1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
|
/*
* Generic intermediate code generation.
*
* Copyright (C) 2016-2017 LluĂs Vilanova <vilanova@ac.upc.edu>
*
* This work is licensed under the terms of the GNU GPL, version 2 or later.
* See the COPYING file in the top-level directory.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/error-report.h"
#include "exec/exec-all.h"
#include "exec/translator.h"
#include "exec/cpu_ldst.h"
#include "exec/plugin-gen.h"
#include "exec/cpu_ldst.h"
#include "tcg/tcg-op-common.h"
#include "internal-target.h"
static void set_can_do_io(DisasContextBase *db, bool val)
{
QEMU_BUILD_BUG_ON(sizeof_field(CPUState, neg.can_do_io) != 1);
tcg_gen_st8_i32(tcg_constant_i32(val), tcg_env,
offsetof(ArchCPU, parent_obj.neg.can_do_io) -
offsetof(ArchCPU, env));
}
bool translator_io_start(DisasContextBase *db)
{
/*
* Ensure that this instruction will be the last in the TB.
* The target may override this to something more forceful.
*/
if (db->is_jmp == DISAS_NEXT) {
db->is_jmp = DISAS_TOO_MANY;
}
return true;
}
static TCGOp *gen_tb_start(DisasContextBase *db, uint32_t cflags)
{
TCGv_i32 count = NULL;
TCGOp *icount_start_insn = NULL;
if ((cflags & CF_USE_ICOUNT) || !(cflags & CF_NOIRQ)) {
count = tcg_temp_new_i32();
tcg_gen_ld_i32(count, tcg_env,
offsetof(ArchCPU, parent_obj.neg.icount_decr.u32)
- offsetof(ArchCPU, env));
}
if (cflags & CF_USE_ICOUNT) {
/*
* We emit a sub with a dummy immediate argument. Keep the insn index
* of the sub so that we later (when we know the actual insn count)
* can update the argument with the actual insn count.
*/
tcg_gen_sub_i32(count, count, tcg_constant_i32(0));
icount_start_insn = tcg_last_op();
}
/*
* Emit the check against icount_decr.u32 to see if we should exit
* unless we suppress the check with CF_NOIRQ. If we are using
* icount and have suppressed interruption the higher level code
* should have ensured we don't run more instructions than the
* budget.
*/
if (cflags & CF_NOIRQ) {
tcg_ctx->exitreq_label = NULL;
} else {
tcg_ctx->exitreq_label = gen_new_label();
tcg_gen_brcondi_i32(TCG_COND_LT, count, 0, tcg_ctx->exitreq_label);
}
if (cflags & CF_USE_ICOUNT) {
tcg_gen_st16_i32(count, tcg_env,
offsetof(ArchCPU, parent_obj.neg.icount_decr.u16.low)
- offsetof(ArchCPU, env));
}
return icount_start_insn;
}
static void gen_tb_end(const TranslationBlock *tb, uint32_t cflags,
TCGOp *icount_start_insn, int num_insns)
{
if (cflags & CF_USE_ICOUNT) {
/*
* Update the num_insn immediate parameter now that we know
* the actual insn count.
*/
tcg_set_insn_param(icount_start_insn, 2,
tcgv_i32_arg(tcg_constant_i32(num_insns)));
}
if (tcg_ctx->exitreq_label) {
gen_set_label(tcg_ctx->exitreq_label);
tcg_gen_exit_tb(tb, TB_EXIT_REQUESTED);
}
}
bool translator_use_goto_tb(DisasContextBase *db, vaddr dest)
{
/* Suppress goto_tb if requested. */
if (tb_cflags(db->tb) & CF_NO_GOTO_TB) {
return false;
}
/* Check for the dest on the same page as the start of the TB. */
return ((db->pc_first ^ dest) & TARGET_PAGE_MASK) == 0;
}
void translator_loop(CPUState *cpu, TranslationBlock *tb, int *max_insns,
vaddr pc, void *host_pc, const TranslatorOps *ops,
DisasContextBase *db)
{
uint32_t cflags = tb_cflags(tb);
TCGOp *icount_start_insn;
TCGOp *first_insn_start = NULL;
bool plugin_enabled;
/* Initialize DisasContext */
db->tb = tb;
db->pc_first = pc;
db->pc_next = pc;
db->is_jmp = DISAS_NEXT;
db->num_insns = 0;
db->max_insns = *max_insns;
db->singlestep_enabled = cflags & CF_SINGLE_STEP;
db->insn_start = NULL;
db->fake_insn = false;
db->host_addr[0] = host_pc;
db->host_addr[1] = NULL;
db->record_start = 0;
db->record_len = 0;
ops->init_disas_context(db, cpu);
tcg_debug_assert(db->is_jmp == DISAS_NEXT); /* no early exit */
/* Start translating. */
icount_start_insn = gen_tb_start(db, cflags);
ops->tb_start(db, cpu);
tcg_debug_assert(db->is_jmp == DISAS_NEXT); /* no early exit */
plugin_enabled = plugin_gen_tb_start(cpu, db);
db->plugin_enabled = plugin_enabled;
while (true) {
*max_insns = ++db->num_insns;
ops->insn_start(db, cpu);
db->insn_start = tcg_last_op();
if (first_insn_start == NULL) {
first_insn_start = db->insn_start;
}
tcg_debug_assert(db->is_jmp == DISAS_NEXT); /* no early exit */
if (plugin_enabled) {
plugin_gen_insn_start(cpu, db);
}
/*
* Disassemble one instruction. The translate_insn hook should
* update db->pc_next and db->is_jmp to indicate what should be
* done next -- either exiting this loop or locate the start of
* the next instruction.
