diff options
Diffstat (limited to 'target/i386/emulate/x86_flags.c')
-rw-r--r-- | target/i386/emulate/x86_flags.c | 200 |
1 files changed, 84 insertions, 116 deletions
diff --git a/target/i386/emulate/x86_flags.c b/target/i386/emulate/x86_flags.c index 84e2736..6592193 100644 --- a/target/i386/emulate/x86_flags.c +++ b/target/i386/emulate/x86_flags.c @@ -14,8 +14,8 @@ // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public -// License along with this library; if not, write to the Free Software -// Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA B 02110-1301 USA +// License along with this library; if not, see +// <https://www.gnu.org/licenses/>. ///////////////////////////////////////////////////////////////////////// /* * flags functions @@ -29,41 +29,50 @@ #include "x86.h" -/* this is basically bocsh code */ +/* + * The algorithms here are similar to those in Bochs. After an ALU + * operation, CC_DST can be used to compute ZF, SF and PF, whereas + * CC_SRC is used to compute AF, CF and OF. In reality, SF and PF are the + * XOR of the value computed from CC_DST and the value found in bits 7 and 2 + * of CC_SRC; this way the same logic can be used to compute the flags + * both before and after an ALU operation. + * + * Compared to the TCG CC_OP codes, this avoids conditionals when converting + * to and from the RFLAGS representation. + */ -#define LF_SIGN_BIT 31 +#define LF_SIGN_BIT (TARGET_LONG_BITS - 1) -#define LF_BIT_SD (0) /* lazy Sign Flag Delta */ -#define LF_BIT_AF (3) /* lazy Adjust flag */ -#define LF_BIT_PDB (8) /* lazy Parity Delta Byte (8 bits) */ -#define LF_BIT_CF (31) /* lazy Carry Flag */ -#define LF_BIT_PO (30) /* lazy Partial Overflow = CF ^ OF */ +#define LF_BIT_PD (2) /* lazy Parity Delta, same bit as PF */ +#define LF_BIT_AF (3) /* lazy Adjust flag */ +#define LF_BIT_SD (7) /* lazy Sign Flag Delta, same bit as SF */ +#define LF_BIT_CF (TARGET_LONG_BITS - 1) /* lazy Carry Flag */ +#define LF_BIT_PO (TARGET_LONG_BITS - 2) /* lazy Partial Overflow = CF ^ OF */ -#define LF_MASK_SD (0x01 << LF_BIT_SD) -#define LF_MASK_AF (0x01 << LF_BIT_AF) -#define LF_MASK_PDB (0xFF << LF_BIT_PDB) -#define LF_MASK_CF (0x01 << LF_BIT_CF) -#define LF_MASK_PO (0x01 << LF_BIT_PO) +#define LF_MASK_PD ((target_ulong)0x01 << LF_BIT_PD) +#define LF_MASK_AF ((target_ulong)0x01 << LF_BIT_AF) +#define LF_MASK_SD ((target_ulong)0x01 << LF_BIT_SD) +#define LF_MASK_CF ((target_ulong)0x01 << LF_BIT_CF) +#define LF_MASK_PO ((target_ulong)0x01 << LF_BIT_PO) /* ******************* */ /* OSZAPC */ /* ******************* */ -/* size, carries, result */ +/* use carries to fill in AF, PO and CF, while ensuring PD and SD are clear. + * for full-word operations just clear PD and SD; for smaller operand + * sizes only keep AF in the low byte and shift the carries left to + * place PO and CF in the top two bits. + */ #define SET_FLAGS_OSZAPC_SIZE(size, lf_carries, lf_result) { \ - target_ulong temp = ((lf_carries) & (LF_MASK_AF)) | \ - (((lf_carries) >> (size - 2)) << LF_BIT_PO); \ - env->lflags.result = (target_ulong)(int##size##_t)(lf_result); \ - if ((size) == 32) { \ - temp = ((lf_carries) & ~(LF_MASK_PDB | LF_MASK_SD)); \ - } else if ((size) == 16) { \ - temp = ((lf_carries) & (LF_MASK_AF)) | ((lf_carries) << 16); \ - } else if ((size) == 8) { \ - temp = ((lf_carries) & (LF_MASK_AF)) | ((lf_carries) << 