)
{
    int ret;

    while (len > 0) {
        ret = send(gdbserver_user_state.fd, buf, len, 0);
        if (ret < 0) {
            if (errno != EINTR) {
                return;
            }
        } else {
            buf += ret;
            len -= ret;
        }
    }
}

/* Tell the remote gdb that the process has exited.  */
void gdb_exit(int code)
{
    char buf[4];

    if (!gdbserver_state.init) {
        return;
    }
    if (gdbserver_user_state.socket_path) {
        unlink(gdbserver_user_state.socket_path);
    }
    if (gdbserver_user_state.fd < 0) {
        return;
    }

    trace_gdbstub_op_exiting((uint8_t)code);

    if (gdbserver_state.allow_stop_reply) {
        snprintf(buf, sizeof(buf), "W%02x", (uint8_t)code);
        gdb_put_packet(buf);
        gdbserver_state.allow_stop_reply = false;
    }

}

void gdb_qemu_exit(int code)
{
    exit(code);
}

int gdb_handlesig(CPUState *cpu, int sig, const char *reason, void *siginfo,
                  int siginfo_len)
{
    char buf[256];
    int n;

    if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
        return sig;
    }

    if (siginfo) {
        /*
         * Save target-specific siginfo.
         *
         * siginfo size, i.e. siginfo_len, is asserted at compile-time to fit in
         * gdbserver_user_state.siginfo, usually in the source file calling
         * gdb_handlesig. See, for instance, {linux,bsd}-user/signal.c.
         */
        memcpy(gdbserver_user_state.siginfo, siginfo, siginfo_len);
        gdbserver_user_state.siginfo_len = siginfo_len;
    }

    /* disable single step if it was enabled */
    cpu_single_step(cpu, 0);
    tb_flush(cpu);

    if (sig != 0) {
        gdb_set_stop_cpu(cpu);
        if (gdbserver_state.allow_stop_reply) {
            g_string_printf(gdbserver_state.str_buf,
                            "T%02xthread:", gdb_target_signal_to_gdb(sig));
            gdb_append_thread_id(cpu, gdbserver_state.str_buf);
            g_string_append_c(gdbserver_state.str_buf, ';');
            if (reason) {
                g_string_append(gdbserver_state.str_buf, reason);
            }
            gdb_put_strbuf();
            gdbserver_state.allow_stop_reply = false;
        }
    }
    /*
     * gdb_put_packet() might have detected that the peer terminated the
     * connection.
     */
    if (gdbserver_user_state.fd < 0) {
        return sig;
    }

    sig = 0;
    gdbserver_state.state = RS_IDLE;
    gdbserver_user_state.running_state = 0;
    while (gdbserver_user_state.running_state == 0) {
        n = read(gdbserver_user_state.fd, buf, 256);
        if (n > 0) {
            int i;

            for (i = 0; i < n; i++) {
                gdb_read_byte(buf[i]);
            }
        } else {
            /*
             * XXX: Connection closed.  Should probably wait for another
             * connection before continuing.
             */
            if (n == 0) {
                close(gdbserver_user_state.fd);
            }
            gdbserver_user_state.fd = -1;
            return sig;
        }
    }
    sig = gdbserver_state.signal;
    gdbserver_state.signal = 0;
    return sig;
}

/* Tell the remote gdb that the process has exited due to SIG.  */
void gdb_signalled(CPUArchState *env, int sig)
{
    char buf[4];

    if (!gdbserver_state.init || gdbserver_user_state.fd < 0 ||
        !gdbserver_state.allow_stop_reply) {
        return;
    }

    snprintf(buf, sizeof(buf), "X%02x", gdb_target_signal_to_gdb(sig));
    gdb_put_packet(buf);
    gdbserver_state.allow_stop_reply = false;
}

static void gdb_accept_init(int fd)
{
    gdb_init_gdbserver_state();
    gdb_create_default_process(&gdbserver_state);
    gdbserver_state.processes[0].attached = true;
    gdbserver_state.c_cpu = gdb_first_attached_cpu();
    gdbserver_state.g_cpu = gdbserver_state.c_cpu;
    gdbserver_user_state.fd = fd;
}

static bool gdb_accept_socket(int gdb_fd)
{
    int fd;

