aboutsummaryrefslogtreecommitdiff
path: root/cpu.c
blob: e1799a15bcf558180fd2c2a031f05f872392a58b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
/*
 * Target-specific parts of the CPU object
 *
 *  Copyright (c) 2003 Fabrice Bellard
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2 of the License, or (at your option) any later version.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
 */

#include "qemu/osdep.h"
#include "qemu-common.h"
#include "qapi/error.h"

#include "exec/target_page.h"
#include "hw/qdev-core.h"
#include "hw/qdev-properties.h"
#include "qemu/error-report.h"
#include "migration/vmstate.h"
#ifdef CONFIG_USER_ONLY
#include "qemu.h"
#else
#include "hw/core/sysemu-cpu-ops.h"
#include "exec/address-spaces.h"
#endif
#include "sysemu/tcg.h"
#include "sysemu/kvm.h"
#include "sysemu/replay.h"
#include "exec/translate-all.h"
#include "exec/log.h"
#include "hw/core/accel-cpu.h"
#include "trace/trace-root.h"

uintptr_t qemu_host_page_size;
intptr_t qemu_host_page_mask;

#ifndef CONFIG_USER_ONLY
static int cpu_common_post_load(void *opaque, int version_id)
{
    CPUState *cpu = opaque;

    /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
       version_id is increased. */
    cpu->interrupt_request &= ~0x01;
    tlb_flush(cpu);

    /* loadvm has just updated the content of RAM, bypassing the
     * usual mechanisms that ensure we flush TBs for writes to
     * memory we've translated code from. So we must flush all TBs,
     * which will now be stale.
     */
    tb_flush(cpu);

    return 0;
}

static int cpu_common_pre_load(void *opaque)
{
    CPUState *cpu = opaque;

    cpu->exception_index = -1;

    return 0;
}

static bool cpu_common_exception_index_needed(void *opaque)
{
    CPUState *cpu = opaque;

    return tcg_enabled() && cpu->exception_index != -1;
}

static const VMStateDescription vmstate_cpu_common_exception_index = {
    .name = "cpu_common/exception_index",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = cpu_common_exception_index_needed,
    .fields = (VMStateField[]) {
        VMSTATE_INT32(exception_index, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

static bool cpu_common_crash_occurred_needed(void *opaque)
{
    CPUState *cpu = opaque;

    return cpu->crash_occurred;
}

static const VMStateDescription vmstate_cpu_common_crash_occurred = {
    .name = "cpu_common/crash_occurred",
    .version_id = 1,
    .minimum_version_id = 1,
    .needed = cpu_common_crash_occurred_needed,
    .fields = (VMStateField[]) {
        VMSTATE_BOOL(crash_occurred, CPUState),
        VMSTATE_END_OF_LIST()
    }
};

const VMStateDescription vmstate_cpu_common = {
    .name = "cpu_common",
    .version_id = 1,
    .minimum_version_id = 1,
    .pre_load = cpu_common_pre_load,
    .post_load = cpu_common_post_load,
    .fields = (VMStateField[]) {
        VMSTATE_UINT32(halted, CPUState),
        VMSTATE_UINT32(interrupt_request, CPUState),
        VMSTATE_END_OF_LIST()
    },
    .subsections = (const VMStateDescription*[]) {
        &vmstate_cpu_common_exception_index,
        &vmstate_cpu_common_crash_occurred,
        NULL
    }
};
#endif

void cpu_exec_realizefn(CPUState *cpu, Error **errp)
{
#ifndef CONFIG_USER_ONLY
    CPUClass *cc = CPU_GET_CLASS(cpu);
#endif

    cpu_list_add(cpu);
    if (!accel_cpu_realizefn(cpu, errp)) {
        return;
    }
#ifdef CONFIG_TCG
    /* NB: errp parameter is unused currently */
    if (tcg_enabled()) {
        tcg_exec_realizefn(cpu, errp);
    }
#endif /* CONFIG_TCG */

