aboutsummaryrefslogtreecommitdiff
path: root/tests/qtest/pflash-cfi02-test.c
diff options
context:
space:
mode:
Diffstat (limited to 'tests/qtest/pflash-cfi02-test.c')
-rw-r--r--tests/qtest/pflash-cfi02-test.c681
1 files changed, 681 insertions, 0 deletions
diff --git a/tests/qtest/pflash-cfi02-test.c b/tests/qtest/pflash-cfi02-test.c
new file mode 100644
index 0000000..17aa669
--- /dev/null
+++ b/tests/qtest/pflash-cfi02-test.c
@@ -0,0 +1,681 @@
+/*
+ * QTest testcase for parallel flash with AMD command set
+ *
+ * Copyright (c) 2019 Stephen Checkoway
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ */
+
+#include "qemu/osdep.h"
+#include "libqtest.h"
+
+/*
+ * To test the pflash_cfi02 device, we run QEMU with the musicpal machine with
+ * a pflash drive. This enables us to test some flash configurations, but not
+ * all. In particular, we're limited to a 16-bit wide flash device.
+ */
+
+#define MP_FLASH_SIZE_MAX (32 * 1024 * 1024)
+#define BASE_ADDR (0x100000000ULL - MP_FLASH_SIZE_MAX)
+
+#define UNIFORM_FLASH_SIZE (8 * 1024 * 1024)
+#define UNIFORM_FLASH_SECTOR_SIZE (64 * 1024)
+
+/* Use a newtype to keep flash addresses separate from byte addresses. */
+typedef struct {
+ uint64_t addr;
+} faddr;
+#define FLASH_ADDR(x) ((faddr) { .addr = (x) })
+
+#define CFI_ADDR FLASH_ADDR(0x55)
+#define UNLOCK0_ADDR FLASH_ADDR(0x555)
+#define UNLOCK1_ADDR FLASH_ADDR(0x2AA)
+
+#define CFI_CMD 0x98
+#define UNLOCK0_CMD 0xAA
+#define UNLOCK1_CMD 0x55
+#define SECOND_UNLOCK_CMD 0x80
+#define AUTOSELECT_CMD 0x90
+#define RESET_CMD 0xF0
+#define PROGRAM_CMD 0xA0
+#define SECTOR_ERASE_CMD 0x30
+#define CHIP_ERASE_CMD 0x10
+#define UNLOCK_BYPASS_CMD 0x20
+#define UNLOCK_BYPASS_RESET_CMD 0x00
+#define ERASE_SUSPEND_CMD 0xB0
+#define ERASE_RESUME_CMD SECTOR_ERASE_CMD
+
+typedef struct {
+ int bank_width;
+
+ /* Nonuniform block size. */
+ int nb_blocs[4];
+ int sector_len[4];
+
+ QTestState *qtest;
+} FlashConfig;
+
+static char image_path[] = "/tmp/qtest.XXXXXX";
+
+/*
+ * The pflash implementation allows some parameters to be unspecified. We want
+ * to test those configurations but we also need to know the real values in
+ * our testing code. So after we launch qemu, we'll need a new FlashConfig
+ * with the correct values filled in.
+ */
+static FlashConfig expand_config_defaults(const FlashConfig *c)
+{
+ FlashConfig ret = *c;
+
+ if (ret.bank_width == 0) {
+ ret.bank_width = 2;
+ }
+ if (ret.nb_blocs[0] == 0 && ret.sector_len[0] == 0) {
+ ret.sector_len[0] = UNIFORM_FLASH_SECTOR_SIZE;
+ ret.nb_blocs[0] = UNIFORM_FLASH_SIZE / UNIFORM_FLASH_SECTOR_SIZE;
+ }
+
+ /* XXX: Limitations of test harness. */
+ assert(ret.bank_width == 2);
+ return ret;
+}
+
+/*
+ * Return a bit mask suitable for extracting the least significant
+ * status/query response from an interleaved response.