    for (;;) {
        fd = accept(gdb_fd, NULL, NULL);
        if (fd < 0 && errno != EINTR) {
            perror("accept socket");
            return false;
        } else if (fd >= 0) {
            qemu_set_cloexec(fd);
            break;
        }
    }

    gdb_accept_init(fd);
    return true;
}

static int gdbserver_open_socket(const char *path)
{
    struct sockaddr_un sockaddr = {};
    int fd, ret;

    fd = socket(AF_UNIX, SOCK_STREAM, 0);
    if (fd < 0) {
        perror("create socket");
        return -1;
    }

    sockaddr.sun_family = AF_UNIX;
    pstrcpy(sockaddr.sun_path, sizeof(sockaddr.sun_path) - 1, path);
    ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
    if (ret < 0) {
        perror("bind socket");
        close(fd);
        return -1;
    }
    ret = listen(fd, 1);
    if (ret < 0) {
        perror("listen socket");
        close(fd);
        return -1;
    }

    return fd;
}

static bool gdb_accept_tcp(int gdb_fd)
{
    struct sockaddr_in sockaddr = {};
    socklen_t len;
    int fd;

    for (;;) {
        len = sizeof(sockaddr);
        fd = accept(gdb_fd, (struct sockaddr *)&sockaddr, &len);
        if (fd < 0 && errno != EINTR) {
            perror("accept");
            return false;
        } else if (fd >= 0) {
            qemu_set_cloexec(fd);
            break;
        }
    }

    /* set short latency */
    if (socket_set_nodelay(fd)) {
        perror("setsockopt");
        close(fd);
        return false;
    }

    gdb_accept_init(fd);
    return true;
}

static int gdbserver_open_port(int port)
{
    struct sockaddr_in sockaddr;
    int fd, ret;

    fd = socket(PF_INET, SOCK_STREAM, 0);
    if (fd < 0) {
        perror("socket");
        return -1;
    }
    qemu_set_cloexec(fd);

    socket_set_fast_reuse(fd);

    sockaddr.sin_family = AF_INET;
    sockaddr.sin_port = htons(port);
    sockaddr.sin_addr.s_addr = 0;
    ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
    if (ret < 0) {
        perror("bind");
        close(fd);
        return -1;
    }
    ret = listen(fd, 1);
    if (ret < 0) {
        perror("listen");
        close(fd);
        return -1;
    }

    return fd;
}

int gdbserver_start(const char *port_or_path)
{
    int port = g_ascii_strtoull(port_or_path, NULL, 10);
    int gdb_fd;

    if (port > 0) {
        gdb_fd = gdbserver_open_port(port);
    } else {
        gdb_fd = gdbserver_open_socket(port_or_path);
    }

    if (gdb_fd < 0) {
        return -1;
    }

    if (port > 0 && gdb_accept_tcp(gdb_fd)) {
        return 0;
    } else if (gdb_accept_socket(gdb_fd)) {
        gdbserver_user_state.socket_path = g_strdup(port_or_path);
        return 0;
    }

    /* gone wrong */
    close(gdb_fd);
    return -1;
}

void gdbserver_fork_start(void)
{
    if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
        return;
    }
    if (!gdbserver_user_state.fork_events ||
            qemu_socketpair(AF_UNIX, SOCK_STREAM, 0,
                            gdbserver_user_state.fork_sockets) < 0) {
        gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
        return;
    }
    gdbserver_user_state.fork_state = GDB_FORK_INACTIVE;
    gdbserver_user_state.fork_peer_pid = getpid();
    gdbserver_user_state.fork_peer_tid = qemu_get_thread_id();
}

static void disable_gdbstub(CPUState *thread_cpu)
{
    CPUState *cpu;

    close(gdbserver_user_state.fd);
    gdbserver_user_state.fd = -1;
    CPU_FOREACH(cpu) {
        cpu_breakpoint_remove_all(cpu, BP_GDB);
        /* no cpu_watchpoint_remove_all for user-mode */
        cpu_single_step(cpu, 0);
    }
    tb_flush(thread_cpu);
}

void gdbserver_fork_end(CPUState *cpu, pid_t pid)
{
    char b;
    int fd;

