diff options
Diffstat (limited to 'target/arm/tcg/vec_helper.c')
-rw-r--r-- | target/arm/tcg/vec_helper.c | 852 |
1 files changed, 619 insertions, 233 deletions
diff --git a/target/arm/tcg/vec_helper.c b/target/arm/tcg/vec_helper.c index b05922b..986eaf8 100644 --- a/target/arm/tcg/vec_helper.c +++ b/target/arm/tcg/vec_helper.c @@ -317,10 +317,12 @@ void HELPER(neon_sqdmulh_idx_h)(void *vd, void *vn, void *vm, intptr_t i, j, opr_sz = simd_oprsz(desc); int idx = simd_data(desc); int16_t *d = vd, *n = vn, *m = (int16_t *)vm + H2(idx); + intptr_t elements = opr_sz / 2; + intptr_t eltspersegment = MIN(16 / 2, elements); - for (i = 0; i < opr_sz / 2; i += 16 / 2) { + for (i = 0; i < elements; i += 16 / 2) { int16_t mm = m[i]; - for (j = 0; j < 16 / 2; ++j) { + for (j = 0; j < eltspersegment; ++j) { d[i + j] = do_sqrdmlah_h(n[i + j], mm, 0, false, false, vq); } } @@ -333,16 +335,54 @@ void HELPER(neon_sqrdmulh_idx_h)(void *vd, void *vn, void *vm, intptr_t i, j, opr_sz = simd_oprsz(desc); int idx = simd_data(desc); int16_t *d = vd, *n = vn, *m = (int16_t *)vm + H2(idx); + intptr_t elements = opr_sz / 2; + intptr_t eltspersegment = MIN(16 / 2, elements); - for (i = 0; i < opr_sz / 2; i += 16 / 2) { + for (i = 0; i < elements; i += 16 / 2) { int16_t mm = m[i]; - for (j = 0; j < 16 / 2; ++j) { + for (j = 0; j < eltspersegment; ++j) { d[i + j] = do_sqrdmlah_h(n[i + j], mm, 0, false, true, vq); } } clear_tail(d, opr_sz, simd_maxsz(desc)); } +void HELPER(neon_sqrdmlah_idx_h)(void *vd, void *vn, void *vm, + void *vq, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + int idx = simd_data(desc); + int16_t *d = vd, *n = vn, *m = (int16_t *)vm + H2(idx); + intptr_t elements = opr_sz / 2; + intptr_t eltspersegment = MIN(16 / 2, elements); + + for (i = 0; i < elements; i += 16 / 2) { + int16_t mm = m[i]; + for (j = 0; j < eltspersegment; ++j) { + d[i + j] = do_sqrdmlah_h(n[i + j], mm, d[i + j], false, true, vq); + } + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(neon_sqrdmlsh_idx_h)(void *vd, void *vn, void *vm, + void *vq, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + int idx = simd_data(desc); + int16_t *d = vd, *n = vn, *m = (int16_t *)vm + H2(idx); + intptr_t elements = opr_sz / 2; + intptr_t eltspersegment = MIN(16 / 2, elements); + + for (i = 0; i < elements; i += 16 / 2) { + int16_t mm = m[i]; + for (j = 0; j < eltspersegment; ++j) { + d[i + j] = do_sqrdmlah_h(n[i + j], mm, d[i + j], true, true, vq); + } + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + void HELPER(sve2_sqrdmlah_h)(void *vd, void *vn, void *vm, void *va, uint32_t desc) { @@ -512,10 +552,12 @@ void HELPER(neon_sqdmulh_idx_s)(void *vd, void *vn, void *vm, intptr_t i, j, opr_sz = simd_oprsz(desc); int idx = simd_data(desc); int32_t *d = vd, *n = vn, *m = (int32_t *)vm + H4(idx); + intptr_t elements = opr_sz / 4; + intptr_t eltspersegment = MIN(16 / 4, elements); - for (i = 0; i < opr_sz / 4; i += 16 / 4) { + for (i = 0; i < elements; i += 16 / 4) { int32_t mm = m[i]; - for (j = 0; j < 16 / 4; ++j) { + for (j = 0; j < eltspersegment; ++j) { d[i + j] = do_sqrdmlah_s(n[i + j], mm, 0, false, false, vq); } } @@ -528,16 +570,54 @@ void HELPER(neon_sqrdmulh_idx_s)(void *vd, void *vn, void *vm, intptr_t i, j, opr_sz = simd_oprsz(desc); int idx = simd_data(desc); int32_t *d = vd, *n = vn, *m = (int32_t *)vm + H4(idx); + intptr_t elements = opr_sz / 4; + intptr_t eltspersegment = MIN(16 / 4, elements); - for (i = 0; i < opr_sz / 4; i += 16 / 4) { + for (i = 0; i < elements; i += 16 / 4) { int32_t mm = m[i]; - for (j = 0; j < 16 / 4; ++j) { + for (j = 0; j < eltspersegment; ++j) { d[i + j] = do_sqrdmlah_s(n[i + j], mm, 0, false, true, vq); } } clear_tail(d, opr_sz, simd_maxsz(desc)); } +void HELPER(neon_sqrdmlah_idx_s)(void *vd, void *vn, void *vm, + void *vq, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + int idx = simd_data(desc); + int32_t *d = vd, *n = vn, *m = (int32_t *)vm + H4(idx); + intptr_t elements = opr_sz / 4; + intptr_t eltspersegment = MIN(16 / 4, elements); + + for (i = 0; i < elements; i += 16 / 4) { + int32_t mm = m[i]; + for (j = 0; j < eltspersegment; ++j) { + d[i + j] = do_sqrdmlah_s(n[i + j], mm, d[i + j], false, true, vq); + } + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(neon_sqrdmlsh_idx_s)(void *vd, void *vn, void *vm, + void *vq, uint32_t desc) +{ + intptr_t i, j, opr_sz = simd_oprsz(desc); + int idx = simd_data(desc); + int32_t *d = vd, *n = vn, *m = (int32_t *)vm + H4(idx); + intptr_t elements = opr_sz / 4; + intptr_t eltspersegment = MIN(16 / 4, elements); + + for (i = 0; i < elements; i += 16 / 4) { + int32_t mm = m[i]; + for (j = 0; j < eltspersegment; ++j) { + d[i + j] = do_sqrdmlah_s(n[i + j], mm, d[i + j], true, true, vq); + } + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + void HELPER(sve2_sqrdmlah_s)(void *vd, void *vn, void *vm, void *va, uint32_t desc) { @@ -756,6 +836,13 @@ void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ { \ intptr_t i = 0, opr_sz = simd_oprsz(desc); \ intptr_t opr_sz_n = opr_sz / sizeof(TYPED); \ + /* \ + * Special case: opr_sz == 8 from AA64/AA32 advsimd means the \ + * first iteration might not be a full 16 byte segment. But \ + * for vector lengths beyond that this must be SVE and we know \ + * opr_sz is a multiple of 16, so we need not clamp segend \ + * to opr_sz_n when we advance it at the end of the loop. \ + */ \ intptr_t segend = MIN(16 / sizeof(TYPED), opr_sz_n); \ intptr_t index = simd_data(desc); \ TYPED *d = vd, *a = va; \ @@ -773,7 +860,7 @@ void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \ n[i * 4 + 2] * m2 + \ n[i * 4 + 3] * m3); \ } while (++i < segend); \ - segend = i + 4; \ + segend = i + (16 / sizeof(TYPED)); \ } while (i < opr_sz_n); \ clear_tail(d, opr_sz, simd_maxsz(desc)); \ } @@ -786,26 +873,27 @@ DO_DOT_IDX(gvec_sdot_idx_h, int64_t, int16_t, int16_t, H8) DO_DOT_IDX(gvec_udot_idx_h, uint64_t, uint16_t, uint16_t, H8) void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm, - void *vfpst, uint32_t desc) + float_status *fpst, uint32_t desc) { uintptr_t opr_sz = simd_oprsz(desc); float16 *d = vd; float16 *n = vn; float16 *m = vm; - float_status *fpst = vfpst; - uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1); - uint32_t neg_imag = neg_real ^ 1; + bool rot = extract32(desc, SIMD_DATA_SHIFT, 1); + bool fpcr_ah = extract64(desc, SIMD_DATA_SHIFT + 1, 1); uintptr_t i; - /* Shift boolean to the sign bit so we can xor to negate. */ - neg_real <<= 15; - neg_imag <<= 15; - for (i = 0; i < opr_sz / 2; i += 2) { float16 e0 = n[H2(i)]; - float16 e1 = m[H2(i + 1)] ^ neg_imag; + float16 e1 = m[H2(i + 1)]; float16 e2 = n[H2(i + 1)]; - float16 e3 = m[H2(i)] ^ neg_real; + float16 e3 = m[H2(i)]; + + if (rot) { + e3 = float16_maybe_ah_chs(e3, fpcr_ah); + } else { + e1 = float16_maybe_ah_chs(e1, fpcr_ah); + } d[H2(i)] = float16_add(e0, e1, fpst); d[H2(i + 1)] = float16_add(e2, e3, fpst); @@ -814,26 +902,27 @@ void HELPER(gvec_fcaddh)(void *vd, void *vn, void *vm, } void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm, - void *vfpst, uint32_t desc) + float_status *fpst, uint32_t desc) { uintptr_t opr_sz = simd_oprsz(desc); float32 *d = vd; float32 *n = vn; float32 *m = vm; - float_status *fpst = vfpst; - uint32_t neg_real = extract32(desc, SIMD_DATA_SHIFT, 1); - uint32_t neg_imag = neg_real ^ 1; + bool rot = extract32(desc, SIMD_DATA_SHIFT, 1); + bool fpcr_ah = extract64(desc, SIMD_DATA_SHIFT + 1, 1); uintptr_t i; - /* Shift boolean to the sign bit so we can xor to negate. */ - neg_real <<= 31; - neg_imag <<= 31; - for (i = 0; i < opr_sz / 4; i += 2) { float32 e0 = n[H4(i)]; - float32 e1 = m[H4(i + 1)] ^ neg_imag; + float32 e1 = m[H4(i + 1)]; float32 e2 = n[H4(i + 1)]; - float32 e3 = m[H4(i)] ^ neg_real; + float32 e3 = m[H4(i)]; + + if (rot) { + e3 = float32_maybe_ah_chs(e3, fpcr_ah); + } else { + e1 = float32_maybe_ah_chs(e1, fpcr_ah); + } d[H4(i)] = float32_add(e0, e1, fpst); d[H4(i + 1)] = float32_add(e2, e3, fpst); @@ -842,26 +931,27 @@ void HELPER(gvec_fcadds)(void *vd, void *vn, void *vm, } void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm, - void *vfpst, uint32_t desc) + float_status *fpst, uint32_t desc) { uintptr_t opr_sz = simd_oprsz(desc); float64 *d = vd; float64 *n = vn; float64 *m = vm; - float_status *fpst = vfpst; - uint64_t neg_real = extract64(desc, SIMD_DATA_SHIFT, 1); - uint64_t neg_imag = neg_real ^ 1; + bool rot = extract32(desc, SIMD_DATA_SHIFT, 1); + bool fpcr_ah = extract64(desc, SIMD_DATA_SHIFT + 1, 1); uintptr_t i; - /* Shift boolean to the sign bit so we can xor to negate. */ - neg_real <<= 63; - neg_imag <<= 63; - for (i = 0; i < opr_sz / 8; i += 2) { float64 e0 = n[i]; - float64 e1 = m[i + 1] ^ neg_imag; + float64 e1 = m[i + 1]; float64 e2 = n[i + 1]; - float64 e3 = m[i] ^ neg_real; + float64 e3 = m[i]; + + if (rot) { + e3 = float64_maybe_ah_chs(e3, fpcr_ah); + } else { + e1 = float64_maybe_ah_chs(e1, fpcr_ah); + } d[i] = float64_add(e0, e1, fpst); d[i + 1] = float64_add(e2, e3, fpst); @@ -870,152 +960,167 @@ void HELPER(gvec_fcaddd)(void *vd, void *vn, void *vm, } void HELPER(gvec_fcmlah)(void *vd, void *vn, void *vm, void *va, - void *vfpst, uint32_t desc) + float_status *fpst, uint32_t desc) { uintptr_t opr_sz = simd_oprsz(desc); float16 *d = vd, *n = vn, *m = vm, *a = va; - float_status *fpst = vfpst; intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); - uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); - uint32_t neg_real = flip ^ neg_imag; + uint32_t fpcr_ah = extract32(desc, SIMD_DATA_SHIFT + 2, 1); + uint32_t negf_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); + uint32_t negf_real = flip ^ negf_imag; + float16 negx_imag, negx_real; uintptr_t i; - /* Shift boolean to the sign bit so we can xor to negate. */ - neg_real <<= 15; - neg_imag <<= 15; + /* With AH=0, use negx; with AH=1 use negf. */ + negx_real = (negf_real & ~fpcr_ah) << 15; + negx_imag = (negf_imag & ~fpcr_ah) << 15; + negf_real = (negf_real & fpcr_ah ? float_muladd_negate_product : 0); + negf_imag = (negf_imag & fpcr_ah ? float_muladd_negate_product : 0); for (i = 0; i < opr_sz / 2; i += 2) { float16 e2 = n[H2(i + flip)]; - float16 e1 = m[H2(i + flip)] ^ neg_real; + float16 e1 = m[H2(i + flip)] ^ negx_real; float16 e4 = e2; - float16 e3 = m[H2(i + 1 - flip)] ^ neg_imag; + float16 e3 = m[H2(i + 1 - flip)] ^ negx_imag; - d[H2(i)] = float16_muladd(e2, e1, a[H2(i)], 0, fpst); - d[H2(i + 1)] = float16_muladd(e4, e3, a[H2(i + 1)], 0, fpst); + d[H2(i)] = float16_muladd(e2, e1, a[H2(i)], negf_real, fpst); + d[H2(i + 1)] = float16_muladd(e4, e3, a[H2(i + 1)], negf_imag, fpst); } clear_tail(d, opr_sz, simd_maxsz(desc)); } void HELPER(gvec_fcmlah_idx)(void *vd, void *vn, void *vm, void *va, - void *vfpst, uint32_t desc) + float_status *fpst, uint32_t desc) { uintptr_t opr_sz = simd_oprsz(desc); float16 *d = vd, *n = vn, *m = vm, *a = va; - float_status *fpst = vfpst; intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); - uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); + uint32_t negf_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2); - uint32_t neg_real = flip ^ neg_imag; + uint32_t fpcr_ah = extract32(desc, SIMD_DATA_SHIFT + 4, 1); + uint32_t negf_real = flip ^ negf_imag; intptr_t elements = opr_sz / sizeof(float16); - intptr_t eltspersegment = 16 / sizeof(float16); + intptr_t eltspersegment = MIN(16 / sizeof(float16), elements); + float16 negx_imag, negx_real; intptr_t i, j; - /* Shift boolean to the sign bit so we can xor to negate. */ - neg_real <<= 15; - neg_imag <<= 15; + /* With AH=0, use negx; with AH=1 use negf. */ + negx_real = (negf_real & ~fpcr_ah) << 15; + negx_imag = (negf_imag & ~fpcr_ah) << 15; + negf_real = (negf_real & fpcr_ah ? float_muladd_negate_product : 0); + negf_imag = (negf_imag & fpcr_ah ? float_muladd_negate_product : 0); for (i = 0; i < elements; i += eltspersegment) { float16 mr = m[H2(i + 2 * index + 0)]; float16 mi = m[H2(i + 2 * index + 