+ */
+static inline uint64_t device_mask(const FlashConfig *c)
+{
+ return (uint64_t)-1;
+}
+
+/*
+ * Return a bit mask exactly as long as the bank_width.
+ */
+static inline uint64_t bank_mask(const FlashConfig *c)
+{
+ if (c->bank_width == 8) {
+ return (uint64_t)-1;
+ }
+ return (1ULL << (c->bank_width * 8)) - 1ULL;
+}
+
+static inline void flash_write(const FlashConfig *c, uint64_t byte_addr,
+ uint64_t data)
+{
+ /* Sanity check our tests. */
+ assert((data & ~bank_mask(c)) == 0);
+ uint64_t addr = BASE_ADDR + byte_addr;
+ switch (c->bank_width) {
+ case 1:
+ qtest_writeb(c->qtest, addr, data);
+ break;
+ case 2:
+ qtest_writew(c->qtest, addr, data);
+ break;
+ case 4:
+ qtest_writel(c->qtest, addr, data);
+ break;
+ case 8:
+ qtest_writeq(c->qtest, addr, data);
+ break;
+ default:
+ abort();
+ }
+}
+
+static inline uint64_t flash_read(const FlashConfig *c, uint64_t byte_addr)
+{
+ uint64_t addr = BASE_ADDR + byte_addr;
+ switch (c->bank_width) {
+ case 1:
+ return qtest_readb(c->qtest, addr);
+ case 2:
+ return qtest_readw(c->qtest, addr);
+ case 4:
+ return qtest_readl(c->qtest, addr);
+ case 8:
+ return qtest_readq(c->qtest, addr);
+ default:
+ abort();
+ }
+}
+
+/*
+ * Convert a flash address expressed in the maximum width of the device as a
+ * byte address.
+ */
+static inline uint64_t as_byte_addr(const FlashConfig *c, faddr flash_addr)
+{
+ /*
+ * Command addresses are always given as addresses in the maximum
+ * supported bus size for the flash chip. So an x8/x16 chip in x8 mode
+ * uses addresses 0xAAA and 0x555 to unlock because the least significant
+ * bit is ignored. (0x555 rather than 0x554 is traditional.)
+ *
+ * In general we need to multiply by the maximum device width.
+ */
+ return flash_addr.addr * c->bank_width;
+}
+
+/*
+ * Return the command value or expected status replicated across all devices.
+ */
+static inline uint64_t replicate(const FlashConfig *c, uint64_t data)
+{
+ /* Sanity check our tests. */
+ assert((data & ~device_mask(c)) == 0);
+ return data;
+}
+
+static inline void flash_cmd(const FlashConfig *c, faddr cmd_addr,
+ uint8_t cmd)
+{
+ flash_write(c, as_byte_addr(c, cmd_addr), replicate(c, cmd));
+}
+
+static inline uint64_t flash_query(const FlashConfig *c, faddr query_addr)
+{
+ return flash_read(c, as_byte_addr(c, query_addr));
+}
+
+static inline uint64_t flash_query_1(const FlashConfig *c, faddr query_addr)
+{
+ return flash_query(c, query_addr) & device_mask(c);
+}
+
+static void unlock(const FlashConfig *c)
+{
+ flash_cmd(c, UNLOCK0_ADDR, UNLOCK0_CMD);
+ flash_cmd(c, UNLOCK1_ADDR, UNLOCK1_CMD);
+}
+
+static void reset(const FlashConfig *c)
+{
+ flash_cmd(c, FLASH_ADDR(0), RESET_CMD);
+}
+
+static void sector_erase(const FlashConfig *c, uint64_t byte_addr)
+{
+ unlock(c);
+ flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
+ unlock(c);
+ flash_write(c, byte_addr, replicate(c, SECTOR_ERASE_CMD));
+}
+
+static void wait_for_completion(const FlashConfig *c, uint64_t byte_addr)
+{
+ /* If DQ6 is toggling, step the clock and ensure the toggle stops. */
+ const uint64_t dq6 = replicate(c, 0x40);
+ if ((flash_read(c, byte_addr) & dq6) ^ (flash_read(c, byte_addr) & dq6)) {
+ /* Wait for erase or program to finish. */
+ qtest_clock_step_next(c->qtest);
+ /* Ensure that DQ6 has stopped toggling. */
+ g_assert_cmphex(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
+ }
+}
+
+static void bypass_program(const FlashConfig *c, uint64_t byte_addr,
+ uint16_t data)
+{
+ flash_cmd(c, UNLOCK0_ADDR, PROGRAM_CMD);
+ flash_write(c, byte_addr, data);
+ /*
+ * Data isn't valid until DQ6 stops toggling. We don't model this as
+ * writes are immediate, but if this changes in the future, we can wait
+ * until the program is complete.