    if (!gdbserver_state.init || gdbserver_user_state.fd < 0) {
        return;
    }

    if (pid == -1) {
        if (gdbserver_user_state.fork_state != GDB_FORK_DISABLED) {
            g_assert(gdbserver_user_state.fork_state == GDB_FORK_INACTIVE);
            close(gdbserver_user_state.fork_sockets[0]);
            close(gdbserver_user_state.fork_sockets[1]);
        }
        return;
    }

    if (gdbserver_user_state.fork_state == GDB_FORK_DISABLED) {
        if (pid == 0) {
            disable_gdbstub(cpu);
        }
        return;
    }

    if (pid == 0) {
        close(gdbserver_user_state.fork_sockets[0]);
        fd = gdbserver_user_state.fork_sockets[1];
        g_assert(gdbserver_state.process_num == 1);
        g_assert(gdbserver_state.processes[0].pid ==
                     gdbserver_user_state.fork_peer_pid);
        g_assert(gdbserver_state.processes[0].attached);
        gdbserver_state.processes[0].pid = getpid();
    } else {
        close(gdbserver_user_state.fork_sockets[1]);
        fd = gdbserver_user_state.fork_sockets[0];
        gdbserver_user_state.fork_state = GDB_FORK_ACTIVE;
        gdbserver_user_state.fork_peer_pid = pid;
        gdbserver_user_state.fork_peer_tid = pid;

        if (!gdbserver_state.allow_stop_reply) {
            goto fail;
        }
        g_string_printf(gdbserver_state.str_buf,
                        "T%02xfork:p%02x.%02x;thread:p%02x.%02x;",
                        gdb_target_signal_to_gdb(gdb_target_sigtrap()),
                        pid, pid, (int)getpid(), qemu_get_thread_id());
        gdb_put_strbuf();
    }

    gdbserver_state.state = RS_IDLE;
    gdbserver_state.allow_stop_reply = false;
    gdbserver_user_state.running_state = 0;
    for (;;) {
        switch (gdbserver_user_state.fork_state) {
        case GDB_FORK_ENABLED:
            if (gdbserver_user_state.running_state) {
                close(fd);
                return;
            }
            QEMU_FALLTHROUGH;
        case GDB_FORK_ACTIVE:
            if (read(gdbserver_user_state.fd, &b, 1) != 1) {
                goto fail;
            }
            gdb_read_byte(b);
            break;
        case GDB_FORK_DEACTIVATING:
            b = GDB_FORK_ACTIVATE;
            if (write(fd, &b, 1) != 1) {
                goto fail;
            }
            gdbserver_user_state.fork_state = GDB_FORK_INACTIVE;
            break;
        case GDB_FORK_INACTIVE:
            if (read(fd, &b, 1) != 1) {
                goto fail;
            }
            switch (b) {
            case GDB_FORK_ACTIVATE:
                gdbserver_user_state.fork_state = GDB_FORK_ACTIVE;
                break;
            case GDB_FORK_ENABLE:
                gdbserver_user_state.fork_state = GDB_FORK_ENABLED;
                break;
            case GDB_FORK_DISABLE:
                gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
                break;
            default:
                g_assert_not_reached();
            }
            break;
        case GDB_FORK_ENABLING:
            b = GDB_FORK_DISABLE;
            if (write(fd, &b, 1) != 1) {
                goto fail;
            }
            gdbserver_user_state.fork_state = GDB_FORK_ENABLED;
            break;
        case GDB_FORK_DISABLING:
            b = GDB_FORK_ENABLE;
            if (write(fd, &b, 1) != 1) {
                goto fail;
            }
            gdbserver_user_state.fork_state = GDB_FORK_DISABLED;
            break;
        case GDB_FORK_DISABLED:
            close(fd);
            disable_gdbstub(cpu);
            return;
        default:
            g_assert_not_reached();
        }
    }

fail:
    close(fd);
    if (pid == 0) {
        disable_gdbstub(cpu);
    }
}

void gdb_handle_query_supported_user(const char *gdb_supported)
{
    if (strstr(gdb_supported, "fork-events+")) {
        gdbserver_user_state.fork_events = true;
    }
    g_string_append(gdbserver_state.str_buf, ";fork-events+");
}