*/
ops->translate_insn(db, cpu);
/*
* We can't instrument after instructions that change control
* flow although this only really affects post-load operations.
*
* Calling plugin_gen_insn_end() before we possibly stop translation
* is important. Even if this ends up as dead code, plugin generation
* needs to see a matching plugin_gen_insn_{start,end}() pair in order
* to accurately track instrumented helpers that might access memory.
*/
if (plugin_enabled) {
plugin_gen_insn_end();
}
/* Stop translation if translate_insn so indicated. */
if (db->is_jmp != DISAS_NEXT) {
break;
}
/* Stop translation if the output buffer is full,
or we have executed all of the allowed instructions. */
if (tcg_op_buf_full() || db->num_insns >= db->max_insns) {
db->is_jmp = DISAS_TOO_MANY;
break;
}
}
/* Emit code to exit the TB, as indicated by db->is_jmp. */
ops->tb_stop(db, cpu);
gen_tb_end(tb, cflags, icount_start_insn, db->num_insns);
/*
* Manage can_do_io for the translation block: set to false before
* the first insn and set to true before the last insn.
*/
if (db->num_insns == 1) {
tcg_debug_assert(first_insn_start == db->insn_start);
} else {
tcg_debug_assert(first_insn_start != db->insn_start);
tcg_ctx->emit_before_op = first_insn_start;
set_can_do_io(db, false);
}
tcg_ctx->emit_before_op = db->insn_start;
set_can_do_io(db, true);
tcg_ctx->emit_before_op = NULL;
if (plugin_enabled) {
plugin_gen_tb_end(cpu, db->num_insns);
}
/* The disas_log hook may use these values rather than recompute. */
tb->size = db->pc_next - db->pc_first;
tb->icount = db->num_insns;
if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)
&& qemu_log_in_addr_range(db->pc_first)) {
FILE *logfile = qemu_log_trylock();
if (logfile) {
fprintf(logfile, "----------------\n");
ops->disas_log(db, cpu, logfile);
fprintf(logfile, "\n");
qemu_log_unlock(logfile);
}
}
}
static bool translator_ld(CPUArchState *env, DisasContextBase *db,
void *dest, vaddr pc, size_t len)
{
TranslationBlock *tb = db->tb;
vaddr last = pc + len - 1;
void *host;
vaddr base;
/* Use slow path if first page is MMIO. */
if (unlikely(tb_page_addr0(tb) == -1)) {
/* We capped translation with first page MMIO in tb_gen_code. */
tcg_debug_assert(db->max_insns == 1);
return false;
}
host = db->host_addr[0];
base = db->pc_first;
if (likely(((base ^ last) & TARGET_PAGE_MASK) == 0)) {
/* Entire read is from the first page. */
memcpy(dest, host + (pc - base), len);
return true;
}
if (unlikely(((base ^ pc) & TARGET_PAGE_MASK) == 0)) {
/* Read begins on the first page and extends to the second. */
size_t len0 = -(pc | TARGET_PAGE_MASK);
memcpy(dest, host + (pc - base), len0);
pc += len0;
dest += len0;
len -= len0;
}
/*
* The read must conclude on the second page and not extend to a third.
*
* TODO: We could allow the two pages to be virtually discontiguous,
* since we already allow the two pages to be physically discontiguous.
* The only reasonable use case would be executing an insn at the end
* of the address space wrapping around to the beginning. For that,
* we would need to know the current width of the address space.
* In the meantime, assert.
*/
base = (base & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
assert(((base ^ pc) & TARGET_PAGE_MASK) == 0);
assert(((base ^ last) & TARGET_PAGE_MASK) == 0);
host = db->host_addr[1];
if (host == NULL) {
tb_page_addr_t page0, old_page1, new_page1;
new_page1 = get_page_addr_code_hostp(env, base, &db->host_addr[1]);
/*
* If the second page is MMIO, treat as if the first page
* was MMIO as well, so that we do not cache the TB.