+ */
+ wait_for_completion(c, byte_addr);
+}
+
+static void program(const FlashConfig *c, uint64_t byte_addr, uint16_t data)
+{
+ unlock(c);
+ bypass_program(c, byte_addr, data);
+}
+
+static void chip_erase(const FlashConfig *c)
+{
+ unlock(c);
+ flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
+ unlock(c);
+ flash_cmd(c, UNLOCK0_ADDR, CHIP_ERASE_CMD);
+}
+
+static void erase_suspend(const FlashConfig *c)
+{
+ flash_cmd(c, FLASH_ADDR(0), ERASE_SUSPEND_CMD);
+}
+
+static void erase_resume(const FlashConfig *c)
+{
+ flash_cmd(c, FLASH_ADDR(0), ERASE_RESUME_CMD);
+}
+
+/*
+ * Test flash commands with a variety of device geometry.
+ */
+static void test_geometry(const void *opaque)
+{
+ const FlashConfig *config = opaque;
+ QTestState *qtest;
+ qtest = qtest_initf("-M musicpal"
+ " -drive if=pflash,file=%s,format=raw,copy-on-read"
+ /* Device geometry properties. */
+ " -global driver=cfi.pflash02,"
+ "property=num-blocks0,value=%d"
+ " -global driver=cfi.pflash02,"
+ "property=sector-length0,value=%d"
+ " -global driver=cfi.pflash02,"
+ "property=num-blocks1,value=%d"
+ " -global driver=cfi.pflash02,"
+ "property=sector-length1,value=%d"
+ " -global driver=cfi.pflash02,"
+ "property=num-blocks2,value=%d"
+ " -global driver=cfi.pflash02,"
+ "property=sector-length2,value=%d"
+ " -global driver=cfi.pflash02,"
+ "property=num-blocks3,value=%d"
+ " -global driver=cfi.pflash02,"
+ "property=sector-length3,value=%d",
+ image_path,
+ config->nb_blocs[0],
+ config->sector_len[0],
+ config->nb_blocs[1],
+ config->sector_len[1],
+ config->nb_blocs[2],
+ config->sector_len[2],
+ config->nb_blocs[3],
+ config->sector_len[3]);
+ FlashConfig explicit_config = expand_config_defaults(config);
+ explicit_config.qtest = qtest;
+ const FlashConfig *c = &explicit_config;
+
+ /* Check the IDs. */
+ unlock(c);
+ flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD);
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
+ if (c->bank_width >= 2) {
+ /*
+ * XXX: The ID returned by the musicpal flash chip is 16 bits which
+ * wouldn't happen with an 8-bit device. It would probably be best to
+ * prohibit addresses larger than the device width in pflash_cfi02.c,
+ * but then we couldn't test smaller device widths at all.
