aboutsummaryrefslogtreecommitdiff
path: root/target/arm/tcg/vfp_helper.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/tcg/vfp_helper.c')
-rw-r--r--target/arm/tcg/vfp_helper.c1370
1 files changed, 1370 insertions, 0 deletions
diff --git a/target/arm/tcg/vfp_helper.c b/target/arm/tcg/vfp_helper.c
new file mode 100644
index 0000000..b1324c5
--- /dev/null
+++ b/target/arm/tcg/vfp_helper.c
@@ -0,0 +1,1370 @@
+/*
+ * ARM VFP floating-point operations
+ *
+ * Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "cpu.h"
+#include "internals.h"
+#include "cpu-features.h"
+#include "fpu/softfloat.h"
+#include "qemu/log.h"
+
+#define HELPER_H "tcg/helper.h"
+#include "exec/helper-proto.h.inc"
+
+/*
+ * Set the float_status behaviour to match the Arm defaults:
+ * * tininess-before-rounding
+ * * 2-input NaN propagation prefers SNaN over QNaN, and then
+ * operand A over operand B (see FPProcessNaNs() pseudocode)
+ * * 3-input NaN propagation prefers SNaN over QNaN, and then
+ * operand C over A over B (see FPProcessNaNs3() pseudocode,
+ * but note that for QEMU muladd is a * b + c, whereas for
+ * the pseudocode function the arguments are in the order c, a, b.
+ * * 0 * Inf + NaN returns the default NaN if the input NaN is quiet,
+ * and the input NaN if it is signalling
+ * * Default NaN has sign bit clear, msb frac bit set
+ */
+void arm_set_default_fp_behaviours(float_status *s)
+{
+ set_float_detect_tininess(float_tininess_before_rounding, s);
+ set_float_ftz_detection(float_ftz_before_rounding, s);
+ set_float_2nan_prop_rule(float_2nan_prop_s_ab, s);
+ set_float_3nan_prop_rule(float_3nan_prop_s_cab, s);
+ set_float_infzeronan_rule(float_infzeronan_dnan_if_qnan, s);
+ set_float_default_nan_pattern(0b01000000, s);
+}
+
+/*
+ * Set the float_status behaviour to match the FEAT_AFP
+ * FPCR.AH=1 requirements:
+ * * tininess-after-rounding
+ * * 2-input NaN propagation prefers the first NaN
+ * * 3-input NaN propagation prefers a over b over c
+ * * 0 * Inf + NaN always returns the input NaN and doesn't
+ * set Invalid for a QNaN
+ * * default NaN has sign bit set, msb frac bit set
+ */
+void arm_set_ah_fp_behaviours(float_status *s)
+{
+ set_float_detect_tininess(float_tininess_after_rounding, s);
+ set_float_ftz_detection(float_ftz_after_rounding, s);
+ set_float_2nan_prop_rule(float_2nan_prop_ab, s);
+ set_float_3nan_prop_rule(float_3nan_prop_abc, s);
+ set_float_infzeronan_rule(float_infzeronan_dnan_never |
+ float_infzeronan_suppress_invalid, s);
+ set_float_default_nan_pattern(0b11000000, s);
+}
+
+/* Convert host exception flags to vfp form. */
+static inline uint32_t vfp_exceptbits_from_host(int host_bits, bool ah)
+{
+ uint32_t target_bits = 0;
+
+ if (host_bits & float_flag_invalid) {
+ target_bits |= FPSR_IOC;
+ }
+ if (host_bits & float_flag_divbyzero) {
+ target_bits |= FPSR_DZC;
+ }
+ if (host_bits & float_flag_overflow) {
+ target_bits |= FPSR_OFC;
+ }
+ if (host_bits & (float_flag_underflow | float_flag_output_denormal_flushed)) {
+ target_bits |= FPSR_UFC;
+ }
+ if (host_bits & float_flag_inexact) {
+ target_bits |= FPSR_IXC;
+ }
+ if (host_bits & float_flag_input_denormal_flushed) {
+ target_bits |= FPSR_IDC;
+ }
+ /*
+ * With FPCR.AH, IDC is set when an input denormal is used,
+ * and flushing an output denormal to zero sets both IXC and UFC.
+ */
+ if (ah && (host_bits & float_flag_input_denormal_used)) {
+ target_bits |= FPSR_IDC;
+ }
+ if (ah && (host_bits & float_flag_output_denormal_flushed)) {
+ target_bits |= FPSR_IXC;
+ }
+ return target_bits;
+}
+
+uint32_t vfp_get_fpsr_from_host(CPUARMState *env)
+{
+ uint32_t a32_flags = 0, a64_flags = 0;
+
+ a32_flags |= get_float_exception_flags(&env->vfp.fp_status[FPST_A32]);
+ a32_flags |= get_float_exception_flags(&env->vfp.fp_status[FPST_STD]);
+ /* FZ16 does not generate an input denormal exception. */
+ a32_flags |= (get_float_exception_flags(&env->vfp.fp_status[FPST_A32_F16])
+ & ~float_flag_input_denormal_flushed);
+ a32_flags |= (get_float_exception_flags(&env->vfp.fp_status[FPST_STD_F16])
+ & ~float_flag_input_denormal_flushed);
+
+ a64_flags |= get_float_exception_flags(&env->vfp.fp_status[FPST_A64]);
+ a64_flags |= (get_float_exception_flags(&env->vfp.fp_status[FPST_A64_F16])
+ & ~(float_flag_input_denormal_flushed | float_flag_input_denormal_used));
+ /*
+ * We do not merge in flags from FPST_AH or FPST_AH_F16, because
+ * they are used for insns that must not set the cumulative exception bits.
+ */
+
+ /*
+ * Flushing an input denormal *only* because FPCR.FIZ == 1 does
+ * not set FPSR.IDC; if FPCR.FZ is also set then this takes
+ * precedence and IDC is set (see the FPUnpackBase pseudocode).
+ * So squash it unless (FPCR.AH == 0 && FPCR.FZ == 1).
+ * We only do this for the a64 flags because FIZ has no effect
+ * on AArch32 even if it is set.
+ */
+ if ((env->vfp.fpcr & (FPCR_FZ | FPCR_AH)) != FPCR_FZ) {
+ a64_flags &= ~float_flag_input_denormal_flushed;
+ }
+ return vfp_exceptbits_from_host(a64_flags, env->vfp.fpcr & FPCR_AH) |
+ vfp_exceptbits_from_host(a32_flags, false);
+}
+
+void vfp_clear_float_status_exc_flags(CPUARMState *env)
+{
+ /*
+ * Clear out all the exception-flag information in the float_status
+ * values. The caller should have arranged for env->vfp.fpsr to
+ * be the architecturally up-to-date exception flag information first.