1)]; - float16 e1 = neg_real ^ (flip ? mi : mr); - float16 e3 = neg_imag ^ (flip ? mr : mi); + float16 e1 = negx_real ^ (flip ? mi : mr); + float16 e3 = negx_imag ^ (flip ? mr : mi); for (j = i; j < i + eltspersegment; j += 2) { float16 e2 = n[H2(j + flip)]; float16 e4 = e2; - d[H2(j)] = float16_muladd(e2, e1, a[H2(j)], 0, fpst); - d[H2(j + 1)] = float16_muladd(e4, e3, a[H2(j + 1)], 0, fpst); + d[H2(j)] = float16_muladd(e2, e1, a[H2(j)], negf_real, fpst); + d[H2(j + 1)] = float16_muladd(e4, e3, a[H2(j + 1)], negf_imag, fpst); } } clear_tail(d, opr_sz, simd_maxsz(desc)); } void HELPER(gvec_fcmlas)(void *vd, void *vn, void *vm, void *va, - void *vfpst, uint32_t desc) + float_status *fpst, uint32_t desc) { uintptr_t opr_sz = simd_oprsz(desc); float32 *d = vd, *n = vn, *m = vm, *a = va; - float_status *fpst = vfpst; intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); - uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); - uint32_t neg_real = flip ^ neg_imag; + uint32_t fpcr_ah = extract32(desc, SIMD_DATA_SHIFT + 2, 1); + uint32_t negf_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); + uint32_t negf_real = flip ^ negf_imag; + float32 negx_imag, negx_real; uintptr_t i; - /* Shift boolean to the sign bit so we can xor to negate. */ - neg_real <<= 31; - neg_imag <<= 31; + /* With AH=0, use negx; with AH=1 use negf. */ + negx_real = (negf_real & ~fpcr_ah) << 31; + negx_imag = (negf_imag & ~fpcr_ah) << 31; + negf_real = (negf_real & fpcr_ah ? float_muladd_negate_product : 0); + negf_imag = (negf_imag & fpcr_ah ? float_muladd_negate_product : 0); for (i = 0; i < opr_sz / 4; i += 2) { float32 e2 = n[H4(i + flip)]; - float32 e1 = m[H4(i + flip)] ^ neg_real; + float32 e1 = m[H4(i + flip)] ^ negx_real; float32 e4 = e2; - float32 e3 = m[H4(i + 1 - flip)] ^ neg_imag; + float32 e3 = m[H4(i + 1 - flip)] ^ negx_imag; - d[H4(i)] = float32_muladd(e2, e1, a[H4(i)], 0, fpst); - d[H4(i + 1)] = float32_muladd(e4, e3, a[H4(i + 1)], 0, fpst); + d[H4(i)] = float32_muladd(e2, e1, a[H4(i)], negf_real, fpst); + d[H4(i + 1)] = float32_muladd(e4, e3, a[H4(i + 1)], negf_imag, fpst); } clear_tail(d, opr_sz, simd_maxsz(desc)); } void HELPER(gvec_fcmlas_idx)(void *vd, void *vn, void *vm, void *va, - void *vfpst, uint32_t desc) + float_status *fpst, uint32_t desc) { uintptr_t opr_sz = simd_oprsz(desc); float32 *d = vd, *n = vn, *m = vm, *a = va; - float_status *fpst = vfpst; intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); - uint32_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); + uint32_t negf_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); intptr_t index = extract32(desc, SIMD_DATA_SHIFT + 2, 2); - uint32_t neg_real = flip ^ neg_imag; + uint32_t fpcr_ah = extract32(desc, SIMD_DATA_SHIFT + 4, 1); + uint32_t negf_real = flip ^ negf_imag; intptr_t elements = opr_sz / sizeof(float32); - intptr_t eltspersegment = 16 / sizeof(float32); + intptr_t eltspersegment = MIN(16 / sizeof(float32), elements); + float32 negx_imag, negx_real; intptr_t i, j; - /* Shift boolean to the sign bit so we can xor to negate. */ - neg_real <<= 31; - neg_imag <<= 31; + /* With AH=0, use negx; with AH=1 use negf. */ + negx_real = (negf_real & ~fpcr_ah) << 31; + negx_imag = (negf_imag & ~fpcr_ah) << 31; + negf_real = (negf_real & fpcr_ah ? float_muladd_negate_product : 0); + negf_imag = (negf_imag & fpcr_ah ? float_muladd_negate_product : 0); for (i = 0; i < elements; i += eltspersegment) { float32 mr = m[H4(i + 2 * index + 0)]; float32 mi = m[H4(i + 2 * index + 1)]; - float32 e1 = neg_real ^ (flip ? mi : mr); - float32 e3 = neg_imag ^ (flip ? mr : mi); + float32 e1 = negx_real ^ (flip ? mi : mr); + float32 e3 = negx_imag ^ (flip ? mr : mi); for (j = i; j < i + eltspersegment; j += 2) { float32 e2 = n[H4(j + flip)]; float32 e4 = e2; - d[H4(j)] = float32_muladd(e2, e1, a[H4(j)], 0, fpst); - d[H4(j + 1)] = float32_muladd(e4, e3, a[H4(j + 1)], 0, fpst); + d[H4(j)] = float32_muladd(e2, e1, a[H4(j)], negf_real, fpst); + d[H4(j + 1)] = float32_muladd(e4, e3, a[H4(j + 1)], negf_imag, fpst); } } clear_tail(d, opr_sz, simd_maxsz(desc)); } void HELPER(gvec_fcmlad)(void *vd, void *vn, void *vm, void *va, - void *vfpst, uint32_t desc) + float_status *fpst, uint32_t desc) { uintptr_t opr_sz = simd_oprsz(desc); float64 *d = vd, *n = vn, *m = vm, *a = va; - float_status *fpst = vfpst; intptr_t flip = extract32(desc, SIMD_DATA_SHIFT, 1); - uint64_t neg_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); - uint64_t neg_real = flip ^ neg_imag; + uint32_t fpcr_ah = extract32(desc, SIMD_DATA_SHIFT + 2, 1); + uint32_t negf_imag = extract32(desc, SIMD_DATA_SHIFT + 1, 1); + uint32_t negf_real = flip ^ negf_imag; + float64 negx_real, negx_imag; uintptr_t i; - /* Shift boolean to the sign bit so we can xor to negate. */ - neg_real <<= 63; - neg_imag <<= 63; + /* With AH=0, use negx; with AH=1 use negf. */ + negx_real = (uint64_t)(negf_real & ~fpcr_ah) << 63; + negx_imag = (uint64_t)(negf_imag & ~fpcr_ah) << 63; + negf_real = (negf_real & fpcr_ah ? float_muladd_negate_product : 0); + negf_imag = (negf_imag & fpcr_ah ? float_muladd_negate_product : 0); for (i = 0; i < opr_sz / 8; i += 2) { float64 e2 = n[i + flip]; - float64 e1 = m[i + flip] ^ neg_real; + float64 e1 = m[i + flip] ^ negx_real; float64 e4 = e2; - float64 e3 = m[i + 1 - flip] ^ neg_imag; + float64 e3 = m[i + 1 - flip] ^ negx_imag; - d[i] = float64_muladd(e2, e1, a[i], 0, fpst); - d[i + 1] = float64_muladd(e4, e3, a[i + 1], 0, fpst); + d[i] = float64_muladd(e2, e1, a[i], negf_real, fpst); + d[i + 1] = float64_muladd(e4, e3, a[i + 1], negf_imag, fpst); } clear_tail(d, opr_sz, simd_maxsz(desc)); } @@ -1100,9 +1205,8 @@ static uint64_t float64_acgt(float64 op1, float64 op2, float_status *stat) return -float64_lt(float64_abs(op2), float64_abs(op1), stat); } -static int16_t vfp_tosszh(float16 x, void *fpstp) +static int16_t vfp_tosszh(float16 x, float_status *fpst) { - float_status *fpst = fpstp; if (float16_is_any_nan(x)) { float_raise(float_flag_invalid, fpst); return 