+ */
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(1)), ==,
+ replicate(c, 0x236D));
+ }
+ reset(c);
+
+ /* Check the erase blocks. */
+ flash_cmd(c, CFI_ADDR, CFI_CMD);
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q'));
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R'));
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));
+
+ /* Num erase regions. */
+ int nb_erase_regions = flash_query_1(c, FLASH_ADDR(0x2C));
+ g_assert_cmphex(nb_erase_regions, ==,
+ !!c->nb_blocs[0] + !!c->nb_blocs[1] + !!c->nb_blocs[2] +
+ !!c->nb_blocs[3]);
+
+ /* Check device length. */
+ uint32_t device_len = 1 << flash_query_1(c, FLASH_ADDR(0x27));
+ g_assert_cmphex(device_len, ==, UNIFORM_FLASH_SIZE);
+
+ /* Check that erase suspend to read/write is supported. */
+ uint16_t pri = flash_query_1(c, FLASH_ADDR(0x15)) +
+ (flash_query_1(c, FLASH_ADDR(0x16)) << 8);
+ g_assert_cmpint(pri, >=, 0x2D + 4 * nb_erase_regions);
+ g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 0)), ==, replicate(c, 'P'));
+ g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 1)), ==, replicate(c, 'R'));
+ g_assert_cmpint(flash_query(c, FLASH_ADDR(pri + 2)), ==, replicate(c, 'I'));
+ g_assert_cmpint(flash_query_1(c, FLASH_ADDR(pri + 6)), ==, 2); /* R/W */
+ reset(c);
+
+ const uint64_t dq7 = replicate(c, 0x80);
+ const uint64_t dq6 = replicate(c, 0x40);
+ const uint64_t dq3 = replicate(c, 0x08);
+ const uint64_t dq2 = replicate(c, 0x04);
+
+ uint64_t byte_addr = 0;
+ for (int region = 0; region < nb_erase_regions; ++region) {
+ uint64_t base = 0x2D + 4 * region;
+ flash_cmd(c, CFI_ADDR, CFI_CMD);
+ uint32_t nb_sectors = flash_query_1(c, FLASH_ADDR(base + 0)) +
+ (flash_query_1(c, FLASH_ADDR(base + 1)) << 8) + 1;
+ uint32_t sector_len = (flash_query_1(c, FLASH_ADDR(base + 2)) << 8) +
+ (flash_query_1(c, FLASH_ADDR(base + 3)) << 16);
+ g_assert_cmphex(nb_sectors, ==, c->nb_blocs[region]);
+ g_assert_cmphex(sector_len, ==, c->sector_len[region]);
+ reset(c);
+
+ /* Erase and program sector. */
+ for (uint32_t i = 0; i < nb_sectors; ++i) {
+ sector_erase(c, byte_addr);
+
+ /* Check that DQ3 is 0. */
+ g_assert_cmphex(flash_read(c, byte_addr) & dq3, ==, 0);
+ qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */
+
+ /* Check that DQ3 is 1. */
+ uint64_t status0 = flash_read(c, byte_addr);
+ g_assert_cmphex(status0 & dq3, ==, dq3);
+
+ /* DQ7 is 0 during an erase. */
+ g_assert_cmphex(status0 & dq7, ==, 0);
+ uint64_t status1 = flash_read(c, byte_addr);
+
+ /* DQ6 toggles during an erase. */
+ g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
+
+ /* Wait for erase to complete. */
+ wait_for_completion(c, byte_addr);
+
+ /* Ensure DQ6 has stopped toggling. */
+ g_assert_cmphex(flash_read(c, byte_addr), ==,
+ flash_read(c, byte_addr));
+
+ /* Now the data should be valid. */
+ g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
+
+ /* Program a bit pattern. */
+ program(c, byte_addr, 0x55);
+ g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x55);
+ program(c, byte_addr, 0xA5);
+ g_assert_cmphex(flash_read(c, byte_addr) & 0xFF, ==, 0x05);
+ byte_addr += sector_len;
+ }
+ }
+
+ /* Erase the chip. */
+ chip_erase(c);
+ /* Read toggle. */
+ uint64_t status0 = flash_read(c, 0);
+ /* DQ7 is 0 during an erase. */