+ */
+ set_float_exception_flags(0, &env->vfp.fp_status[FPST_A32]);
+ set_float_exception_flags(0, &env->vfp.fp_status[FPST_A64]);
+ set_float_exception_flags(0, &env->vfp.fp_status[FPST_A32_F16]);
+ set_float_exception_flags(0, &env->vfp.fp_status[FPST_A64_F16]);
+ set_float_exception_flags(0, &env->vfp.fp_status[FPST_STD]);
+ set_float_exception_flags(0, &env->vfp.fp_status[FPST_STD_F16]);
+ set_float_exception_flags(0, &env->vfp.fp_status[FPST_AH]);
+ set_float_exception_flags(0, &env->vfp.fp_status[FPST_AH_F16]);
+}
+
+static void vfp_sync_and_clear_float_status_exc_flags(CPUARMState *env)
+{
+ /*
+ * Synchronize any pending exception-flag information in the
+ * float_status values into env->vfp.fpsr, and then clear out
+ * the float_status data.
+ */
+ env->vfp.fpsr |= vfp_get_fpsr_from_host(env);
+ vfp_clear_float_status_exc_flags(env);
+}
+
+void vfp_set_fpcr_to_host(CPUARMState *env, uint32_t val, uint32_t mask)
+{
+ uint64_t changed = env->vfp.fpcr;
+
+ changed ^= val;
+ changed &= mask;
+ if (changed & (3 << 22)) {
+ int i = (val >> 22) & 3;
+ switch (i) {
+ case FPROUNDING_TIEEVEN:
+ i = float_round_nearest_even;
+ break;
+ case FPROUNDING_POSINF:
+ i = float_round_up;
+ break;
+ case FPROUNDING_NEGINF:
+ i = float_round_down;
+ break;
+ case FPROUNDING_ZERO:
+ i = float_round_to_zero;
+ break;
+ }
+ set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A32]);
+ set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A64]);
+ set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A32_F16]);
+ set_float_rounding_mode(i, &env->vfp.fp_status[FPST_A64_F16]);
+ }
+ if (changed & FPCR_FZ16) {
+ bool ftz_enabled = val & FPCR_FZ16;
+ set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32_F16]);
+ set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A64_F16]);
+ set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_STD_F16]);
+ set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_AH_F16]);
+ set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32_F16]);
+ set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A64_F16]);
+ set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_STD_F16]);
+ set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_AH_F16]);
+ }
+ if (changed & FPCR_FZ) {
+ bool ftz_enabled = val & FPCR_FZ;
+ set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32]);
+ set_flush_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A64]);
+ /* FIZ is A64 only so FZ always makes A32 code flush inputs to zero */
+ set_flush_inputs_to_zero(ftz_enabled, &env->vfp.fp_status[FPST_A32]);
+ }
+ if (changed & (FPCR_FZ | FPCR_AH | FPCR_FIZ)) {
+ /*
+ * A64: Flush denormalized inputs to zero if FPCR.FIZ = 1, or
+ * both FPCR.AH = 0 and FPCR.FZ = 1.
+ */
+ bool fitz_enabled = (val & FPCR_FIZ) ||
+ (val & (FPCR_FZ | FPCR_AH)) == FPCR_FZ;
+ set_flush_inputs_to_zero(fitz_enabled, &env->vfp.fp_status[FPST_A64]);
+ }
+ if (changed & FPCR_DN) {
+ bool dnan_enabled = val & FPCR_DN;
+ set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A32]);
+ set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A64]);
+ set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A32_F16]);
+ set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_A64_F16]);
+ set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_AH]);
+ set_default_nan_mode(dnan_enabled, &env->vfp.fp_status[FPST_AH_F16]);
+ }
+ if (changed & FPCR_AH) {
+ bool ah_enabled = val & FPCR_AH;
+
+ if (ah_enabled) {
+ /* Change behaviours for A64 FP operations */
+ arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_A64]);
+ arm_set_ah_fp_behaviours(&env->vfp.fp_status[FPST_A64_F16]);
+ } else {
+ arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64]);
+ arm_set_default_fp_behaviours(&env->vfp.fp_status[FPST_A64_F16]);
+ }
+ }
+ /*
+ * If any bits changed that we look at in vfp_get_fpsr_from_host(),
+ * we must sync the float_status flags into vfp.fpsr now (under the
+ * old regime) before we update vfp.fpcr.
+ */
+ if (changed & (FPCR_FZ | FPCR_AH | FPCR_FIZ)) {
+ vfp_sync_and_clear_float_status_exc_flags(env);
+ }
+}
+
+/*
+ * VFP support. We follow the convention used for VFP instructions:
+ * Single precision routines have a "s" suffix, double precision a
+ * "d" suffix.
+ */
+
+#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
+
+#define VFP_BINOP(name) \
+dh_ctype_f16 VFP_HELPER(name, h)(dh_ctype_f16 a, dh_ctype_f16 b, float_status *fpst) \
+{ \
+ return float16_ ## name(a, b, fpst); \
+} \
+float32 VFP_HELPER(name, s)(float32 a, float32 b, float_status *fpst) \
+{ \
+ return float32_ ## name(a, b, fpst); \
+} \
+float64 VFP_HELPER(name, d)(float64 a, float64 b, float_status *fpst) \
+{ \
+ return float64_ ## name(a, b, fpst); \
+}
+VFP_BINOP(add)
+VFP_BINOP(sub)
+VFP_BINOP(mul)
+VFP_BINOP(div)
+VFP_BINOP(min)
+VFP_BINOP(max)
+VFP_BINOP(minnum)
+VFP_BINOP(maxnum)
+#undef VFP_BINOP
+
+dh_ctype_f16 VFP_HELPER(sqrt, h)(dh_ctype_f16 a, float_status *fpst)
+{
+ return float16_sqrt(a, fpst);
+}
+
+float32 VFP_HELPER(sqrt, s)(float32 a, float_status *fpst)
+{
+ return float32_sqrt(a, fpst);
+}
+
+float64 VFP_HELPER(sqrt, d)(float64 a, float_status *fpst)
+{
+ return float64_sqrt(a, fpst);
+}
+
+static void softfloat_to_vfp_compare(CPUARMState *env, FloatRelation cmp)
+{
+ uint32_t flags;
+ switch (cmp) {
+ case float_relation_equal:
+ flags = 0x6;
+ break;
+ case float_relation_less:
+ flags = 0x8;
+ break;
+ case float_relation_greater:
+ flags = 0x2;
+ break;
+ case float_relation_unordered:
+ flags = 0x3;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ env->vfp.fpsr = deposit64(env->vfp.fpsr, 28, 4, flags); /* NZCV */
+}
+
+/* XXX: check quiet/signaling case */
+#define DO_VFP_cmp(P, FLOATTYPE, ARGTYPE, FPST) \
+void VFP_HELPER(cmp, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
+{ \
+ softfloat_to_vfp_compare(env, \
+ FLOATTYPE ## _compare_quiet(a, b, &env->vfp.fp_status[FPST])); \
+} \
+void VFP_HELPER(cmpe, P)(ARGTYPE a, ARGTYPE b, CPUARMState *env) \
+{ \
+ softfloat_to_vfp_compare(env, \
+ FLOATTYPE ## _compare(a, b, &env->vfp.fp_status[FPST])); \
+}
+DO_VFP_cmp(h, float16, dh_ctype_f16, FPST_A32_F16)
+DO_VFP_cmp(s, float32, float32, FPST_A32)
+DO_VFP_cmp(d, float64, float64, FPST_A32)
+#undef DO_VFP_cmp
+
+/* Integer to float and float to integer conversions */
+
+#define CONV_ITOF(name, ftype, fsz, sign) \
+ftype HELPER(name)(uint32_t x, float_status *fpst) \
+{ \
+ return sign##int32_to_##float##fsz((sign##int32_t)x, fpst); \
+}
+
+#define CONV_FTOI(name, ftype, fsz, sign, round) \
+sign##int32_t HELPER(name)(ftype x, float_status *fpst) \
+{ \
+ if (float##fsz##_is_any_nan(x)) { \
+ float_raise(float_flag_invalid, fpst); \
+ return 0; \
+ } \
+ return float##fsz##_to_##sign##int32##round(x, fpst); \
+}
+
+#define FLOAT_CONVS(name, p, ftype, fsz, sign) \
+ CONV_ITOF(vfp_##name##to##p, ftype, fsz, sign) \
+ CONV_FTOI(vfp_to##name##p, ftype, fsz, sign, ) \
+ CONV_FTOI(vfp_to##name##z##p, ftype, fsz, sign, _round_to_zero)
+
+FLOAT_CONVS(si, h, uint32_t, 16, )
+FLOAT_CONVS(si, s, float32, 32, )
+FLOAT_CONVS(si, d, float64, 64, )
+FLOAT_CONVS(ui, h, uint32_t, 16, u)
+FLOAT_CONVS(ui, s, float32, 32, u)
+FLOAT_CONVS(ui, d, float64, 64, u)
+
+#undef CONV_ITOF
+#undef CONV_FTOI
+#undef FLOAT_CONVS
+
+/* floating point conversion */
+float64 VFP_HELPER(fcvtd, s)(float32 x, float_status *status)
+{
+ return float32_to_float64(x, status);
+}
+
+float32 VFP_HELPER(fcvts, d)(float64 x, float_status *status)
+{
+ return float64_to_float32(x, status);
+}
+
+uint32_t HELPER(bfcvt)(float32 x, float_status *status)
+{
+ return float32_to_bfloat16(x, status);
+}
+
+uint32_t HELPER(bfcvt_pair)(uint64_t pair, float_status *status)
+{
+ bfloat16 lo = float32_to_bfloat16(extract64(pair, 0, 32), status);
+ bfloat16 hi = float32_to_bfloat16(extract64(pair, 32, 32), status);
+ return deposit32(lo, 16, 16, hi);
+}
+
+/*
+ * VFP3 fixed point conversion. The AArch32 versions of fix-to-float
+ * must always round-to-nearest; the AArch64 ones honour the FPSCR
+ * rounding mode. (For AArch32 Neon the standard-FPSCR is set to
+ * round-to-nearest so either helper will work.) AArch32 float-to-fix
+ * must round-to-zero.
+ */
+#define VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
+ftype HELPER(vfp_##name##to##p)(uint##isz##_t x, uint32_t shift, \
+ float_status *fpst) \
+{ return itype##_to_##float##fsz##_scalbn(x, -shift, fpst); }
+
+#define VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
+ ftype HELPER(vfp_##name##to##p##_round_to_nearest)(uint##isz##_t x, \
+ uint32_t shift, \
+ float_status *fpst) \
+ { \
+ ftype ret; \
+ FloatRoundMode oldmode = fpst->float_rounding_mode; \
+ fpst->float_rounding_mode = float_round_nearest_even; \
+ ret = itype##_to_##float##fsz##_scalbn(x, -shift, fpst); \
+ fpst->float_rounding_mode = oldmode; \
+ return ret; \
+ }
+
+#define VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, ROUND, suff) \
+uint##isz##_t HELPER(vfp_to##name##p##suff)(ftype x, uint32_t shift, \
+ float_status *fpst) \
+{ \
+ if (unlikely(float##fsz##_is_any_nan(x))) { \
+ float_raise(float_flag_invalid, fpst); \
+ return 0; \
+ } \
+ return float##fsz##_to_##itype##_scalbn(x, ROUND, shift, fpst); \
+}
+
+#define VFP_CONV_FIX(name, p, fsz, ftype, isz, itype) \
+VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
+VFP_CONV_FIX_FLOAT_ROUND(name, p, fsz, ftype, isz, itype) \
+VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
+ float_round_to_zero, _round_to_zero) \
+VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
+ get_float_rounding_mode(fpst), )
+
+#define VFP_CONV_FIX_A64(name, p, fsz, ftype, isz, itype) \
+VFP_CONV_FIX_FLOAT(name, p, fsz, ftype, isz, itype) \
+VFP_CONV_FLOAT_FIX_ROUND(name, p, fsz, ftype, isz, itype, \
+ get_float_rounding_mode(fpst), )
+
+VFP_CONV_FIX(sh, d, 64, float64, 64, int16)
+VFP_CONV_FIX(sl, d, 64, float64, 64, int32)
+VFP_CONV_FIX_A64(sq, d, 64, float64, 64, int64)
+VFP_CONV_FIX(uh, d, 64, float64, 64, uint16)
+VFP_CONV_FIX(ul, d, 64, float64, 64, uint32)
+VFP_CONV_FIX_A64(uq, d, 64, float64, 64, uint64)
+VFP_CONV_FIX(sh, s, 32, float32, 32, int16)
+VFP_CONV_FIX(sl, s, 32, float32, 32, int32)
+VFP_CONV_FIX_A64(sq, s, 32, float32, 64, int64)
+VFP_CONV_FIX(uh, s, 32, float32, 32, uint16)
+VFP_CONV_FIX(ul, s, 32, float32, 32, uint32)
+VFP_CONV_FIX_A64(uq, s, 32, float32, 64, uint64)
+VFP_CONV_FIX(sh, h, 16, dh_ctype_f16, 32, int16)
+VFP_CONV_FIX(sl, h, 16, dh_ctype_f16, 32, int32)
+VFP_CONV_FIX_A64(sq, h, 16, dh_ctype_f16, 64, int64)
+VFP_CONV_FIX(uh, h, 16, dh_ctype_f16, 32, uint16)
+VFP_CONV_FIX(ul, h, 16, dh_ctype_f16, 32, uint32)
+VFP_CONV_FIX_A64(uq, h, 16, dh_ctype_f16, 64, uint64)
+VFP_CONV_FLOAT_FIX_ROUND(sq, d, 64, float64, 64, int64,
+ float_round_to_zero, _round_to_zero)
+VFP_CONV_FLOAT_FIX_ROUND(uq, d, 64, float64, 64, uint64,
+ float_round_to_zero, _round_to_zero)
+
+#undef VFP_CONV_FIX
+#undef VFP_CONV_FIX_FLOAT
+#undef VFP_CONV_FLOAT_FIX_ROUND
+#undef VFP_CONV_FIX_A64
+
+/* Set the current fp rounding mode and return the old one.