24); \ + env->cc_dst = (target_ulong)(int##size##_t)(lf_result); \ + target_ulong temp = (lf_carries); \ + if ((size) == TARGET_LONG_BITS) { \ + temp = temp & ~(LF_MASK_PD | LF_MASK_SD); \ } else { \ - VM_PANIC("unimplemented"); \ + temp = (temp & LF_MASK_AF) | (temp << (TARGET_LONG_BITS - (size))); \ } \ - env->lflags.auxbits = (target_ulong)(uint32_t)temp; \ + env->cc_src = temp; \ } /* carries, result */ @@ -77,23 +86,18 @@ /* ******************* */ /* OSZAP */ /* ******************* */ -/* size, carries, result */ +/* same as setting OSZAPC, but preserve CF and flip PO if the old value of CF + * did not match the high bit of lf_carries. */ #define SET_FLAGS_OSZAP_SIZE(size, lf_carries, lf_result) { \ - target_ulong temp = ((lf_carries) & (LF_MASK_AF)) | \ - (((lf_carries) >> (size - 2)) << LF_BIT_PO); \ - if ((size) == 32) { \ - temp = ((lf_carries) & ~(LF_MASK_PDB | LF_MASK_SD)); \ - } else if ((size) == 16) { \ - temp = ((lf_carries) & (LF_MASK_AF)) | ((lf_carries) << 16); \ - } else if ((size) == 8) { \ - temp = ((lf_carries) & (LF_MASK_AF)) | ((lf_carries) << 24); \ + env->cc_dst = (target_ulong)(int##size##_t)(lf_result); \ + target_ulong temp = (lf_carries); \ + if ((size) == TARGET_LONG_BITS) { \ + temp = (temp & ~(LF_MASK_PD | LF_MASK_SD)); \ } else { \ - VM_PANIC("unimplemented"); \ + temp = (temp & LF_MASK_AF) | (temp << (TARGET_LONG_BITS - (size))); \ } \ - env->lflags.result = (target_ulong)(int##size##_t)(lf_result); \ - target_ulong delta_c = (env->lflags.auxbits ^ temp) & LF_MASK_CF; \ - delta_c ^= (delta_c >> 1); \ - env->lflags.auxbits = (target_ulong)(uint32_t)(temp ^ delta_c); \ + target_ulong cf_changed = ((target_long)(env->cc_src ^ temp)) < 0; \ + env->cc_src = temp ^ (cf_changed * (LF_MASK_PO | LF_MASK_CF)); \ } /* carries, result */ @@ -104,11 +108,11 @@ #define SET_FLAGS_OSZAP_32(carries, result) \ SET_FLAGS_OSZAP_SIZE(32, carries, result) -void SET_FLAGS_OxxxxC(CPUX86State *env, uint32_t new_of, uint32_t new_cf) +void SET_FLAGS_OxxxxC(CPUX86State *env, bool new_of, bool new_cf) { - uint32_t temp_po = new_of ^ new_cf; - env->lflags.auxbits &= ~(LF_MASK_PO | LF_MASK_CF); - env->lflags.auxbits |= (temp_po << LF_BIT_PO) | (new_cf << LF_BIT_CF); + env->cc_src &= ~(LF_MASK_PO | LF_MASK_CF); + env->cc_src |= (-(target_ulong)new_cf << LF_BIT_PO); + env->cc_src ^= ((target_ulong)new_of << LF_BIT_PO); } void SET_FLAGS_OSZAPC_SUB32(CPUX86State *env, uint32_t v1, uint32_t v2, @@ -202,104 +206,68 @@ void SET_FLAGS_OSZAPC_LOGIC8(CPUX86State *env, uint8_t v1, uint8_t v2, SET_FLAGS_OSZAPC_8(0, diff); } -bool get_PF(CPUX86State *env) -{ - uint32_t temp = (255 & env->lflags.result); - temp = temp ^ (255 & (env->lflags.auxbits >> LF_BIT_PDB)); - temp = (temp ^ (temp >> 4)) & 0x0F; - return (0x9669U >> temp) & 1; -} - -void set_PF(CPUX86State *env, bool val) +static inline uint32_t get_PF(CPUX86State *env) { - uint32_t temp = (255 & env->lflags.result) ^ (!val); - env->lflags.auxbits &= ~(LF_MASK_PDB); - env->lflags.auxbits |= (temp << LF_BIT_PDB); + return ((parity8(env->cc_dst) - 1) ^ env->cc_src) & CC_P; } -bool get_OF(CPUX86State *env) +static inline uint32_t get_OF(CPUX86State *env) { - return ((env->lflags.auxbits + (1U << LF_BIT_PO)) >> LF_BIT_CF) & 1; + return ((env->cc_src >> (LF_BIT_CF - 11)) + CC_O / 2) & CC_O; } bool get_CF(CPUX86State *env) { - return (env->lflags.auxbits >> LF_BIT_CF) & 1; -} - -void set_OF(CPUX86State *env, bool val) -{ - bool old_cf = get_CF(env); - SET_FLAGS_OxxxxC(env, val, old_cf); + return ((target_long)env->cc_src) < 0; } void set_CF(CPUX86State *env, bool val) { - bool old_of = get_OF(env); - SET_FLAGS_OxxxxC(env, old_of, val); + /* If CF changes, flip PO and CF */ + target_ulong temp = -(target_ulong)val; + target_ulong cf_changed = ((target_long)(env->cc_src ^ temp)) < 0; + env->cc_src ^= cf_changed * (LF_MASK_PO | LF_MASK_CF); } -bool get_AF(CPUX86State *env) +static inline uint32_t get_ZF(CPUX86State *env) { - return (env->lflags.auxbits >> LF_BIT_AF) & 1; + return env->cc_dst ? 0 : CC_Z; } -void set_AF(CPUX86State *env, bool val) +static inline uint32_t get_SF(CPUX86State *env) { - env->lflags.auxbits &= ~(LF_MASK_AF); - env->lflags.auxbits |= val << LF_BIT_AF; + return ((env->cc_dst >> (LF_SIGN_BIT - LF_BIT_SD)) ^ + env->cc_src) & CC_S; } -bool get_ZF(CPUX86State *env) +void lflags_to_rflags(CPUX86State *env) { - return !env->lflags.result; + env->eflags &= ~(CC_C|CC_P|CC_A|CC_Z|CC_S|CC_O); + /* rotate left by one to move carry-out bits into CF and AF */ + env->eflags |= ( + (env->cc_src << 1) | + (env->cc_src >> (TARGET_LONG_BITS - 1))) & (CC_C | CC_A); + env->eflags |= get_SF(env); + env->eflags |= get_PF(env); + env->eflags |= get_ZF(env); + env->eflags |= get_OF(env); } -void set_ZF(CPUX86State *env, bool val) +void rflags_to_lflags(CPUX86State *env) { - if (val) { - env->lflags.auxbits ^= - (((env->lflags.result >> LF_SIGN_BIT) & 1) << LF_BIT_SD); - /* merge the parity bits into the Parity Delta Byte */ - uint32_t temp_pdb = (255 & env->lflags.result); - env->lflags.auxbits ^= (temp_pdb << LF_BIT_PDB); - /* now zero the .result value */ - env->lflags.result = 0; - } else { - env->lflags.result |= (1 << 8); - } -} + target_ulong cf_af, cf_xor_of; -bool get_SF(CPUX86State *env) -{ - return ((env->lflags.result >> LF_SIGN_BIT) ^ - (env->lflags.auxbits >> LF_BIT_SD)) & 1; -} + /* Leave the low byte zero so that parity is always even... */ + env->cc_dst = !(env->eflags & CC_Z) << 8; -void set_SF(CPUX86State *env, bool val) -{ - bool temp_sf = get_SF(env); - env->lflags.auxbits ^= (temp_sf ^ val) << LF_BIT_SD; -} + /* ... and therefore cc_src always uses opposite polarity. */ + env->cc_src = CC_P; + env->cc_src ^= env->eflags & (CC_S | CC_P); -void lflags_to_rflags(CPUX86State *env) -{ - env->eflags &= ~(CC_C|CC_P|CC_A|CC_Z|CC_S|CC_O); - env->eflags |= get_CF(env) ? CC_C : 0; - env->eflags |= get_PF(env) ? CC_P : 0; - env->eflags |= get_AF(env) ? CC_A : 0; - env->eflags |= get_ZF(env) ? CC_Z : 0; - env->eflags |= get_SF(env) ? CC_S : 0; - env->eflags |= get_OF(env) ? CC_O : 0; -} + /* rotate right by one to move CF and AF into the carry-out positions */ + cf_af = env->eflags & (CC_C | CC_A); + env->cc_src |= ((cf_af >> 1) | (cf_af << (TARGET_LONG_BITS - 1))); -void rflags_to_lflags(CPUX86State *env) -{ - env->lflags.auxbits = env->lflags.result = 0; - set_OF(env, env->eflags & CC_O); - set_SF(env, env->eflags & CC_S); - set_ZF(env, env->eflags & CC_Z); - set_AF(env, env->eflags & CC_A); - set_PF(env, env->eflags & CC_P); - set_CF(env, env->eflags & CC_C); + cf_xor_of = ((env->eflags & (CC_C | CC_O)) + (CC_O - CC_C)) & CC_O; + env->cc_src |= -cf_xor_of & LF_MASK_PO; } |