#ifdef CONFIG_USER_ONLY
    assert(qdev_get_vmsd(DEVICE(cpu)) == NULL ||
           qdev_get_vmsd(DEVICE(cpu))->unmigratable);
#else
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
        vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
    }
    if (cc->sysemu_ops->legacy_vmsd != NULL) {
        vmstate_register(NULL, cpu->cpu_index, cc->sysemu_ops->legacy_vmsd, cpu);
    }
#endif /* CONFIG_USER_ONLY */
}

void cpu_exec_unrealizefn(CPUState *cpu)
{
#ifndef CONFIG_USER_ONLY
    CPUClass *cc = CPU_GET_CLASS(cpu);

    if (cc->sysemu_ops->legacy_vmsd != NULL) {
        vmstate_unregister(NULL, cc->sysemu_ops->legacy_vmsd, cpu);
    }
    if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
        vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
    }
#endif
#ifdef CONFIG_TCG
    /* NB: errp parameter is unused currently */
    if (tcg_enabled()) {
        tcg_exec_unrealizefn(cpu);
    }
#endif /* CONFIG_TCG */

    cpu_list_remove(cpu);
}

void cpu_exec_initfn(CPUState *cpu)
{
    cpu->as = NULL;
    cpu->num_ases = 0;

#ifndef CONFIG_USER_ONLY
    cpu->thread_id = qemu_get_thread_id();
    cpu->memory = get_system_memory();
    object_ref(OBJECT(cpu->memory));
#endif
}

const char *parse_cpu_option(const char *cpu_option)
{
    ObjectClass *oc;
    CPUClass *cc;
    gchar **model_pieces;
    const char *cpu_type;

    model_pieces = g_strsplit(cpu_option, ",", 2);
    if (!model_pieces[0]) {
        error_report("-cpu option cannot be empty");
        exit(1);
    }

    oc = cpu_class_by_name(CPU_RESOLVING_TYPE, model_pieces[0]);
    if (oc == NULL) {
        error_report("unable to find CPU model '%s'", model_pieces[0]);
        g_strfreev(model_pieces);
        exit(EXIT_FAILURE);
    }

    cpu_type = object_class_get_name(oc);
    cc = CPU_CLASS(oc);
    cc->parse_features(cpu_type, model_pieces[1], &error_fatal);
    g_strfreev(model_pieces);
    return cpu_type;
}

#if defined(CONFIG_USER_ONLY)
void tb_invalidate_phys_addr(target_ulong addr)
{
    mmap_lock();
    tb_invalidate_phys_page_range(addr, addr + 1);
    mmap_unlock();
}
#else
void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs)
{
    ram_addr_t ram_addr;
    MemoryRegion *mr;
    hwaddr l = 1;

    if (!tcg_enabled()) {
        return;
    }

    RCU_READ_LOCK_GUARD();
    mr = address_space_translate(as, addr, &addr, &l, false, attrs);
    if (!(memory_region_is_ram(mr)
          || memory_region_is_romd(mr))) {
        return;
    }
    ram_addr = memory_region_get_ram_addr(mr) + addr;
    tb_invalidate_phys_page_range(ram_addr, ram_addr + 1);
}
#endif

/* Add a breakpoint.  */
int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
                          CPUBreakpoint **breakpoint)
{
    CPUClass *cc = CPU_GET_CLASS(cpu);
    CPUBreakpoint *bp;

    if (cc->gdb_adjust_breakpoint) {
        pc = cc->gdb_adjust_breakpoint(cpu, pc);
    }

    bp = g_malloc(sizeof(*bp));

    bp->pc = pc;
    bp->flags = flags;

    /* keep all GDB-injected breakpoints in front */
    if (flags & BP_GDB) {
        QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
    } else {
        QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
    }

    if (breakpoint) {
        *breakpoint = bp;
    }

    trace_breakpoint_insert(cpu->cpu_index, pc, flags);
    return 0;
}

/* Remove a specific breakpoint.  */
int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
{
    CPUClass *cc = CPU_GET_CLASS(cpu);
    CPUBreakpoint *bp;

    if (cc->gdb_adjust_breakpoint) {
        pc = cc->gdb_adjust_breakpoint(cpu, pc);
    }

    QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
        if (bp->pc == pc && bp->flags == flags) {
            cpu_breakpoint_remove_by_ref(cpu, bp);
            return 0;
        }
    }
    return -ENOENT;
}

/* Remove a specific breakpoint by reference.  */
void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *bp)
{
    QTAILQ_REMOVE(&cpu->breakpoints, bp, entry);

    trace_breakpoint_remove(cpu->cpu_index, bp->pc, bp->flags);
    g_free(bp);
}

/* Remove all matching breakpoints. */
void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
{
    CPUBreakpoint *bp, *next;

    QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
        if (bp->flags & mask) {
            cpu_breakpoint_remove_by_ref(cpu, bp);
        }
    }
}

/* enable or disable single step mode. EXCP_DEBUG is returned by the
   CPU loop after each instruction */
void cpu_single_step(CPUState *cpu, int enabled)
{
    if (cpu->singlestep_enabled != enabled) {
        cpu->singlestep_enabled = enabled;
        if (kvm_enabled()) {
            kvm_update_guest_debug(cpu, 0);
        }
        trace_breakpoint_singlestep(cpu->cpu_index, enabled);
    }
}

void cpu_abort(CPUState *cpu, const char *fmt, ...)
{
    va_list ap;
    va_list ap2;

    va_start(ap, fmt);
    va_copy(ap2, ap);
    fprintf(stderr, "qemu: fatal: ");
    vfprintf(stderr, fmt, ap);
    fprintf(stderr, "\n");
    cpu_dump_state(cpu, stderr, CPU_DUMP_FPU | CPU_DUMP_CCOP);
    if (qemu_log_separate()) {
        FILE *logfile = qemu_log_lock();
        qemu_log("qemu: fatal: ");
        qemu_log_vprintf(fmt, ap2);
        qemu_log("\n");
        log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
        qemu_log_flush();
        qemu_log_unlock(logfile);
        qemu_log_close();
    }
    va_end(ap2);
    va_end(ap);
    replay_finish();
#if defined(CONFIG_USER_ONLY)
    {
        struct sigaction act;
        sigfillset(&act.sa_mask);
        act.sa_handler = SIG_DFL;
        act.sa_flags = 0;
        sigaction(SIGABRT, &act, NULL);
    }
#endif
    abort();
}

/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
                        void *ptr, target_ulong len, bool is_write)
{
    int flags;
    target_ulong l, page;
    void * p;
    uint8_t *buf = ptr;

    while (len > 0) {
        page = addr & TARGET_PAGE_MASK;
        l = (page + TARGET_PAGE_SIZE) - addr;
        if (l > len)
            l = len;
        flags = page_get_flags(page);
        if (!(flags & PAGE_VALID))
            return -1;
        if (is_write) {
            if (!(flags & PAGE_WRITE))
                return -1;
            /* XXX: this code should not depend on lock_user */
            if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
                return -1;
            memcpy(p, buf, l);
            unlock_user(p, addr, l);
        } else {
            if (!(flags & PAGE_READ))
                return -1;
            /* XXX: this code should not depend on lock_user */
            if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
                return -1;
            memcpy(buf, p, l);
            unlock_user(p, addr, 0);
        }
        len -= l;
        buf += l;
        addr += l;
    }
    return 0;
}
#endif

bool target_words_bigendian(void)
{
#if defined(TARGET_WORDS_BIGENDIAN)
    return true;
#else
    return false;
#endif
}

void page_size_init(void)
{
    /* NOTE: we can always suppose that qemu_host_page_size >=
       TARGET_PAGE_SIZE */
    if (qemu_host_page_size == 0) {
        qemu_host_page_size = qemu_real_host_page_size;
    }
    if (qemu_host_page_size < TARGET_PAGE_SIZE) {
        qemu_host_page_size = TARGET_PAGE_SIZE;
    }
    qemu_host_page_mask = -(intptr_t)qemu_host_page_size;
}