+ * The argument is a softfloat float_round_ value.
+ */
+uint32_t HELPER(set_rmode)(uint32_t rmode, float_status *fp_status)
+{
+ uint32_t prev_rmode = get_float_rounding_mode(fp_status);
+ set_float_rounding_mode(rmode, fp_status);
+
+ return prev_rmode;
+}
+
+/* Half precision conversions. */
+float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, float_status *fpst,
+ uint32_t ahp_mode)
+{
+ /* Squash FZ16 to 0 for the duration of conversion. In this case,
+ * it would affect flushing input denormals.
+ */
+ bool save = get_flush_inputs_to_zero(fpst);
+ set_flush_inputs_to_zero(false, fpst);
+ float32 r = float16_to_float32(a, !ahp_mode, fpst);
+ set_flush_inputs_to_zero(save, fpst);
+ return r;
+}
+
+uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, float_status *fpst,
+ uint32_t ahp_mode)
+{
+ /* Squash FZ16 to 0 for the duration of conversion. In this case,
+ * it would affect flushing output denormals.
+ */
+ bool save = get_flush_to_zero(fpst);
+ set_flush_to_zero(false, fpst);
+ float16 r = float32_to_float16(a, !ahp_mode, fpst);
+ set_flush_to_zero(save, fpst);
+ return r;
+}
+
+float64 HELPER(vfp_fcvt_f16_to_f64)(uint32_t a, float_status *fpst,
+ uint32_t ahp_mode)
+{
+ /* Squash FZ16 to 0 for the duration of conversion. In this case,
+ * it would affect flushing input denormals.
+ */
+ bool save = get_flush_inputs_to_zero(fpst);
+ set_flush_inputs_to_zero(false, fpst);
+ float64 r = float16_to_float64(a, !ahp_mode, fpst);
+ set_flush_inputs_to_zero(save, fpst);
+ return r;
+}
+
+uint32_t HELPER(vfp_fcvt_f64_to_f16)(float64 a, float_status *fpst,
+ uint32_t ahp_mode)
+{
+ /* Squash FZ16 to 0 for the duration of conversion. In this case,
+ * it would affect flushing output denormals.
+ */
+ bool save = get_flush_to_zero(fpst);
+ set_flush_to_zero(false, fpst);
+ float16 r = float64_to_float16(a, !ahp_mode, fpst);
+ set_flush_to_zero(save, fpst);
+ return r;
+}
+
+/* NEON helpers. */
+
+/* Constants 256 and 512 are used in some helpers; we avoid relying on
+ * int->float conversions at run-time. */
+#define float64_256 make_float64(0x4070000000000000LL)
+#define float64_512 make_float64(0x4080000000000000LL)
+#define float16_maxnorm make_float16(0x7bff)
+#define float32_maxnorm make_float32(0x7f7fffff)
+#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
+
+/* Reciprocal functions
+ *
+ * The algorithm that must be used to calculate the estimate
+ * is specified by the ARM ARM, see FPRecipEstimate()/RecipEstimate
+ */
+
+/* See RecipEstimate()
+ *
+ * input is a 9 bit fixed point number
+ * input range 256 .. 511 for a number from 0.5 <= x < 1.0.
+ * result range 256 .. 511 for a number from 1.0 to 511/256.
+ */
+
+static int recip_estimate(int input)
+{
+ int a, b, r;
+ assert(256 <= input && input < 512);
+ a = (input * 2) + 1;
+ b = (1 << 19) / a;
+ r = (b + 1) >> 1;
+ assert(256 <= r && r < 512);
+ return r;
+}
+
+/*
+ * Increased precision version:
+ * input is a 13 bit fixed point number
+ * input range 2048 .. 4095 for a number from 0.5 <= x < 1.0.
+ * result range 4096 .. 8191 for a number from 1.0 to 2.0
+ */
+static int recip_estimate_incprec(int input)
+{
+ int a, b, r;
+ assert(2048 <= input && input < 4096);
+ a = (input * 2) + 1;
+ /*
+ * The pseudocode expresses this as an operation on infinite
+ * precision reals where it calculates 2^25 / a and then looks
+ * at the error between that and the rounded-down-to-integer
+ * value to see if it should instead round up. We instead
+ * follow the same approach as the pseudocode for the 8-bit
+ * precision version, and calculate (2 * (2^25 / a)) as an
+ * integer so we can do the "add one and halve" to round it.
+ * So the 1 << 26 here is correct.
+ */
+ b = (1 << 26) / a;
+ r = (b + 1) >> 1;
+ assert(4096 <= r && r < 8192);
+ return r;
+}
+
+/*
+ * Common wrapper to call recip_estimate
+ *
+ * The parameters are exponent and 64 bit fraction (without implicit
+ * bit) where the binary point is nominally at bit 52. Returns a
+ * float64 which can then be rounded to the appropriate size by the
+ * callee.