+ g_assert_cmphex(status0 & dq7, ==, 0);
+ uint64_t status1 = flash_read(c, 0);
+ /* DQ6 toggles during an erase. */
+ g_assert_cmphex(status0 & dq6, ==, ~status1 & dq6);
+ /* Wait for erase to complete. */
+ qtest_clock_step_next(c->qtest);
+ /* Ensure DQ6 has stopped toggling. */
+ g_assert_cmphex(flash_read(c, 0), ==, flash_read(c, 0));
+ /* Now the data should be valid. */
+
+ for (int region = 0; region < nb_erase_regions; ++region) {
+ for (uint32_t i = 0; i < c->nb_blocs[region]; ++i) {
+ uint64_t byte_addr = i * c->sector_len[region];
+ g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
+ }
+ }
+
+ /* Unlock bypass */
+ unlock(c);
+ flash_cmd(c, UNLOCK0_ADDR, UNLOCK_BYPASS_CMD);
+ bypass_program(c, 0 * c->bank_width, 0x01);
+ bypass_program(c, 1 * c->bank_width, 0x23);
+ bypass_program(c, 2 * c->bank_width, 0x45);
+ /*
+ * Test that bypass programming, unlike normal programming can use any
+ * address for the PROGRAM_CMD.
+ */
+ flash_cmd(c, FLASH_ADDR(3 * c->bank_width), PROGRAM_CMD);
+ flash_write(c, 3 * c->bank_width, 0x67);
+ wait_for_completion(c, 3 * c->bank_width);
+ flash_cmd(c, FLASH_ADDR(0), UNLOCK_BYPASS_RESET_CMD);
+ bypass_program(c, 4 * c->bank_width, 0x89); /* Should fail. */
+ g_assert_cmphex(flash_read(c, 0 * c->bank_width), ==, 0x01);
+ g_assert_cmphex(flash_read(c, 1 * c->bank_width), ==, 0x23);
+ g_assert_cmphex(flash_read(c, 2 * c->bank_width), ==, 0x45);
+ g_assert_cmphex(flash_read(c, 3 * c->bank_width), ==, 0x67);
+ g_assert_cmphex(flash_read(c, 4 * c->bank_width), ==, bank_mask(c));
+
+ /* Test ignored high order bits of address. */
+ flash_cmd(c, FLASH_ADDR(0x5555), UNLOCK0_CMD);
+ flash_cmd(c, FLASH_ADDR(0x2AAA), UNLOCK1_CMD);
+ flash_cmd(c, FLASH_ADDR(0x5555), AUTOSELECT_CMD);
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
+ reset(c);
+
+ /*
+ * Program a word on each sector, erase one or two sectors per region, and
+ * verify that all of those, and only those, are erased.
+ */
+ byte_addr = 0;
+ for (int region = 0; region < nb_erase_regions; ++region) {
+ for (int i = 0; i < config->nb_blocs[region]; ++i) {
+ program(c, byte_addr, 0);
+ byte_addr += config->sector_len[region];
+ }
+ }
+ unlock(c);
+ flash_cmd(c, UNLOCK0_ADDR, SECOND_UNLOCK_CMD);
+ unlock(c);
+ byte_addr = 0;
+ const uint64_t erase_cmd = replicate(c, SECTOR_ERASE_CMD);
+ for (int region = 0; region < nb_erase_regions; ++region) {
+ flash_write(c, byte_addr, erase_cmd);
+ if (c->nb_blocs[region] > 1) {
+ flash_write(c, byte_addr + c->sector_len[region], erase_cmd);
+ }
+ byte_addr += c->sector_len[region] * c->nb_blocs[region];
+ }
+
+ qtest_clock_step_next(c->qtest); /* Step over the 50 us timeout. */
+ wait_for_completion(c, 0);
+ byte_addr = 0;
+ for (int region = 0; region < nb_erase_regions; ++region) {
+ for (int i = 0; i < config->nb_blocs[region]; ++i) {
+ if (i < 2) {
+ g_assert_cmphex(flash_read(c, byte_addr), ==, bank_mask(c));
+ } else {
+ g_assert_cmphex(flash_read(c, byte_addr), ==, 0);
+ }
+ byte_addr += config->sector_len[region];
+ }
+ }
+
+ /* Test erase suspend/resume during erase timeout. */
+ sector_erase(c, 0);
+ /*
+ * Check that DQ 3 is 0 and DQ6 and DQ2 are toggling in the sector being
+ * erased as well as in a sector not being erased.