bool gdb_handle_set_thread_user(uint32_t pid, uint32_t tid)
{
    if (gdbserver_user_state.fork_state == GDB_FORK_ACTIVE &&
            pid == gdbserver_user_state.fork_peer_pid &&
            tid == gdbserver_user_state.fork_peer_tid) {
        gdbserver_user_state.fork_state = GDB_FORK_DEACTIVATING;
        gdb_put_packet("OK");
        return true;
    }
    return false;
}

bool gdb_handle_detach_user(uint32_t pid)
{
    bool enable;

    if (gdbserver_user_state.fork_state == GDB_FORK_ACTIVE) {
        enable = pid == gdbserver_user_state.fork_peer_pid;
        if (enable || pid == getpid()) {
            gdbserver_user_state.fork_state = enable ? GDB_FORK_ENABLING :
                                                       GDB_FORK_DISABLING;
            gdb_put_packet("OK");
            return true;
        }
    }
    return false;
}

/*
 * Execution state helpers
 */

void gdb_handle_query_attached(GArray *params, void *user_ctx)
{
    gdb_put_packet("0");
}

void gdb_continue(void)
{
    gdbserver_user_state.running_state = 1;
    trace_gdbstub_op_continue();
}

/*
 * Resume execution, for user-mode emulation it's equivalent to
 * gdb_continue.
 */
int gdb_continue_partial(char *newstates)
{
    CPUState *cpu;
    int res = 0;
    /*
     * This is not exactly accurate, but it's an improvement compared to the
     * previous situation, where only one CPU would be single-stepped.
     */
    CPU_FOREACH(cpu) {
        if (newstates[cpu->cpu_index] == 's') {
            trace_gdbstub_op_stepping(cpu->cpu_index);
            cpu_single_step(cpu, gdbserver_state.sstep_flags);
        }
    }
    gdbserver_user_state.running_state = 1;
    return res;
}

/*
 * Memory access helpers
 */
int gdb_target_memory_rw_debug(CPUState *cpu, hwaddr addr,
                               uint8_t *buf, int len, bool is_write)
{
    CPUClass *cc;

    cc = CPU_GET_CLASS(cpu);
    if (cc->memory_rw_debug) {
        return cc->memory_rw_debug(cpu, addr, buf, len, is_write);
    }
    return cpu_memory_rw_debug(cpu, addr, buf, len, is_write);
}

/*
 * cpu helpers
 */

unsigned int gdb_get_max_cpus(void)
{
    CPUState *cpu;
    unsigned int max_cpus = 1;

    CPU_FOREACH(cpu) {
        max_cpus = max_cpus <= cpu->cpu_index ? cpu->cpu_index + 1 : max_cpus;
    }

    return max_cpus;
}

/* replay not supported for user-mode */
bool gdb_can_reverse(void)
{
    return false;
}

/*
 * Break/Watch point helpers
 */

bool gdb_supports_guest_debug(void)
{
    /* user-mode == TCG == supported */
    return true;
}

int gdb_breakpoint_insert(CPUState *cs, int type, vaddr addr, vaddr len)
{
    CPUState *cpu;
    int err = 0;

    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
        CPU_FOREACH(cpu) {
            err = cpu_breakpoint_insert(cpu, addr, BP_GDB, NULL);
            if (err) {
                break;
            }
        }
        return err;
    default:
        /* user-mode doesn't support watchpoints */
        return -ENOSYS;
    }
}

int gdb_breakpoint_remove(CPUState *cs, int type, vaddr addr, vaddr len)
{
    CPUState *cpu;
    int err = 0;

    switch (type) {
    case GDB_BREAKPOINT_SW:
    case GDB_BREAKPOINT_HW:
        CPU_FOREACH(cpu) {
            err = cpu_breakpoint_remove(cpu, addr, BP_GDB);
            if (err) {
                break;
            }
        }
        return err;
    default:
        /* user-mode doesn't support watchpoints */
        return -ENOSYS;
    }
}

void gdb_breakpoint_remove_all(CPUState *cs)
{
    cpu_breakpoint_remove_all(cs, BP_GDB);
}