+ */
+
+static uint64_t call_recip_estimate(int *exp, int exp_off, uint64_t frac,
+ bool increasedprecision)
+{
+ uint32_t scaled, estimate;
+ uint64_t result_frac;
+ int result_exp;
+
+ /* Handle sub-normals */
+ if (*exp == 0) {
+ if (extract64(frac, 51, 1) == 0) {
+ *exp = -1;
+ frac <<= 2;
+ } else {
+ frac <<= 1;
+ }
+ }
+
+ if (increasedprecision) {
+ /* scaled = UInt('1':fraction<51:41>) */
+ scaled = deposit32(1 << 11, 0, 11, extract64(frac, 41, 11));
+ estimate = recip_estimate_incprec(scaled);
+ } else {
+ /* scaled = UInt('1':fraction<51:44>) */
+ scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
+ estimate = recip_estimate(scaled);
+ }
+
+ result_exp = exp_off - *exp;
+ if (increasedprecision) {
+ result_frac = deposit64(0, 40, 12, estimate);
+ } else {
+ result_frac = deposit64(0, 44, 8, estimate);
+ }
+ if (result_exp == 0) {
+ result_frac = deposit64(result_frac >> 1, 51, 1, 1);
+ } else if (result_exp == -1) {
+ result_frac = deposit64(result_frac >> 2, 50, 2, 1);
+ result_exp = 0;
+ }
+
+ *exp = result_exp;
+
+ return result_frac;
+}
+
+static bool round_to_inf(float_status *fpst, bool sign_bit)
+{
+ switch (fpst->float_rounding_mode) {
+ case float_round_nearest_even: /* Round to Nearest */
+ return true;
+ case float_round_up: /* Round to +Inf */
+ return !sign_bit;
+ case float_round_down: /* Round to -Inf */
+ return sign_bit;
+ case float_round_to_zero: /* Round to Zero */
+ return false;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+uint32_t HELPER(recpe_f16)(uint32_t input, float_status *fpst)
+{
+ float16 f16 = float16_squash_input_denormal(input, fpst);
+ uint32_t f16_val = float16_val(f16);
+ uint32_t f16_sign = float16_is_neg(f16);
+ int f16_exp = extract32(f16_val, 10, 5);
+ uint32_t f16_frac = extract32(f16_val, 0, 10);
+ uint64_t f64_frac;
+
+ if (float16_is_any_nan(f16)) {
+ float16 nan = f16;
+ if (float16_is_signaling_nan(f16, fpst)) {
+ float_raise(float_flag_invalid, fpst);
+ if (!fpst->default_nan_mode) {
+ nan = float16_silence_nan(f16, fpst);
+ }
+ }
+ if (fpst->default_nan_mode) {
+ nan = float16_default_nan(fpst);
+ }
+ return nan;
+ } else if (float16_is_infinity(f16)) {
+ return float16_set_sign(float16_zero, float16_is_neg(f16));
+ } else if (float16_is_zero(f16)) {
+ float_raise(float_flag_divbyzero, fpst);
+ return float16_set_sign(float16_infinity, float16_is_neg(f16));
+ } else if (float16_abs(f16) < (1 << 8)) {
+ /* Abs(value) < 2.0^-16 */
+ float_raise(float_flag_overflow | float_flag_inexact, fpst);
+ if (round_to_inf(fpst, f16_sign)) {
+ return float16_set_sign(float16_infinity, f16_sign);
+ } else {
+ return float16_set_sign(float16_maxnorm, f16_sign);
+ }
+ } else if (f16_exp >= 29 && fpst->flush_to_zero) {
+ float_raise(float_flag_underflow, fpst);
+ return float16_set_sign(float16_zero, float16_is_neg(f16));
+ }
+
+ f64_frac = call_recip_estimate(&f16_exp, 29,
+ ((uint64_t) f16_frac) << (52 - 10), false);
+
+ /* result = sign : result_exp<4:0> : fraction<51:42> */
+ f16_val = deposit32(0, 15, 1, f16_sign);
+ f16_val = deposit32(f16_val, 10, 5, f16_exp);
+ f16_val = deposit32(f16_val, 0, 10, extract64(f64_frac, 52 - 10, 10));
+ return make_float16(f16_val);
+}
+
+/*
+ * FEAT_RPRES means the f32 FRECPE has an "increased precision" variant
+ * which is used when FPCR.AH == 1.
+ */
+static float32 do_recpe_f32(float32 input, float_status *fpst, bool rpres)
+{
+ float32 f32 = float32_squash_input_denormal(input, fpst);
+ uint32_t f32_val = float32_val(f32);
+ bool f32_sign = float32_is_neg(f32);
+ int f32_exp = extract32(f32_val, 23, 8);
+ uint32_t f32_frac = extract32(f32_val, 0, 23);
+ uint64_t f64_frac;
+
+ if (float32_is_any_nan(f32)) {
+ float32 nan = f32;
+ if (float32_is_signaling_nan(f32, fpst)) {
+ float_raise(float_flag_invalid, fpst);
+ if (!fpst->default_nan_mode) {
+ nan = float32_silence_nan(f32, fpst);
+ }
+ }
+ if (fpst->default_nan_mode) {
+ nan = float32_default_nan(fpst);
+ }
+ return nan;
+ } else if (float32_is_infinity(f32)) {
+ return float32_set_sign(float32_zero, float32_is_neg(f32));
+ } else if (float32_is_zero(f32)) {
+ float_raise(float_flag_divbyzero, fpst);
+ return float32_set_sign(float32_infinity, float32_is_neg(f32));
+ } else if (float32_abs(f32) < (1ULL << 21)) {
+ /* Abs(value) < 2.0^-128 */
+ float_raise(float_flag_overflow | float_flag_inexact, fpst);
+ if (round_to_inf(fpst, f32_sign)) {
+ return float32_set_sign(float32_infinity, f32_sign);
+ } else {
+ return float32_set_sign(float32_maxnorm, f32_sign);
+ }
+ } else if (f32_exp >= 253 && fpst->flush_to_zero) {
+ float_raise(float_flag_underflow, fpst);
+ return float32_set_sign(float32_zero, float32_is_neg(f32));
+ }
+
+ f64_frac = call_recip_estimate(&f32_exp, 253,
+ ((uint64_t) f32_frac) << (52 - 23), rpres);
+
+ /* result = sign : result_exp<7:0> : fraction<51:29> */
+ f32_val = deposit32(0, 31, 1, f32_sign);
+ f32_val = deposit32(f32_val, 23, 8, f32_exp);
+ f32_val = deposit32(f32_val, 0, 23, extract64(f64_frac, 52 - 23, 23));
+ return make_float32(f32_val);
+}
+
+float32 HELPER(recpe_f32)(float32 input, float_status *fpst)
+{
+ return do_recpe_f32(input, fpst, false);
+}
+
+float32 HELPER(recpe_rpres_f32)(float32 input, float_status *fpst)
+{
+ return do_recpe_f32(input, fpst, true);
+}
+
+float64 HELPER(recpe_f64)(float64 input, float_status *fpst)
+{
+ float64 f64 = float64_squash_input_denormal(input, fpst);
+ uint64_t f64_val = float64_val(f64);
+ bool f64_sign = float64_is_neg(f64);
+ int f64_exp = extract64(f64_val, 52, 11);
+ uint64_t f64_frac = extract64(f64_val, 0, 52);
+
+ /* Deal with any special cases */
+ if (float64_is_any_nan(f64)) {
+ float64 nan = f64;
+ if (float64_is_signaling_nan(f64, fpst)) {
+ float_raise(float_flag_invalid, fpst);
+ if (!fpst->default_nan_mode) {
+ nan = float64_silence_nan(f64, fpst);
+ }
+ }
+ if (fpst->default_nan_mode) {
+ nan = float64_default_nan(fpst);
+ }
+ return nan;
+ } else if (float64_is_infinity(f64)) {
+ return float64_set_sign(float64_zero, float64_is_neg(f64));
+ } else if (float64_is_zero(f64)) {
+ float_raise(float_flag_divbyzero, fpst);
+ return float64_set_sign(float64_infinity, float64_is_neg(f64));
+ } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
+ /* Abs(value) < 2.0^-1024 */
+ float_raise(float_flag_overflow | float_flag_inexact, fpst);
+ if (round_to_inf(fpst, f64_sign)) {
+ return float64_set_sign(float64_infinity, f64_sign);
+ } else {
+ return float64_set_sign(float64_maxnorm, f64_sign);
+ }
+ } else if (f64_exp >= 2045 && fpst->flush_to_zero) {
+ float_raise(float_flag_underflow, fpst);
+ return float64_set_sign(float64_zero, float64_is_neg(f64));
+ }
+
+ f64_frac = call_recip_estimate(&f64_exp, 2045, f64_frac, false);
+
+ /* result = sign : result_exp<10:0> : fraction<51:0>; */
+ f64_val = deposit64(0, 63, 1, f64_sign);
+ f64_val = deposit64(f64_val, 52, 11, f64_exp);
+ f64_val = deposit64(f64_val, 0, 52, f64_frac);
+ return make_float64(f64_val);
+}
+
+/* The algorithm that must be used to calculate the estimate
+ * is specified by the ARM ARM.