+ */
+ byte_addr = c->sector_len[0];
+ status0 = flash_read(c, 0);
+ status1 = flash_read(c, 0);
+ g_assert_cmpint(status0 & dq3, ==, 0);
+ g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
+ g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
+ status0 = flash_read(c, byte_addr);
+ status1 = flash_read(c, byte_addr);
+ g_assert_cmpint(status0 & dq3, ==, 0);
+ g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
+ g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
+
+ /*
+ * Check that after suspending, DQ6 does not toggle but DQ2 does toggle in
+ * an erase suspended sector but that neither toggle (we should be
+ * getting data) in a sector not being erased.
+ */
+ erase_suspend(c);
+ status0 = flash_read(c, 0);
+ status1 = flash_read(c, 0);
+ g_assert_cmpint(status0 & dq6, ==, status1 & dq6);
+ g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
+ g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
+
+ /* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */
+ erase_resume(c);
+ status0 = flash_read(c, 0);
+ status1 = flash_read(c, 0);
+ g_assert_cmpint(status0 & dq3, ==, dq3);
+ g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
+ g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
+ status0 = flash_read(c, byte_addr);
+ status1 = flash_read(c, byte_addr);
+ g_assert_cmpint(status0 & dq3, ==, dq3);
+ g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
+ g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
+ wait_for_completion(c, 0);
+
+ /* Repeat this process but this time suspend after the timeout. */
+ sector_erase(c, 0);
+ qtest_clock_step_next(c->qtest);
+ /*
+ * Check that DQ 3 is 1 and DQ6 and DQ2 are toggling in the sector being
+ * erased as well as in a sector not being erased.
+ */
+ byte_addr = c->sector_len[0];
+ status0 = flash_read(c, 0);
+ status1 = flash_read(c, 0);
+ g_assert_cmpint(status0 & dq3, ==, dq3);
+ g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
+ g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
+ status0 = flash_read(c, byte_addr);
+ status1 = flash_read(c, byte_addr);
+ g_assert_cmpint(status0 & dq3, ==, dq3);
+ g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
+ g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
+
+ /*
+ * Check that after suspending, DQ6 does not toggle but DQ2 does toggle in
+ * an erase suspended sector but that neither toggle (we should be
+ * getting data) in a sector not being erased.
+ */
+ erase_suspend(c);
+ status0 = flash_read(c, 0);
+ status1 = flash_read(c, 0);
+ g_assert_cmpint(status0 & dq6, ==, status1 & dq6);
+ g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
+ g_assert_cmpint(flash_read(c, byte_addr), ==, flash_read(c, byte_addr));
+
+ /* Check that after resuming, DQ3 is 1 and DQ6 and DQ2 toggle. */
+ erase_resume(c);
+ status0 = flash_read(c, 0);
+ status1 = flash_read(c, 0);
+ g_assert_cmpint(status0 & dq3, ==, dq3);
+ g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
+ g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
+ status0 = flash_read(c, byte_addr);
+ status1 = flash_read(c, byte_addr);
+ g_assert_cmpint(status0 & dq3, ==, dq3);
+ g_assert_cmpint(status0 & dq6, ==, ~status1 & dq6);
+ g_assert_cmpint(status0 & dq2, ==, ~status1 & dq2);
+ wait_for_completion(c, 0);
+
+ qtest_quit(qtest);
+}
+
+/*
+ * Test that
+ * 1. enter autoselect mode;
+ * 2. enter CFI mode; and then
+ * 3. exit CFI mode
+ * leaves the flash device in autoselect mode.