/*
 * For user-mode syscall support we send the system call immediately
 * and then return control to gdb for it to process the syscall request.
 * Since the protocol requires that gdb hands control back to us
 * using a "here are the results" F packet, we don't need to check
 * gdb_handlesig's return value (which is the signal to deliver if
 * execution was resumed via a continue packet).
 */
void gdb_syscall_handling(const char *syscall_packet)
{
    gdb_put_packet(syscall_packet);
    gdb_handlesig(gdbserver_state.c_cpu, 0, NULL, NULL, 0);
}

static bool should_catch_syscall(int num)
{
    if (gdbserver_user_state.catch_all_syscalls) {
        return true;
    }
    if (num < 0 || num >= GDB_NR_SYSCALLS) {
        return false;
    }
    return test_bit(num, gdbserver_user_state.catch_syscalls_mask);
}

void gdb_syscall_entry(CPUState *cs, int num)
{
    if (should_catch_syscall(num)) {
        g_autofree char *reason = g_strdup_printf("syscall_entry:%x;", num);
        gdb_handlesig(cs, gdb_target_sigtrap(), reason, NULL, 0);
    }
}

void gdb_syscall_return(CPUState *cs, int num)
{
    if (should_catch_syscall(num)) {
        g_autofree char *reason = g_strdup_printf("syscall_return:%x;", num);
        gdb_handlesig(cs, gdb_target_sigtrap(), reason, NULL, 0);
    }
}

void gdb_handle_set_catch_syscalls(GArray *params, void *user_ctx)
{
    const char *param = gdb_get_cmd_param(params, 0)->data;
    GDBSyscallsMask catch_syscalls_mask;
    bool catch_all_syscalls;
    unsigned int num;
    const char *p;

    /* "0" means not catching any syscalls. */
    if (strcmp(param, "0") == 0) {
        gdbserver_user_state.catch_all_syscalls = false;
        memset(gdbserver_user_state.catch_syscalls_mask, 0,
               sizeof(gdbserver_user_state.catch_syscalls_mask));
        gdb_put_packet("OK");
        return;
    }

    /* "1" means catching all syscalls. */
    if (strcmp(param, "1") == 0) {
        gdbserver_user_state.catch_all_syscalls = true;
        gdb_put_packet("OK");
        return;
    }

    /*
     * "1;..." means catching only the specified syscalls.
     * The syscall list must not be empty.
     */
    if (param[0] == '1' && param[1] == ';') {
        catch_all_syscalls = false;
        memset(catch_syscalls_mask, 0, sizeof(catch_syscalls_mask));
        for (p = &param[2];; p++) {
            if (qemu_strtoui(p, &p, 16, &num) || (*p && *p != ';')) {
                goto err;
            }
            if (num >= GDB_NR_SYSCALLS) {
                /*
                 * Fall back to reporting all syscalls. Reporting extra
                 * syscalls is inefficient, but the spec explicitly allows it.
                 * Keep parsing in case there is a syntax error ahead.
                 */
                catch_all_syscalls = true;
            } else {
                set_bit(num, catch_syscalls_mask);
            }
            if (!*p) {
                break;
            }
        }
        gdbserver_user_state.catch_all_syscalls = catch_all_syscalls;
        if (!catch_all_syscalls) {
            memcpy(gdbserver_user_state.catch_syscalls_mask,
                   catch_syscalls_mask, sizeof(catch_syscalls_mask));
        }
        gdb_put_packet("OK");
        return;
    }

err:
    gdb_put_packet("E00");
}

void gdb_handle_query_xfer_siginfo(GArray *params, void *user_ctx)
{
    unsigned long offset, len;
    uint8_t *siginfo_offset;

    offset = gdb_get_cmd_param(params, 0)->val_ul;
    len = gdb_get_cmd_param(params, 1)->val_ul;

    if (offset + len > gdbserver_user_state.siginfo_len) {
        /* Invalid offset and/or requested length. */
        gdb_put_packet("E01");
        return;
    }

    siginfo_offset = (uint8_t *)gdbserver_user_state.siginfo + offset;

    /* Reply */
    g_string_assign(gdbserver_state.str_buf, "l");
    gdb_memtox(gdbserver_state.str_buf, (const char *)siginfo_offset, len);
    gdb_put_packet_binary(gdbserver_state.str_buf->str,
                          gdbserver_state.str_buf->len, true);
}