+ */
+
+static int do_recip_sqrt_estimate(int a)
+{
+ int b, estimate;
+
+ assert(128 <= a && a < 512);
+ if (a < 256) {
+ a = a * 2 + 1;
+ } else {
+ a = (a >> 1) << 1;
+ a = (a + 1) * 2;
+ }
+ b = 512;
+ while (a * (b + 1) * (b + 1) < (1 << 28)) {
+ b += 1;
+ }
+ estimate = (b + 1) / 2;
+ assert(256 <= estimate && estimate < 512);
+
+ return estimate;
+}
+
+static int do_recip_sqrt_estimate_incprec(int a)
+{
+ /*
+ * The Arm ARM describes the 12-bit precision version of RecipSqrtEstimate
+ * in terms of an infinite-precision floating point calculation of a
+ * square root. We implement this using the same kind of pure integer
+ * algorithm as the 8-bit mantissa, to get the same bit-for-bit result.
+ */
+ int64_t b, estimate;
+
+ assert(1024 <= a && a < 4096);
+ if (a < 2048) {
+ a = a * 2 + 1;
+ } else {
+ a = (a >> 1) << 1;
+ a = (a + 1) * 2;
+ }
+ b = 8192;
+ while (a * (b + 1) * (b + 1) < (1ULL << 39)) {
+ b += 1;
+ }
+ estimate = (b + 1) / 2;
+
+ assert(4096 <= estimate && estimate < 8192);
+
+ return estimate;
+}
+
+static uint64_t recip_sqrt_estimate(int *exp , int exp_off, uint64_t frac,
+ bool increasedprecision)
+{
+ int estimate;
+ uint32_t scaled;
+
+ if (*exp == 0) {
+ while (extract64(frac, 51, 1) == 0) {
+ frac = frac << 1;
+ *exp -= 1;
+ }
+ frac = extract64(frac, 0, 51) << 1;
+ }
+
+ if (increasedprecision) {
+ if (*exp & 1) {
+ /* scaled = UInt('01':fraction<51:42>) */
+ scaled = deposit32(1 << 10, 0, 10, extract64(frac, 42, 10));
+ } else {
+ /* scaled = UInt('1':fraction<51:41>) */
+ scaled = deposit32(1 << 11, 0, 11, extract64(frac, 41, 11));
+ }
+ estimate = do_recip_sqrt_estimate_incprec(scaled);
+ } else {
+ if (*exp & 1) {
+ /* scaled = UInt('01':fraction<51:45>) */
+ scaled = deposit32(1 << 7, 0, 7, extract64(frac, 45, 7));
+ } else {
+ /* scaled = UInt('1':fraction<51:44>) */
+ scaled = deposit32(1 << 8, 0, 8, extract64(frac, 44, 8));
+ }
+ estimate = do_recip_sqrt_estimate(scaled);
+ }
+
+ *exp = (exp_off - *exp) / 2;
+ if (increasedprecision) {
+ return extract64(estimate, 0, 12) << 40;
+ } else {
+ return extract64(estimate, 0, 8) << 44;
+ }
+}
+
+uint32_t HELPER(rsqrte_f16)(uint32_t input, float_status *s)
+{
+ float16 f16 = float16_squash_input_denormal(input, s);
+ uint16_t val = float16_val(f16);
+ bool f16_sign = float16_is_neg(f16);
+ int f16_exp = extract32(val, 10, 5);
+ uint16_t f16_frac = extract32(val, 0, 10);
+ uint64_t f64_frac;
+
+ if (float16_is_any_nan(f16)) {
+ float16 nan = f16;
+ if (float16_is_signaling_nan(f16, s)) {
+ float_raise(float_flag_invalid, s);
+ if (!s->default_nan_mode) {
+ nan = float16_silence_nan(f16, s);
+ }
+ }
+ if (s->default_nan_mode) {
+ nan = float16_default_nan(s);
+ }
+ return nan;
+ } else if (float16_is_zero(f16)) {
+ float_raise(float_flag_divbyzero, s);
+ return float16_set_sign(float16_infinity, f16_sign);
+ } else if (f16_sign) {
+ float_raise(float_flag_invalid, s);
+ return float16_default_nan(s);
+ } else if (float16_is_infinity(f16)) {
+ return float16_zero;
+ }
+
+ /* Scale and normalize to a double-precision value between 0.25 and 1.0,
+ * preserving the parity of the exponent. */
+
+ f64_frac = ((uint64_t) f16_frac) << (52 - 10);
+
+ f64_frac = recip_sqrt_estimate(&f16_exp, 44, f64_frac, false);
+
+ /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(2) */
+ val = deposit32(0, 15, 1, f16_sign);
+ val = deposit32(val, 10, 5, f16_exp);
+ val = deposit32(val, 2, 8, extract64(f64_frac, 52 - 8, 8));
+ return make_float16(val);
+}
+
+/*
+ * FEAT_RPRES means the f32 FRSQRTE has an "increased precision" variant
+ * which is used when FPCR.AH == 1.