+ */
+static void test_cfi_in_autoselect(const void *opaque)
+{
+ const FlashConfig *config = opaque;
+ QTestState *qtest;
+ qtest = qtest_initf("-M musicpal"
+ " -drive if=pflash,file=%s,format=raw,copy-on-read",
+ image_path);
+ FlashConfig explicit_config = expand_config_defaults(config);
+ explicit_config.qtest = qtest;
+ const FlashConfig *c = &explicit_config;
+
+ /* 1. Enter autoselect. */
+ unlock(c);
+ flash_cmd(c, UNLOCK0_ADDR, AUTOSELECT_CMD);
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
+
+ /* 2. Enter CFI. */
+ flash_cmd(c, CFI_ADDR, CFI_CMD);
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(0x10)), ==, replicate(c, 'Q'));
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(0x11)), ==, replicate(c, 'R'));
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(0x12)), ==, replicate(c, 'Y'));
+
+ /* 3. Exit CFI. */
+ reset(c);
+ g_assert_cmphex(flash_query(c, FLASH_ADDR(0)), ==, replicate(c, 0xBF));
+
+ qtest_quit(qtest);
+}
+
+static void cleanup(void *opaque)
+{
+ unlink(image_path);
+}
+
+/*
+ * XXX: Tests are limited to bank_width = 2 for now because that's what
+ * hw/arm/musicpal.c has.
+ */
+static const FlashConfig configuration[] = {
+ /* One x16 device. */
+ {
+ .bank_width = 2,
+ },
+ /* Nonuniform sectors (top boot). */
+ {
+ .bank_width = 2,
+ .nb_blocs = { 127, 1, 2, 1 },
+ .sector_len = { 0x10000, 0x08000, 0x02000, 0x04000 },
+ },
+ /* Nonuniform sectors (bottom boot). */
+ {
+ .bank_width = 2,
+ .nb_blocs = { 1, 2, 1, 127 },
+ .sector_len = { 0x04000, 0x02000, 0x08000, 0x10000 },
+ },
+};
+
+int main(int argc, char **argv)
+{
+ int fd = mkstemp(image_path);
+ if (fd == -1) {
+ g_printerr("Failed to create temporary file %s: %s\n", image_path,
+ strerror(errno));
+ exit(EXIT_FAILURE);
+ }
+ if (ftruncate(fd, UNIFORM_FLASH_SIZE) < 0) {
+ int error_code = errno;
+ close(fd);
+ unlink(image_path);
+ g_printerr("Failed to truncate file %s to %u MB: %s\n", image_path,
+ UNIFORM_FLASH_SIZE, strerror(error_code));
+ exit(EXIT_FAILURE);
+ }
+ close(fd);
+
+ qtest_add_abrt_handler(cleanup, NULL);
+ g_test_init(&argc, &argv, NULL);
+
+ size_t nb_configurations = sizeof configuration / sizeof configuration[0];
+ for (size_t i = 0; i < nb_configurations; ++i) {
+ const FlashConfig *config = &configuration[i];
+ char *path = g_strdup_printf("pflash-cfi02"
+ "/geometry/%dx%x-%dx%x-%dx%x-%dx%x"
+ "/%d",
+ config->nb_blocs[0],
+ config->sector_len[0],
+ config->nb_blocs[1],
+ config->sector_len[1],
+ config->nb_blocs[2],
+ config->sector_len[2],
+ config->nb_blocs[3],
+ config->sector_len[3],
+ config->bank_width);
+ qtest_add_data_func(path, config, test_geometry);
+ g_free(path);
+ }
+
+ qtest_add_data_func("pflash-cfi02/cfi-in-autoselect", &configuration[0],
+ test_cfi_in_autoselect);
+ int result = g_test_run();
+ cleanup(NULL);
+ return result;
+}