0; @@ -1110,9 +1214,8 @@ static int16_t vfp_tosszh(float16 x, void *fpstp) return float16_to_int16_round_to_zero(x, fpst); } -static uint16_t vfp_touszh(float16 x, void *fpstp) +static uint16_t vfp_touszh(float16 x, float_status *fpst) { - float_status *fpst = fpstp; if (float16_is_any_nan(x)) { float_raise(float_flag_invalid, fpst); return 0; @@ -1121,7 +1224,7 @@ static uint16_t vfp_touszh(float16 x, void *fpstp) } #define DO_2OP(NAME, FUNC, TYPE) \ -void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \ +void HELPER(NAME)(void *vd, void *vn, float_status *stat, uint32_t desc) \ { \ intptr_t i, oprsz = simd_oprsz(desc); \ TYPE *d = vd, *n = vn; \ @@ -1133,10 +1236,12 @@ void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \ DO_2OP(gvec_frecpe_h, helper_recpe_f16, float16) DO_2OP(gvec_frecpe_s, helper_recpe_f32, float32) +DO_2OP(gvec_frecpe_rpres_s, helper_recpe_rpres_f32, float32) DO_2OP(gvec_frecpe_d, helper_recpe_f64, float64) DO_2OP(gvec_frsqrte_h, helper_rsqrte_f16, float16) DO_2OP(gvec_frsqrte_s, helper_rsqrte_f32, float32) +DO_2OP(gvec_frsqrte_rpres_s, helper_rsqrte_rpres_f32, float32) DO_2OP(gvec_frsqrte_d, helper_rsqrte_f64, float64) DO_2OP(gvec_vrintx_h, float16_round_to_int, float16) @@ -1166,8 +1271,10 @@ DO_2OP(gvec_touszh, vfp_touszh, float16) #define DO_2OP_CMP0(FN, CMPOP, DIRN) \ WRAP_CMP0_##DIRN(FN, CMPOP, float16) \ WRAP_CMP0_##DIRN(FN, CMPOP, float32) \ + WRAP_CMP0_##DIRN(FN, CMPOP, float64) \ DO_2OP(gvec_f##FN##0_h, float16_##FN##0, float16) \ - DO_2OP(gvec_f##FN##0_s, float32_##FN##0, float32) + DO_2OP(gvec_f##FN##0_s, float32_##FN##0, float32) \ + DO_2OP(gvec_f##FN##0_d, float64_##FN##0, float64) DO_2OP_CMP0(cgt, cgt, FWD) DO_2OP_CMP0(cge, cge, FWD) @@ -1223,6 +1330,25 @@ static float64 float64_abd(float64 op1, float64 op2, float_status *stat) return float64_abs(float64_sub(op1, op2, stat)); } +/* ABD when FPCR.AH = 1: avoid flipping sign bit of a NaN result */ +static float16 float16_ah_abd(float16 op1, float16 op2, float_status *stat) +{ + float16 r = float16_sub(op1, op2, stat); + return float16_is_any_nan(r) ? r : float16_abs(r); +} + +static float32 float32_ah_abd(float32 op1, float32 op2, float_status *stat) +{ + float32 r = float32_sub(op1, op2, stat); + return float32_is_any_nan(r) ? r : float32_abs(r); +} + +static float64 float64_ah_abd(float64 op1, float64 op2, float_status *stat) +{ + float64 r = float64_sub(op1, op2, stat); + return float64_is_any_nan(r) ? r : float64_abs(r); +} + /* * Reciprocal step. These are the AArch32 version which uses a * non-fused multiply-and-subtract. @@ -1279,7 +1405,8 @@ static float32 float32_rsqrts_nf(float32 op1, float32 op2, float_status *stat) } #define DO_3OP(NAME, FUNC, TYPE) \ -void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, \ + float_status *stat, uint32_t desc) \ { \ intptr_t i, oprsz = simd_oprsz(desc); \ TYPE *d = vd, *n = vn, *m = vm; \ @@ -1309,6 +1436,10 @@ DO_3OP(gvec_fabd_h, float16_abd, float16) DO_3OP(gvec_fabd_s, float32_abd, float32) DO_3OP(gvec_fabd_d, float64_abd, float64) +DO_3OP(gvec_ah_fabd_h, float16_ah_abd, float16) +DO_3OP(gvec_ah_fabd_s, float32_ah_abd, float32) +DO_3OP(gvec_ah_fabd_d, float64_ah_abd, float64) + DO_3OP(gvec_fceq_h, float16_ceq, float16) DO_3OP(gvec_fceq_s, float32_ceq, float32) DO_3OP(gvec_fceq_d, float64_ceq, float64) @@ -1368,6 +1499,22 @@ DO_3OP(gvec_rsqrts_h, helper_rsqrtsf_f16, float16) DO_3OP(gvec_rsqrts_s, helper_rsqrtsf_f32, float32) DO_3OP(gvec_rsqrts_d, helper_rsqrtsf_f64, float64) +DO_3OP(gvec_ah_recps_h, helper_recpsf_ah_f16, float16) +DO_3OP(gvec_ah_recps_s, helper_recpsf_ah_f32, float32) +DO_3OP(gvec_ah_recps_d, helper_recpsf_ah_f64, float64) + +DO_3OP(gvec_ah_rsqrts_h, helper_rsqrtsf_ah_f16, float16) +DO_3OP(gvec_ah_rsqrts_s, helper_rsqrtsf_ah_f32, float32) +DO_3OP(gvec_ah_rsqrts_d, helper_rsqrtsf_ah_f64, float64) + +DO_3OP(gvec_ah_fmax_h, helper_vfp_ah_maxh, float16) +DO_3OP(gvec_ah_fmax_s, helper_vfp_ah_maxs, float32) +DO_3OP(gvec_ah_fmax_d, helper_vfp_ah_maxd, float64) + +DO_3OP(gvec_ah_fmin_h, helper_vfp_ah_minh, float16) +DO_3OP(gvec_ah_fmin_s, helper_vfp_ah_mins, float32) +DO_3OP(gvec_ah_fmin_d, helper_vfp_ah_mind, float64) + #endif #undef DO_3OP @@ -1433,8 +1580,27 @@ static float64 float64_mulsub_f(float64 dest, float64 op1, float64 op2, return float64_muladd(float64_chs(op1), op2, dest, 0, stat); } -#define DO_MULADD(NAME, FUNC, TYPE) \ -void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \ +static float16 float16_ah_mulsub_f(float16 dest, float16 op1, float16 op2, + float_status *stat) +{ + return float16_muladd(op1, op2, dest, float_muladd_negate_product, stat); +} + +static float32 float32_ah_mulsub_f(float32 dest, float32 op1, float32 op2, + float_status *stat) +{ + return float32_muladd(op1, op2, dest, float_muladd_negate_product, stat); +} + +static float64 float64_ah_mulsub_f(float64 dest, float64 op1, float64 op2, + float_status *stat) +{ + return float64_muladd(op1, op2, dest, float_muladd_negate_product, stat); +} + +#define DO_MULADD(NAME, FUNC, TYPE) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, \ + float_status *stat, uint32_t desc) \ { \ intptr_t i, oprsz = simd_oprsz(desc); \ TYPE *d = vd, *n = vn, *m = vm; \ @@ -1458,6 +1624,10 @@ DO_MULADD(gvec_vfms_h, float16_mulsub_f, float16) DO_MULADD(gvec_vfms_s, float32_mulsub_f, float32) DO_MULADD(gvec_vfms_d, float64_mulsub_f, float64) +DO_MULADD(gvec_ah_vfms_h, float16_ah_mulsub_f, float16) +DO_MULADD(gvec_ah_vfms_s, float32_ah_mulsub_f, float32) +DO_MULADD(gvec_ah_vfms_d, float64_ah_mulsub_f, float64) + /* For the indexed ops, SVE applies the index per 128-bit vector segment. * For AdvSIMD, there is of course only one such vector segment. */ @@ -1511,7 +1681,8 @@ DO_MLA_IDX(gvec_mls_idx_d, uint64_t, -, H8) #undef DO_MLA_IDX #define DO_FMUL_IDX(NAME, ADD, MUL, TYPE, H) \ -void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, \ + float_status *stat, uint32_t desc) \ { \ intptr_t i, j, oprsz = simd_oprsz(desc); \ intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \ @@ -1553,29 +1724,35 @@ DO_FMUL_IDX(gvec_fmls_nf_idx_s, float32_sub, float32_mul, float32, H4) #undef DO_FMUL_IDX -#define DO_FMLA_IDX(NAME, TYPE, H) \ +#define DO_FMLA_IDX(NAME, TYPE, H, NEGX, NEGF) \ void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, \ - void *stat, uint32_t desc) \ + float_status *stat, uint32_t desc) \ { \ intptr_t i, j, oprsz = simd_oprsz(desc); \ intptr_t segment = MIN(16, oprsz) / sizeof(TYPE); \ - TYPE op1_neg = extract32(desc, SIMD_DATA_SHIFT, 1); \ - intptr_t idx = desc >> (SIMD_DATA_SHIFT + 1); \ + intptr_t idx = simd_data(desc); \ TYPE *d = vd, *n = vn, *m = vm, *a = va; \ - op1_neg <<= (8 * sizeof(TYPE) - 1); \ for (i = 0; i < oprsz / sizeof(TYPE); i += segment) { \ TYPE mm = m[H(i + idx)]; \ for (j = 0; j < segment; j++) { \ - d[i + j] = TYPE##_muladd(n[i + j] ^ op1_neg, \ - mm, a[i + j], 0, stat); \ + d[i + j] = TYPE##_muladd(n[i + j] ^ NEGX, mm, \ + a[i + j], NEGF, stat); \ } \ } \ clear_tail(d, oprsz, simd_maxsz(desc)); \ } -DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2) -DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4) -DO_FMLA_IDX(gvec_fmla_idx_d, float64, H8) +DO_FMLA_IDX(gvec_fmla_idx_h, float16, H2, 0, 0) +DO_FMLA_IDX(gvec_fmla_idx_s, float32, H4, 0, 0) +DO_FMLA_IDX(gvec_fmla_idx_d, float64, H8, 0, 0) + +DO_FMLA_IDX(gvec_fmls_idx_h, float16, H2, INT16_MIN, 0) +DO_FMLA_IDX(gvec_fmls_idx_s, float32, H4, INT32_MIN, 0) +DO_FMLA_IDX(gvec_fmls_idx_d, float64, H8, INT64_MIN, 0) + +DO_FMLA_IDX(gvec_ah_fmls_idx_h, float16, H2, 0, float_muladd_negate_product) +DO_FMLA_IDX(gvec_ah_fmls_idx_s, float32, H4, 0, float_muladd_negate_product) +DO_FMLA_IDX(gvec_ah_fmls_idx_d, float64, H8, 0, float_muladd_negate_product) #undef DO_FMLA_IDX @@ -1948,135 +2125,171 @@ static uint64_t load4_f16(uint64_t *ptr, int is_q, int is_2) * as there is not yet SVE versions that might use blocking. */ -static void do_fmlal(float32 *d, void *vn, void *vm, float_status *fpst, - uint32_t desc, bool fz16) +static void do_fmlal(float32 *d, void *vn, void *vm, + CPUARMState *env, uint32_t desc, + ARMFPStatusFlavour fpst_idx, + uint64_t negx, int negf) { + float_status *fpst = &env->vfp.fp_status[fpst_idx]; + bool fz16 = env->vfp.fpcr & FPCR_FZ16; intptr_t i, oprsz = simd_oprsz(desc); - int is_s = extract32(desc, SIMD_DATA_SHIFT, 1); int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1); int is_q = oprsz == 16; uint64_t n_4, m_4; - /* Pre-load all of the f16 data, avoiding overlap issues. */ - n_4 = load4_f16(vn, is_q, is_2); + /* + * Pre-load all of the f16 data, avoiding overlap issues. + * Negate all inputs for AH=0 FMLSL at once. + */ + n_4 = load4_f16(vn, is_q, is_2) ^ negx; m_4 = load4_f16(vm, is_q, is_2); - /* Negate all inputs for FMLSL at once. */ - if (is_s) { - n_4 ^= 0x8000800080008000ull; - } - for (i = 0; i < oprsz / 4; i++) { float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16); float32 m_1 = float16_to_float32_by_bits(m_4 >> (i * 16), fz16); - d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst); + d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], negf, fpst); } clear_tail(d, oprsz, simd_maxsz(desc)); } void HELPER(gvec_fmlal_a32)(void *vd, void *vn, void *vm, - void *venv, uint32_t desc) + CPUARMState *env, uint32_t desc) { - CPUARMState *env = venv; - do_fmlal(vd, vn, vm, &env->vfp.standard_fp_status, desc, - get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); + bool is_s = extract32(desc, SIMD_DATA_SHIFT, 1); + uint64_t negx = is_s ? 0x8000800080008000ull : 0; + + do_fmlal(vd, vn, vm, env, desc, FPST_STD, negx, 0); } void HELPER(gvec_fmlal_a64)(void *vd, void *vn, void *vm, - void *venv, uint32_t desc) + CPUARMState *env, uint32_t desc) { - CPUARMState *env = venv; - do_fmlal(vd, vn, vm, &env->vfp.fp_status, desc, - get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); + bool is_s = extract32(desc, SIMD_DATA_SHIFT, 1); + uint64_t negx = 0; + int negf = 0; + + if (is_s) { + if (env->vfp.fpcr & FPCR_AH) { + negf = float_muladd_negate_product; + } else { + negx = 0x8000800080008000ull; + } + } + do_fmlal(vd, vn, vm, env, desc, FPST_A64, negx, negf); } void HELPER(sve2_fmlal_zzzw_s)(void *vd, void *vn, void *vm, void *va, - void *venv, uint32_t desc) + CPUARMState *env, uint32_t desc) { intptr_t i, oprsz = simd_oprsz(desc); - uint16_t negn = extract32(desc, SIMD_DATA_SHIFT, 1) << 15; + bool is_s = extract32(desc, SIMD_DATA_SHIFT, 1); intptr_t sel = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(float16); - CPUARMState *env = venv; - float_status *status = &env->vfp.fp_status; - bool fz16 = get_flush_inputs_to_zero(&env->vfp.fp_status_f16); + float_status *status = &env->vfp.fp_status[FPST_A64]; + bool fz16 = env->vfp.fpcr & FPCR_FZ16; + int negx = 0, negf = 0; + + if (is_s) { + if (env->vfp.fpcr & FPCR_AH) { + negf = float_muladd_negate_product; + } else { + negx = 0x8000; + } + } for (i = 0; i < oprsz; i += sizeof(float32)) { - float16 nn_16 = *(float16 *)(vn + H1_2(i + sel)) ^ negn; + float16 nn_16 = *(float16 *)(vn + H1_2(i + sel)) ^ negx; float16 mm_16 = *(float16 *)(vm + H1_2(i + sel)); float32 nn = float16_to_float32_by_bits(nn_16, fz16); float32 mm = float16_to_float32_by_bits(mm_16, fz16); float32 aa = *(float32 *)(va + H1_4(i)); - *(float32 *)(vd + H1_4(i)) = float32_muladd(nn, mm, aa, 0, status); + *(float32 *)(vd + H1_4(i)) = float32_muladd(nn, mm, aa, negf, status); } } -static void do_fmlal_idx(float32 *d, void *vn, void *vm, float_status *fpst, - uint32_t desc, bool fz16) +static void do_fmlal_idx(float32 *d, void *vn, void *vm, + CPUARMState *env, uint32_t desc, + ARMFPStatusFlavour fpst_idx, + uint64_t negx, int negf) { + float_status *fpst = &env->vfp.fp_status[fpst_idx]; + bool fz16 = env->vfp.fpcr & FPCR_FZ16; intptr_t i, oprsz = simd_oprsz(desc); - int is_s = extract32(desc, SIMD_DATA_SHIFT, 1); int is_2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1); int index = extract32(desc, SIMD_DATA_SHIFT + 2, 3); int is_q = oprsz == 16; uint64_t n_4; float32 m_1; - /* Pre-load all of the f16 data, avoiding overlap issues. */ - n_4 = load4_f16(vn, is_q, is_2); - - /* Negate all inputs for FMLSL at once. */ - if (is_s) { - n_4 ^= 0x8000800080008000ull; - } - + /* + * Pre-load all of the f16 data, avoiding overlap issues. + * Negate all inputs for AH=0 FMLSL at once. + */ + n_4 = load4_f16(vn, is_q, is_2) ^ negx; m_1 = float16_to_float32_by_bits(((float16 *)vm)[H2(index)], fz16); for (i = 0; i < oprsz / 4; i++) { float32 n_1 = float16_to_float32_by_bits(n_4 >> (i * 16), fz16); - d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], 0, fpst); + d[H4(i)] = float32_muladd(n_1, m_1, d[H4(i)], negf, fpst); } clear_tail(d, oprsz, simd_maxsz(desc)); } void HELPER(gvec_fmlal_idx_a32)(void *vd, void *vn, void *vm, - void *venv, uint32_t desc) + CPUARMState *env, uint32_t desc) { - CPUARMState *env = venv; - do_fmlal_idx(vd, vn, vm, &env->vfp.standard_fp_status, desc, - get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); + bool is_s = extract32(desc, SIMD_DATA_SHIFT, 1); + uint64_t negx = is_s ? 0x8000800080008000ull : 0; + + do_fmlal_idx(vd, vn, vm, env, desc, FPST_STD, negx, 0); } void HELPER(gvec_fmlal_idx_a64)(void *vd, void *vn, void *vm, - void *venv, uint32_t desc) + CPUARMState *env, uint32_t desc) { - CPUARMState *env = venv; - do_fmlal_idx(vd, vn, vm, &env->vfp.fp_status, desc, - get_flush_inputs_to_zero(&env->vfp.fp_status_f16)); + bool is_s = extract32(desc, SIMD_DATA_SHIFT, 1); + uint64_t negx = 0; + int negf = 0; + + if (is_s) { + if (env->vfp.fpcr & FPCR_AH) { + negf = float_muladd_negate_product; + } else { + negx = 0x8000800080008000ull; + } + } + do_fmlal_idx(vd, vn, vm, env, desc, FPST_A64, negx, negf); } void HELPER(sve2_fmlal_zzxw_s)(void *vd, void *vn, void *vm, void *va, - void *venv, uint32_t desc) + CPUARMState *env, uint32_t desc) { intptr_t i, j, oprsz = simd_oprsz(desc); - uint16_t negn = extract32(desc, SIMD_DATA_SHIFT, 1) << 15; + bool is_s = extract32(desc, SIMD_DATA_SHIFT, 1); intptr_t sel = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(float16); intptr_t idx = extract32(desc, SIMD_DATA_SHIFT + 2, 3) * sizeof(float16); - CPUARMState *env = venv; - float_status *status = &env->vfp.fp_status; - bool fz16 = get_flush_inputs_to_zero(&env->vfp.fp_status_f16); + float_status *status = &env->vfp.fp_status[FPST_A64]; + bool fz16 = env->vfp.fpcr & FPCR_FZ16; + int negx = 0, negf = 0; + if (is_s) { + if (env->vfp.fpcr & FPCR_AH) { + negf = float_muladd_negate_product; + } else { + negx = 0x8000; + } + } for (i = 0; i < oprsz; i += 16) { float16 mm_16 = *(float16 *)(vm + i + idx); float32 mm = float16_to_float32_by_bits(mm_16, fz16); for (j = 0; j < 16; j += sizeof(float32)) { - float16 nn_16 = *(float16 *)(vn + H1_2(i + j + sel)) ^ negn; + float16 nn_16 = *(float16 *)(vn + H1_2(i + j + sel)) ^ negx; float32 nn = float16_to_float32_by_bits(nn_16, fz16); float32 aa = *(float32 *)(va + H1_4(i + j)); *(float32 *)(vd + H1_4(i + j)) = - float32_muladd(nn, mm, aa, 0, status); + float32_muladd(nn, mm, aa, negf, status); } } } @@ -2321,7 +2534,8 @@ DO_ABA(gvec_uaba_d, uint64_t) #undef DO_ABA #define DO_3OP_PAIR(NAME, FUNC, TYPE, H) \ -void HELPER(NAME)(void *vd, void *vn, void *vm, void *stat, uint32_t desc) \ +void HELPER(NAME)(void *vd, void *vn, void *vm, \ + float_status *stat, uint32_t desc) \ { \ ARMVectorReg scratch; \ intptr_t oprsz = simd_oprsz(desc); \ @@ -2359,6 +2573,16 @@ DO_3OP_PAIR(gvec_fminnump_h, float16_minnum, float16, H2) DO_3OP_PAIR(gvec_fminnump_s, float32_minnum, float32, H4) DO_3OP_PAIR(gvec_fminnump_d, float64_minnum, float64, ) +#ifdef TARGET_AARCH64 +DO_3OP_PAIR(gvec_ah_fmaxp_h, helper_vfp_ah_maxh, float16, H2) +DO_3OP_PAIR(gvec_ah_fmaxp_s, helper_vfp_ah_maxs, float32, H4) +DO_3OP_PAIR(gvec_ah_fmaxp_d, helper_vfp_ah_maxd, float64, ) + +DO_3OP_PAIR(gvec_ah_fminp_h, helper_vfp_ah_minh, float16, H2) +DO_3OP_PAIR(gvec_ah_fminp_s, helper_vfp_ah_mins, float32, H4) +DO_3OP_PAIR(gvec_ah_fminp_d, helper_vfp_ah_mind, float64, ) +#endif + #undef DO_3OP_PAIR #define DO_3OP_PAIR(NAME, FUNC, TYPE, H) \ @@ -2406,7 +2630,7 @@ DO_3OP_PAIR(gvec_uminp_s, MIN, uint32_t, H4) #undef DO_3OP_PAIR #define DO_VCVT_FIXED(NAME, FUNC, TYPE) \ - void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \ + void HELPER(NAME)(void *vd, void *vn, float_status *stat, uint32_t desc) \ { \ intptr_t i, oprsz = simd_oprsz(desc); \ int shift = simd_data(desc); \ @@ -2418,21 +2642,25 @@ DO_3OP_PAIR(gvec_uminp_s, MIN, uint32_t, H4) clear_tail(d, oprsz, simd_maxsz(desc)); \ } +DO_VCVT_FIXED(gvec_vcvt_sd, helper_vfp_sqtod, uint64_t) +DO_VCVT_FIXED(gvec_vcvt_ud, helper_vfp_uqtod, uint64_t) DO_VCVT_FIXED(gvec_vcvt_sf, helper_vfp_sltos, uint32_t) DO_VCVT_FIXED(gvec_vcvt_uf, helper_vfp_ultos, uint32_t) -DO_VCVT_FIXED(gvec_vcvt_fs, helper_vfp_tosls_round_to_zero, uint32_t) -DO_VCVT_FIXED(gvec_vcvt_fu, helper_vfp_touls_round_to_zero, uint32_t) DO_VCVT_FIXED(gvec_vcvt_sh, helper_vfp_shtoh, uint16_t) DO_VCVT_FIXED(gvec_vcvt_uh, helper_vfp_uhtoh, uint16_t) -DO_VCVT_FIXED(gvec_vcvt_hs, helper_vfp_toshh_round_to_zero, uint16_t) -DO_VCVT_FIXED(gvec_vcvt_hu, helper_vfp_touhh_round_to_zero, uint16_t) + +DO_VCVT_FIXED(gvec_vcvt_rz_ds, helper_vfp_tosqd_round_to_zero, uint64_t) +DO_VCVT_FIXED(gvec_vcvt_rz_du, helper_vfp_touqd_round_to_zero, uint64_t) +DO_VCVT_FIXED(gvec_vcvt_rz_fs, helper_vfp_tosls_round_to_zero, uint32_t) +DO_VCVT_FIXED(gvec_vcvt_rz_fu, helper_vfp_touls_round_to_zero, uint32_t) +DO_VCVT_FIXED(gvec_vcvt_rz_hs, helper_vfp_toshh_round_to_zero, uint16_t) +DO_VCVT_FIXED(gvec_vcvt_rz_hu, helper_vfp_touhh_round_to_zero, uint16_t) #undef DO_VCVT_FIXED #define DO_VCVT_RMODE(NAME, FUNC, TYPE) \ - void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \ + void HELPER(NAME)(void *vd, void *vn, float_status *fpst, uint32_t desc) \ { \ - float_status *fpst = stat; \ intptr_t i, oprsz = simd_oprsz(desc); \ uint32_t rmode = simd_data(desc); \ uint32_t prev_rmode = get_float_rounding_mode(fpst); \ @@ -2445,6 +2673,8 @@ DO_VCVT_FIXED(gvec_vcvt_hu, helper_vfp_touhh_round_to_zero, uint16_t) clear_tail(d, oprsz, simd_maxsz(desc)); \ } +DO_VCVT_RMODE(gvec_vcvt_rm_sd, helper_vfp_tosqd, uint64_t) +DO_VCVT_RMODE(gvec_vcvt_rm_ud, helper_vfp_touqd, uint64_t) DO_VCVT_RMODE(gvec_vcvt_rm_ss, helper_vfp_tosls, uint32_t) DO_VCVT_RMODE(gvec_vcvt_rm_us, helper_vfp_touls, uint32_t) DO_VCVT_RMODE(gvec_vcvt_rm_sh, helper_vfp_toshh, uint16_t) @@ -2453,9 +2683,8 @@ DO_VCVT_RMODE(gvec_vcvt_rm_uh, helper_vfp_touhh, uint16_t) #undef DO_VCVT_RMODE #define DO_VRINT_RMODE(NAME, FUNC, TYPE) \ - void HELPER(NAME)(void *vd, void *vn, void *stat, uint32_t desc) \ + void HELPER(NAME)(void *vd, void *vn, float_status *fpst, uint32_t desc) \ { \ - float_status *fpst = stat; \ intptr_t i, oprsz = simd_oprsz(desc); \ uint32_t rmode = simd_data(desc); \ uint32_t prev_rmode = get_float_rounding_mode(fpst); \ @@ -2474,10 +2703,9 @@ DO_VRINT_RMODE(gvec_vrint_rm_s, helper_rints, uint32_t) #undef DO_VRINT_RMODE #ifdef TARGET_AARCH64 -void HELPER(simd_tblx)(void *vd, void *vm, void *venv, uint32_t desc) +void HELPER(simd_tblx)(void *vd, void *vm, CPUARMState *env, uint32_t desc) { const uint8_t *indices = vm; - CPUARMState *env = venv; size_t oprsz = simd_oprsz(desc); uint32_t rn = extract32(desc, SIMD_DATA_SHIFT, 5); bool is_tbx = extract32(desc, SIMD_DATA_SHIFT + 5, 1); @@ -2710,44 +2938,109 @@ DO_MMLA_B(gvec_usmmla_b, do_usmmla_b) * BFloat16 Dot Product */ -float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2) +bool is_ebf(CPUARMState *env, float_status *statusp, float_status *oddstatusp) +{ + /* + * For BFDOT, BFMMLA, etc, the behaviour depends on FPCR.EBF. + * For EBF = 0, we ignore the FPCR bits which determine rounding + * mode and denormal-flushing, and we do unfused multiplies and + * additions with intermediate rounding of all products and sums. + * For EBF = 1, we honour FPCR rounding mode and denormal-flushing bits, + * and we perform a fused two-way sum-of-products without intermediate + * rounding of the products. + * In either case, we don't set fp exception flags. + * + * EBF is AArch64 only, so even if it's set in the FPCR it has + * no effect on AArch32 instructions. + */ + bool ebf = is_a64(env) && env->vfp.fpcr & FPCR_EBF; + + *statusp = env->vfp.fp_status[is_a64(env) ? FPST_A64 : FPST_A32]; + set_default_nan_mode(true, statusp); + + if (ebf) { + /* EBF=1 needs to do a step with round-to-odd semantics */ + *oddstatusp = *statusp; + set_float_rounding_mode(float_round_to_odd, oddstatusp); + } else { + set_flush_to_zero(true, statusp); + set_flush_inputs_to_zero(true, statusp); + set_float_rounding_mode(float_round_to_odd_inf, statusp); + } + return ebf; +} + +float32 bfdotadd(float32 sum, uint32_t e1, uint32_t e2, float_status *fpst) { - /* FPCR is ignored for BFDOT and BFMMLA. */ - float_status bf_status = { - .tininess_before_rounding = float_tininess_before_rounding, - .float_rounding_mode = float_round_to_odd_inf, - .flush_to_zero = true, - .flush_inputs_to_zero = true, - .default_nan_mode = true, - }; float32 t1, t2; /* * Extract each BFloat16 from the element pair, and shift * them such that they become float32. */ - t1 = float32_mul(e1 << 16, e2 << 16, &bf_status); - t2 = float32_mul(e1 & 0xffff0000u, e2 & 0xffff0000u, &bf_status); - t1 = float32_add(t1, t2, &bf_status); - t1 = float32_add(sum, t1, &bf_status); + t1 = float32_mul(e1 << 16, e2 << 16, fpst); + t2 = float32_mul(e1 & 0xffff0000u, e2 & 0xffff0000u, fpst); + t1 = float32_add(t1, t2, fpst); + t1 = float32_add(sum, t1, fpst); return t1; } -void HELPER(gvec_bfdot)(void *vd, void *vn, void *vm, void *va, uint32_t desc) +float32 bfdotadd_ebf(float32 sum, uint32_t e1, uint32_t e2, + float_status *fpst, float_status *fpst_odd) +{ + /* + * Compare f16_dotadd() in sme_helper.c, but here we have + * bfloat16 inputs. In particular that means that we do not + * want the FPCR.FZ16 flush semantics, so we use the normal + * float_status for the input handling here. + */ + float64 e1r = float32_to_float64(e1 << 16, fpst); + float64 e1c = float32_to_float64(e1 & 0xffff0000u, fpst); + float64 e2r = float32_to_float64(e2 << 16, fpst); + float64 e2c = float32_to_float64(e2 & 0xffff0000u, fpst); + float64 t64; + float32 t32; + + /* + * The ARM pseudocode function FPDot performs both multiplies + * and the add with a single rounding operation. Emulate this + * by performing the first multiply in round-to-odd, then doing + * the second multiply as fused multiply-add, and rounding to + * float32 all in one step. + */ + t64 = float64_mul(e1r, e2r, fpst_odd); + t64 = float64r32_muladd(e1c, e2c, t64, 0, fpst); + + /* This conversion is exact, because we've already rounded. */ + t32 = float64_to_float32(t64, fpst); + + /* The final accumulation step is not fused. */ + return float32_add(sum, t32, fpst); +} + +void HELPER(gvec_bfdot)(void *vd, void *vn, void *vm, void *va, + CPUARMState *env, uint32_t desc) { intptr_t i, opr_sz = simd_oprsz(desc); float32 *d = vd, *a = va; uint32_t *n = vn, *m = vm; + float_status fpst, fpst_odd; - for (i = 0; i < opr_sz / 4; ++i) { - d[i] = bfdotadd(a[i], n[i], m[i]); + if (is_ebf(env, &fpst, &fpst_odd)) { + for (i = 0; i < opr_sz / 4; ++i) { + d[i] = bfdotadd_ebf(a[i], n[i], m[i], &fpst, &fpst_odd); + } + } else { + for (i = 0; i < opr_sz / 4; ++i) { + d[i] = bfdotadd(a[i], n[i], m[i], &fpst); + } } clear_tail(d, opr_sz, simd_maxsz(desc)); } void HELPER(gvec_bfdot_idx)(void *vd, void *vn, void *vm, - void *va, uint32_t desc) + void *va, CPUARMState *env, uint32_t desc) { intptr_t i, j, opr_sz = simd_oprsz(desc); intptr_t index = simd_data(desc); @@ -2755,59 +3048,106 @@ void HELPER(gvec_bfdot_idx)(void *vd, void *vn, void *vm, intptr_t eltspersegment = MIN(16 / 4, elements); float32 *d = vd, *a = va; uint32_t *n = vn, *m = vm; + float_status fpst, fpst_odd; - for (i = 0; i < elements; i += eltspersegment) { - uint32_t