+ */
+static float32 do_rsqrte_f32(float32 input, float_status *s, bool rpres)
+{
+ float32 f32 = float32_squash_input_denormal(input, s);
+ uint32_t val = float32_val(f32);
+ uint32_t f32_sign = float32_is_neg(f32);
+ int f32_exp = extract32(val, 23, 8);
+ uint32_t f32_frac = extract32(val, 0, 23);
+ uint64_t f64_frac;
+
+ if (float32_is_any_nan(f32)) {
+ float32 nan = f32;
+ if (float32_is_signaling_nan(f32, s)) {
+ float_raise(float_flag_invalid, s);
+ if (!s->default_nan_mode) {
+ nan = float32_silence_nan(f32, s);
+ }
+ }
+ if (s->default_nan_mode) {
+ nan = float32_default_nan(s);
+ }
+ return nan;
+ } else if (float32_is_zero(f32)) {
+ float_raise(float_flag_divbyzero, s);
+ return float32_set_sign(float32_infinity, float32_is_neg(f32));
+ } else if (float32_is_neg(f32)) {
+ float_raise(float_flag_invalid, s);
+ return float32_default_nan(s);
+ } else if (float32_is_infinity(f32)) {
+ return float32_zero;
+ }
+
+ /* Scale and normalize to a double-precision value between 0.25 and 1.0,
+ * preserving the parity of the exponent. */
+
+ f64_frac = ((uint64_t) f32_frac) << 29;
+
+ f64_frac = recip_sqrt_estimate(&f32_exp, 380, f64_frac, rpres);
+
+ /*
+ * result = sign : result_exp<7:0> : estimate<7:0> : Zeros(15)
+ * or for increased precision
+ * result = sign : result_exp<7:0> : estimate<11:0> : Zeros(11)
+ */
+ val = deposit32(0, 31, 1, f32_sign);
+ val = deposit32(val, 23, 8, f32_exp);
+ if (rpres) {
+ val = deposit32(val, 11, 12, extract64(f64_frac, 52 - 12, 12));
+ } else {
+ val = deposit32(val, 15, 8, extract64(f64_frac, 52 - 8, 8));
+ }
+ return make_float32(val);
+}
+
+float32 HELPER(rsqrte_f32)(float32 input, float_status *s)
+{
+ return do_rsqrte_f32(input, s, false);
+}
+
+float32 HELPER(rsqrte_rpres_f32)(float32 input, float_status *s)
+{
+ return do_rsqrte_f32(input, s, true);
+}
+
+float64 HELPER(rsqrte_f64)(float64 input, float_status *s)
+{
+ float64 f64 = float64_squash_input_denormal(input, s);
+ uint64_t val = float64_val(f64);
+ bool f64_sign = float64_is_neg(f64);
+ int f64_exp = extract64(val, 52, 11);
+ uint64_t f64_frac = extract64(val, 0, 52);
+
+ if (float64_is_any_nan(f64)) {
+ float64 nan = f64;
+ if (float64_is_signaling_nan(f64, s)) {
+ float_raise(float_flag_invalid, s);
+ if (!s->default_nan_mode) {
+ nan = float64_silence_nan(f64, s);
+ }
+ }
+ if (s->default_nan_mode) {
+ nan = float64_default_nan(s);
+ }
+ return nan;
+ } else if (float64_is_zero(f64)) {
+ float_raise(float_flag_divbyzero, s);
+ return float64_set_sign(float64_infinity, float64_is_neg(f64));
+ } else if (float64_is_neg(f64)) {
+ float_raise(float_flag_invalid, s);
+ return float64_default_nan(s);
+ } else if (float64_is_infinity(f64)) {
+ return float64_zero;
+ }
+
+ f64_frac = recip_sqrt_estimate(&f64_exp, 3068, f64_frac, false);
+
+ /* result = sign : result_exp<4:0> : estimate<7:0> : Zeros(44) */
+ val = deposit64(0, 61, 1, f64_sign);
+ val = deposit64(val, 52, 11, f64_exp);
+ val = deposit64(val, 44, 8, extract64(f64_frac, 52 - 8, 8));
+ return make_float64(val);
+}
+
+uint32_t HELPER(recpe_u32)(uint32_t a)
+{
+ int input, estimate;
+
+ if ((a & 0x80000000) == 0) {
+ return 0xffffffff;
+ }
+
+ input = extract32(a, 23, 9);
+ estimate = recip_estimate(input);
+
+ return deposit32(0, (32 - 9), 9, estimate);
+}
+
+uint32_t HELPER(rsqrte_u32)(uint32_t a)
+{
+ int estimate;
+
+ if ((a & 0xc0000000) == 0) {
+ return 0xffffffff;
+ }
+
+ estimate = do_recip_sqrt_estimate(extract32(a, 23, 9));
+
+ return deposit32(0, 23, 9, estimate);
+}
+
+/* VFPv4 fused multiply-accumulate */
+dh_ctype_f16 VFP_HELPER(muladd, h)(dh_ctype_f16 a, dh_ctype_f16 b,
+ dh_ctype_f16 c, float_status *fpst)
+{
+ return float16_muladd(a, b, c, 0, fpst);
+}
+
+float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c,
+ float_status *fpst)
+{
+ return float32_muladd(a, b, c, 0, fpst);
+}
+
+float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c,
+ float_status *fpst)
+{
+ return float64_muladd(a, b, c, 0, fpst);
+}
+
+/* ARMv8 round to integral */
+dh_ctype_f16 HELPER(rinth_exact)(dh_ctype_f16 x, float_status *fp_status)
+{
+ return float16_round_to_int(x, fp_status);
+}
+
+float32 HELPER(rints_exact)(float32 x, float_status *fp_status)
+{
+ return float32_round_to_int(x, fp_status);
+}
+
+float64 HELPER(rintd_exact)(float64 x, float_status *fp_status)
+{
+ return float64_round_to_int(x, fp_status);
+}
+
+dh_ctype_f16 HELPER(rinth)(dh_ctype_f16 x, float_status *fp_status)
+{
+ int old_flags = get_float_exception_flags(fp_status), new_flags;
+ float16 ret;
+
+ ret = float16_round_to_int(x, fp_status);
+
+ /* Suppress any inexact exceptions the conversion produced */
+ if (!(old_flags & float_flag_inexact)) {
+ new_flags = get_float_exception_flags(fp_status);
+ set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
+ }
+
+ return ret;
+}
+
+float32 HELPER(rints)(float32 x, float_status *fp_status)
+{
+ int old_flags = get_float_exception_flags(fp_status), new_flags;
+ float32 ret;
+
+ ret = float32_round_to_int(x, fp_status);
+
+ /* Suppress any inexact exceptions the conversion produced */
+ if (!(old_flags & float_flag_inexact)) {
+ new_flags = get_float_exception_flags(fp_status);
+ set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
+ }
+
+ return ret;
+}
+
+float64 HELPER(rintd)(float64 x, float_status *fp_status)
+{
+ int old_flags = get_float_exception_flags(fp_status), new_flags;
+ float64 ret;
+
+ ret = float64_round_to_int(x, fp_status);
+
+ /* Suppress any inexact exceptions the conversion produced */
+ if (!(old_flags & float_flag_inexact)) {
+ new_flags = get_float_exception_flags(fp_status);
+ set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
+ }
+
+ return ret;
+}
+
+/* Convert ARM rounding mode to softfloat */
+const FloatRoundMode arm_rmode_to_sf_map[] = {
+ [FPROUNDING_TIEEVEN] = float_round_nearest_even,
+ [FPROUNDING_POSINF] = float_round_up,
+ [FPROUNDING_NEGINF] = float_round_down,
+ [FPROUNDING_ZERO] = float_round_to_zero,
+ [FPROUNDING_TIEAWAY] = float_round_ties_away,
+ [FPROUNDING_ODD] = float_round_to_odd,
+};
+
+/*
+ * Implement float64 to int32_t conversion without saturation;
+ * the result is supplied modulo 2^32.