*/
if (unlikely(new_page1 == -1)) {
tb_unlock_pages(tb);
tb_set_page_addr0(tb, -1);
/* Require that this be the final insn. */
db->max_insns = db->num_insns;
return false;
}
/*
* If this is not the first time around, and page1 matches,
* then we already have the page locked. Alternately, we're
* not doing anything to prevent the PTE from changing, so
* we might wind up with a different page, requiring us to
* re-do the locking.
*/
old_page1 = tb_page_addr1(tb);
if (likely(new_page1 != old_page1)) {
page0 = tb_page_addr0(tb);
if (unlikely(old_page1 != -1)) {
tb_unlock_page1(page0, old_page1);
}
tb_set_page_addr1(tb, new_page1);
tb_lock_page1(page0, new_page1);
}
host = db->host_addr[1];
}
memcpy(dest, host + (pc - base), len);
return true;
}
static void record_save(DisasContextBase *db, vaddr pc,
const void *from, int size)
{
int offset;
/* Do not record probes before the start of TB. */
if (pc < db->pc_first) {
return;
}
/*
* In translator_access, we verified that pc is within 2 pages
* of pc_first, thus this will never overflow.
*/
offset = pc - db->pc_first;
/*
* Either the first or second page may be I/O. If it is the second,
* then the first byte we need to record will be at a non-zero offset.
* In either case, we should not need to record but a single insn.
*/
if (db->record_len == 0) {
db->record_start = offset;
db->record_len = size;
} else {
assert(offset == db->record_start + db->record_len);
assert(db->record_len + size <= sizeof(db->record));
db->record_len += size;
}
memcpy(db->record + (offset - db->record_start), from, size);
}
size_t translator_st_len(const DisasContextBase *db)
{
return db->fake_insn ? db->record_len : db->tb->size;
}
bool translator_st(const DisasContextBase *db, void *dest,
vaddr addr, size_t len)
{
size_t offset, offset_end;
if (addr < db->pc_first) {
return false;
}
offset = addr - db->pc_first;
offset_end = offset + len;
if (offset_end > translator_st_len(db)) {
return false;
}
if (!db->fake_insn) {
size_t offset_page1 = -(db->pc_first | TARGET_PAGE_MASK);
/* Get all the bytes from the first page. */
if (db->host_addr[0]) {
if (offset_end <= offset_page1) {
memcpy(dest, db->host_addr[0] + offset, len);
return true;
}
if (offset < offset_page1) {
size_t len0 = offset_page1 - offset;
memcpy(dest, db->host_addr[0] + offset, len0);
offset += len0;
dest += len0;
}
}
/* Get any bytes from the second page. */
if (db->host_addr[1] && offset >= offset_page1) {
memcpy(dest, db->host_addr[1] + (offset - offset_page1),
offset_end - offset);
return true;
}
}
/* Else get recorded bytes. */
if (db->record_len != 0 &&
offset >= db->record_start &&
offset_end <= db->record_start + db->record_len) {
memcpy(dest, db->record + (offset - db->record_start),
offset_end - offset);
return true;
}
return false;
}
uint8_t translator_ldub(CPUArchState *env, DisasContextBase *db, vaddr pc)
{
uint8_t raw;
if (!translator_ld(env, db, &raw, pc, sizeof(raw))) {
raw = cpu_ldub_code(env, pc);
record_save(db, pc, &raw, sizeof(raw));
}
return raw;
}
uint16_t translator_lduw(CPUArchState *env, DisasContextBase *db, vaddr pc)
{
uint16_t raw, tgt;
if (translator_ld(env, db, &raw, pc, sizeof(raw))) {
tgt = tswap16(raw);
} else {
tgt = cpu_lduw_code(env, pc);
raw = tswap16(tgt);
record_save(db, pc, &raw, sizeof(raw));
}
return tgt;
}
uint32_t translator_ldl(CPUArchState *env, DisasContextBase *db, vaddr pc)
{
uint32_t raw, tgt;
if (translator_ld(env, db, &raw, pc, sizeof(raw))) {
tgt = tswap32(raw);
} else {
tgt = cpu_ldl_code(env, pc);
raw = tswap32(tgt);
record_save(db, pc, &raw, sizeof(raw));
}
return tgt;
}
uint64_t translator_ldq(CPUArchState *env, DisasContextBase *db, vaddr pc)
{
uint64_t raw, tgt;
if (translator_ld(env, db, &raw, pc, sizeof(raw))) {
tgt = tswap64(raw);
} else {
tgt = cpu_ldq_code(env, pc);
raw = tswap64(tgt);
record_save(db, pc, &raw, sizeof(raw));
}
return tgt;
}
void translator_fake_ldb(DisasContextBase *db, vaddr pc, uint8_t insn8)
{
assert(pc >= db->pc_first);
db->fake_insn = true;
record_save(db, pc, &insn8, sizeof(insn8));
}
|