m_idx = m[i + H4(index)]; + if (is_ebf(env, &fpst, &fpst_odd)) { + for (i = 0; i < elements; i += eltspersegment) { + uint32_t m_idx = m[i + H4(index)]; - for (j = i; j < i + eltspersegment; j++) { - d[j] = bfdotadd(a[j], n[j], m_idx); + for (j = i; j < i + eltspersegment; j++) { + d[j] = bfdotadd_ebf(a[j], n[j], m_idx, &fpst, &fpst_odd); + } + } + } else { + for (i = 0; i < elements; i += eltspersegment) { + uint32_t m_idx = m[i + H4(index)]; + + for (j = i; j < i + eltspersegment; j++) { + d[j] = bfdotadd(a[j], n[j], m_idx, &fpst); + } } } clear_tail(d, opr_sz, simd_maxsz(desc)); } -void HELPER(gvec_bfmmla)(void *vd, void *vn, void *vm, void *va, uint32_t desc) +void HELPER(gvec_bfmmla)(void *vd, void *vn, void *vm, void *va, + CPUARMState *env, uint32_t desc) { intptr_t s, opr_sz = simd_oprsz(desc); float32 *d = vd, *a = va; uint32_t *n = vn, *m = vm; + float_status fpst, fpst_odd; - for (s = 0; s < opr_sz / 4; s += 4) { - float32 sum00, sum01, sum10, sum11; - - /* - * Process the entire segment at once, writing back the - * results only after we've consumed all of the inputs. - * - * Key to indices by column: - * i j i k j k - */ - sum00 = a[s + H4(0 + 0)]; - sum00 = bfdotadd(sum00, n[s + H4(0 + 0)], m[s + H4(0 + 0)]); - sum00 = bfdotadd(sum00, n[s + H4(0 + 1)], m[s + H4(0 + 1)]); - - sum01 = a[s + H4(0 + 1)]; - sum01 = bfdotadd(sum01, n[s + H4(0 + 0)], m[s + H4(2 + 0)]); - sum01 = bfdotadd(sum01, n[s + H4(0 + 1)], m[s + H4(2 + 1)]); - - sum10 = a[s + H4(2 + 0)]; - sum10 = bfdotadd(sum10, n[s + H4(2 + 0)], m[s + H4(0 + 0)]); - sum10 = bfdotadd(sum10, n[s + H4(2 + 1)], m[s + H4(0 + 1)]); + if (is_ebf(env, &fpst, &fpst_odd)) { + for (s = 0; s < opr_sz / 4; s += 4) { + float32 sum00, sum01, sum10, sum11; - sum11 = a[s + H4(2 + 1)]; - sum11 = bfdotadd(sum11, n[s + H4(2 + 0)], m[s + H4(2 + 0)]); - sum11 = bfdotadd(sum11, n[s + H4(2 + 1)], m[s + H4(2 + 1)]); + /* + * Process the entire segment at once, writing back the + * results only after we've consumed all of the inputs. + * + * Key to indices by column: + * i j i k j k + */ + sum00 = a[s + H4(0 + 0)]; + sum00 = bfdotadd_ebf(sum00, n[s + H4(0 + 0)], m[s + H4(0 + 0)], &fpst, &fpst_odd); + sum00 = bfdotadd_ebf(sum00, n[s + H4(0 + 1)], m[s + H4(0 + 1)], &fpst, &fpst_odd); + + sum01 = a[s + H4(0 + 1)]; + sum01 = bfdotadd_ebf(sum01, n[s + H4(0 + 0)], m[s + H4(2 + 0)], &fpst, &fpst_odd); + sum01 = bfdotadd_ebf(sum01, n[s + H4(0 + 1)], m[s + H4(2 + 1)], &fpst, &fpst_odd); + + sum10 = a[s + H4(2 + 0)]; + sum10 = bfdotadd_ebf(sum10, n[s + H4(2 + 0)], m[s + H4(0 + 0)], &fpst, &fpst_odd); + sum10 = bfdotadd_ebf(sum10, n[s + H4(2 + 1)], m[s + H4(0 + 1)], &fpst, &fpst_odd); + + sum11 = a[s + H4(2 + 1)]; + sum11 = bfdotadd_ebf(sum11, n[s + H4(2 + 0)], m[s + H4(2 + 0)], &fpst, &fpst_odd); + sum11 = bfdotadd_ebf(sum11, n[s + H4(2 + 1)], m[s + H4(2 + 1)], &fpst, &fpst_odd); + + d[s + H4(0 + 0)] = sum00; + d[s + H4(0 + 1)] = sum01; + d[s + H4(2 + 0)] = sum10; + d[s + H4(2 + 1)] = sum11; + } + } else { + for (s = 0; s < opr_sz / 4; s += 4) { + float32 sum00, sum01, sum10, sum11; - d[s + H4(0 + 0)] = sum00; - d[s + H4(0 + 1)] = sum01; - d[s + H4(2 + 0)] = sum10; - d[s + H4(2 + 1)] = sum11; + /* + * Process the entire segment at once, writing back the + * results only after we've consumed all of the inputs. + * + * Key to indices by column: + * i j i k j k + */ + sum00 = a[s + H4(0 + 0)]; + sum00 = bfdotadd(sum00, n[s + H4(0 + 0)], m[s + H4(0 + 0)], &fpst); + sum00 = bfdotadd(sum00, n[s + H4(0 + 1)], m[s + H4(0 + 1)], &fpst); + + sum01 = a[s + H4(0 + 1)]; + sum01 = bfdotadd(sum01, n[s + H4(0 + 0)], m[s + H4(2 + 0)], &fpst); + sum01 = bfdotadd(sum01, n[s + H4(0 + 1)], m[s + H4(2 + 1)], &fpst); + + sum10 = a[s + H4(2 + 0)]; + sum10 = bfdotadd(sum10, n[s + H4(2 + 0)], m[s + H4(0 + 0)], &fpst); + sum10 = bfdotadd(sum10, n[s + H4(2 + 1)], m[s + H4(0 + 1)], &fpst); + + sum11 = a[s + H4(2 + 1)]; + sum11 = bfdotadd(sum11, n[s + H4(2 + 0)], m[s + H4(2 + 0)], &fpst); + sum11 = bfdotadd(sum11, n[s + H4(2 + 1)], m[s + H4(2 + 1)], &fpst); + + d[s + H4(0 + 0)] = sum00; + d[s + H4(0 + 1)] = sum01; + d[s + H4(2 + 0)] = sum10; + d[s + H4(2 + 1)] = sum11; + } } clear_tail(d, opr_sz, simd_maxsz(desc)); } void HELPER(gvec_bfmlal)(void *vd, void *vn, void *vm, void *va, - void *stat, uint32_t desc) + float_status *stat, uint32_t desc) { intptr_t i, opr_sz = simd_oprsz(desc); intptr_t sel = simd_data(desc); @@ -2823,7 +3163,7 @@ void HELPER(gvec_bfmlal)(void *vd, void *vn, void *vm, void *va, } void HELPER(gvec_bfmlal_idx)(void *vd, void *vn, void *vm, - void *va, void *stat, uint32_t desc) + void *va, float_status *stat, uint32_t desc) { intptr_t i, j, opr_sz = simd_oprsz(desc); intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 1); @@ -2867,3 +3207,49 @@ DO_CLAMP(gvec_uclamp_b, uint8_t) DO_CLAMP(gvec_uclamp_h, uint16_t) DO_CLAMP(gvec_uclamp_s, uint32_t) DO_CLAMP(gvec_uclamp_d, uint64_t) + +/* Bit count in each 8-bit word. */ +void HELPER(gvec_cnt_b)(void *vd, void *vn, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + uint8_t *d = vd, *n = vn; + + for (i = 0; i < opr_sz; ++i) { + d[i] = ctpop8(n[i]); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +/* Reverse bits in each 8 bit word */ +void HELPER(gvec_rbit_b)(void *vd, void *vn, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + uint64_t *d = vd, *n = vn; + + for (i = 0; i < opr_sz / 8; ++i) { + d[i] = revbit64(bswap64(n[i])); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_urecpe_s)(void *vd, void *vn, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + uint32_t *d = vd, *n = vn; + + for (i = 0; i < opr_sz / 4; ++i) { + d[i] = helper_recpe_u32(n[i]); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} + +void HELPER(gvec_ursqrte_s)(void *vd, void *vn, uint32_t desc) +{ + intptr_t i, opr_sz = simd_oprsz(desc); + uint32_t *d = vd, *n = vn; + + for (i = 0; i < opr_sz / 4; ++i) { + d[i] = helper_rsqrte_u32(n[i]); + } + clear_tail(d, opr_sz, simd_maxsz(desc)); +} |