+ */
+uint64_t HELPER(fjcvtzs)(float64 value, float_status *status)
+{
+ uint32_t frac, e_old, e_new;
+ bool inexact;
+
+ e_old = get_float_exception_flags(status);
+ set_float_exception_flags(0, status);
+ frac = float64_to_int32_modulo(value, float_round_to_zero, status);
+ e_new = get_float_exception_flags(status);
+ set_float_exception_flags(e_old | e_new, status);
+
+ /* Normal inexact, denormal with flush-to-zero, or overflow or NaN */
+ inexact = e_new & (float_flag_inexact |
+ float_flag_input_denormal_flushed |
+ float_flag_invalid);
+
+ /* While not inexact for IEEE FP, -0.0 is inexact for JavaScript. */
+ inexact |= value == float64_chs(float64_zero);
+
+ /* Pack the result and the env->ZF representation of Z together. */
+ return deposit64(frac, 32, 32, inexact);
+}
+
+uint32_t HELPER(vjcvt)(float64 value, CPUARMState *env)
+{
+ uint64_t pair = HELPER(fjcvtzs)(value, &env->vfp.fp_status[FPST_A32]);
+ uint32_t result = pair;
+ uint32_t z = (pair >> 32) == 0;
+
+ /* Store Z, clear NCV, in FPSCR.NZCV. */
+ env->vfp.fpsr = (env->vfp.fpsr & ~FPSR_NZCV_MASK) | (z * FPSR_Z);
+
+ return result;
+}
+
+/* Round a float32 to an integer that fits in int32_t or int64_t. */
+static float32 frint_s(float32 f, float_status *fpst, int intsize)
+{
+ int old_flags = get_float_exception_flags(fpst);
+ uint32_t exp = extract32(f, 23, 8);
+
+ if (unlikely(exp == 0xff)) {
+ /* NaN or Inf. */
+ goto overflow;
+ }
+
+ /* Round and re-extract the exponent. */
+ f = float32_round_to_int(f, fpst);
+ exp = extract32(f, 23, 8);
+
+ /* Validate the range of the result. */
+ if (exp < 126 + intsize) {
+ /* abs(F) <= INT{N}_MAX */
+ return f;
+ }
+ if (exp == 126 + intsize) {
+ uint32_t sign = extract32(f, 31, 1);
+ uint32_t frac = extract32(f, 0, 23);
+ if (sign && frac == 0) {
+ /* F == INT{N}_MIN */
+ return f;
+ }
+ }
+
+ overflow:
+ /*
+ * Raise Invalid and return INT{N}_MIN as a float. Revert any
+ * inexact exception float32_round_to_int may have raised.
+ */
+ set_float_exception_flags(old_flags | float_flag_invalid, fpst);
+ return (0x100u + 126u + intsize) << 23;
+}
+
+float32 HELPER(frint32_s)(float32 f, float_status *fpst)
+{
+ return frint_s(f, fpst, 32);
+}
+
+float32 HELPER(frint64_s)(float32 f, float_status *fpst)
+{
+ return frint_s(f, fpst, 64);
+}
+
+/* Round a float64 to an integer that fits in int32_t or int64_t. */
+static float64 frint_d(float64 f, float_status *fpst, int intsize)
+{
+ int old_flags = get_float_exception_flags(fpst);
+ uint32_t exp = extract64(f, 52, 11);
+
+ if (unlikely(exp == 0x7ff)) {
+ /* NaN or Inf. */
+ goto overflow;
+ }
+
+ /* Round and re-extract the exponent. */
+ f = float64_round_to_int(f, fpst);
+ exp = extract64(f, 52, 11);
+
+ /* Validate the range of the result. */
+ if (exp < 1022 + intsize) {
+ /* abs(F) <= INT{N}_MAX */
+ return f;
+ }
+ if (exp == 1022 + intsize) {
+ uint64_t sign = extract64(f, 63, 1);
+ uint64_t frac = extract64(f, 0, 52);
+ if (sign && frac == 0) {
+ /* F == INT{N}_MIN */
+ return f;
+ }
+ }
+
+ overflow:
+ /*
+ * Raise Invalid and return INT{N}_MIN as a float. Revert any
+ * inexact exception float64_round_to_int may have raised.
+ */
+ set_float_exception_flags(old_flags | float_flag_invalid, fpst);
+ return (uint64_t)(0x800 + 1022 + intsize) << 52;
+}
+
+float64 HELPER(frint32_d)(float64 f, float_status *fpst)
+{
+ return frint_d(f, fpst, 32);
+}
+
+float64 HELPER(frint64_d)(float64 f, float_status *fpst)
+{
+ return frint_d(f, fpst, 64);
+}
+
+void HELPER(check_hcr_el2_trap)(CPUARMState *env, uint32_t rt, uint32_t reg)
+{
+ uint32_t syndrome;
+
+ switch (reg) {
+ case ARM_VFP_MVFR0:
+ case ARM_VFP_MVFR1:
+ case ARM_VFP_MVFR2:
+ if (!(arm_hcr_el2_eff(env) & HCR_TID3)) {
+ return;
+ }
+ break;
+ case ARM_VFP_FPSID:
+ if (!(arm_hcr_el2_eff(env) & HCR_TID0)) {
+ return;
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ syndrome = ((EC_FPIDTRAP << ARM_EL_EC_SHIFT)
+ | ARM_EL_IL
+ | (1 << 24) | (0xe << 20) | (7 << 14)
+ | (reg << 10) | (rt << 5) | 1);
+
+ raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
+}
+
+uint32_t HELPER(vfp_get_fpscr)(CPUARMState *env)
+{
+ return vfp_get_fpscr(env);
+}
+
+void HELPER(vfp_set_fpscr)(CPUARMState *env, uint32_t val)
+{
+ vfp_set_fpscr(env, val);
+}