aboutsummaryrefslogtreecommitdiff
path: root/softmmu/cpus.c
diff options
context:
space:
mode:
Diffstat (limited to 'softmmu/cpus.c')
-rw-r--r--softmmu/cpus.c2238
1 files changed, 2238 insertions, 0 deletions
diff --git a/softmmu/cpus.c b/softmmu/cpus.c
new file mode 100644
index 0000000..a802e89
--- /dev/null
+++ b/softmmu/cpus.c
@@ -0,0 +1,2238 @@
+/*
+ * QEMU System Emulator
+ *
+ * Copyright (c) 2003-2008 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu-common.h"
+#include "qemu/config-file.h"
+#include "qemu/cutils.h"
+#include "migration/vmstate.h"
+#include "monitor/monitor.h"
+#include "qapi/error.h"
+#include "qapi/qapi-commands-misc.h"
+#include "qapi/qapi-events-run-state.h"
+#include "qapi/qmp/qerror.h"
+#include "qemu/error-report.h"
+#include "qemu/qemu-print.h"
+#include "sysemu/tcg.h"
+#include "sysemu/block-backend.h"
+#include "exec/gdbstub.h"
+#include "sysemu/dma.h"
+#include "sysemu/hw_accel.h"
+#include "sysemu/kvm.h"
+#include "sysemu/hax.h"
+#include "sysemu/hvf.h"
+#include "sysemu/whpx.h"
+#include "exec/exec-all.h"
+
+#include "qemu/thread.h"
+#include "qemu/plugin.h"
+#include "sysemu/cpus.h"
+#include "sysemu/qtest.h"
+#include "qemu/main-loop.h"
+#include "qemu/option.h"
+#include "qemu/bitmap.h"
+#include "qemu/seqlock.h"
+#include "qemu/guest-random.h"
+#include "tcg/tcg.h"
+#include "hw/nmi.h"
+#include "sysemu/replay.h"
+#include "sysemu/runstate.h"
+#include "hw/boards.h"
+#include "hw/hw.h"
+
+#include "sysemu/cpu-throttle.h"
+
+#ifdef CONFIG_LINUX
+
+#include <sys/prctl.h>
+
+#ifndef PR_MCE_KILL
+#define PR_MCE_KILL 33
+#endif
+
+#ifndef PR_MCE_KILL_SET
+#define PR_MCE_KILL_SET 1
+#endif
+
+#ifndef PR_MCE_KILL_EARLY
+#define PR_MCE_KILL_EARLY 1
+#endif
+
+#endif /* CONFIG_LINUX */
+
+static QemuMutex qemu_global_mutex;
+
+int64_t max_delay;
+int64_t max_advance;
+
+bool cpu_is_stopped(CPUState *cpu)
+{
+ return cpu->stopped || !runstate_is_running();
+}
+
+static inline bool cpu_work_list_empty(CPUState *cpu)
+{
+ bool ret;
+
+ qemu_mutex_lock(&cpu->work_mutex);
+ ret = QSIMPLEQ_EMPTY(&cpu->work_list);
+ qemu_mutex_unlock(&cpu->work_mutex);
+ return ret;
+}
+
+static bool cpu_thread_is_idle(CPUState *cpu)
+{
+ if (cpu->stop || !cpu_work_list_empty(cpu)) {
+ return false;
+ }
+ if (cpu_is_stopped(cpu)) {
+ return true;
+ }
+ if (!cpu->halted || cpu_has_work(cpu) ||
+ kvm_halt_in_kernel()) {
+ return false;
+ }
+ return true;
+}
+
+static bool all_cpu_threads_idle(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ if (!cpu_thread_is_idle(cpu)) {
+ return false;
+ }
+ }
+ return true;
+}
+
+/***********************************************************/
+/* guest cycle counter */
+
+/* Protected by TimersState seqlock */
+
+static bool icount_sleep = true;
+/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
+#define MAX_ICOUNT_SHIFT 10
+
+typedef struct TimersState {
+ /* Protected by BQL. */
+ int64_t cpu_ticks_prev;
+ int64_t cpu_ticks_offset;
+
+ /* Protect fields that can be respectively read outside the
+ * BQL, and written from multiple threads.
+ */
+ QemuSeqLock vm_clock_seqlock;
+ QemuSpin vm_clock_lock;
+
+ int16_t cpu_ticks_enabled;
+
+ /* Conversion factor from emulated instructions to virtual clock ticks. */
+ int16_t icount_time_shift;
+
+ /* Compensate for varying guest execution speed. */
+ int64_t qemu_icount_bias;
+
+ int64_t vm_clock_warp_start;
+ int64_t cpu_clock_offset;
+
+ /* Only written by TCG thread */
+ int64_t qemu_icount;
+
+ /* for adjusting icount */
+ QEMUTimer *icount_rt_timer;
+ QEMUTimer *icount_vm_timer;
+ QEMUTimer *icount_warp_timer;
+} TimersState;
+
+static TimersState timers_state;
+bool mttcg_enabled;
+
+
+/* The current number of executed instructions is based on what we
+ * originally budgeted minus the current state of the decrementing
+ * icount counters in extra/u16.low.
+ */
+static int64_t cpu_get_icount_executed(CPUState *cpu)
+{
+ return (cpu->icount_budget -
+ (cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra));
+}
+
+/*
+ * Update the global shared timer_state.qemu_icount to take into
+ * account executed instructions. This is done by the TCG vCPU
+ * thread so the main-loop can see time has moved forward.
+ */
+static void cpu_update_icount_locked(CPUState *cpu)
+{
+ int64_t executed = cpu_get_icount_executed(cpu);
+ cpu->icount_budget -= executed;
+
+ atomic_set_i64(&timers_state.qemu_icount,
+ timers_state.qemu_icount + executed);
+}
+
+/*
+ * Update the global shared timer_state.qemu_icount to take into
+ * account executed instructions. This is done by the TCG vCPU
+ * thread so the main-loop can see time has moved forward.
+ */
+void cpu_update_icount(CPUState *cpu)
+{
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ cpu_update_icount_locked(cpu);
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+}
+
+static int64_t cpu_get_icount_raw_locked(void)
+{
+ CPUState *cpu = current_cpu;
+
+ if (cpu && cpu->running) {
+ if (!cpu->can_do_io) {
+ error_report("Bad icount read");
+ exit(1);
+ }
+ /* Take into account what has run */
+ cpu_update_icount_locked(cpu);
+ }
+ /* The read is protected by the seqlock, but needs atomic64 to avoid UB */
+ return atomic_read_i64(&timers_state.qemu_icount);
+}
+
+static int64_t cpu_get_icount_locked(void)
+{
+ int64_t icount = cpu_get_icount_raw_locked();
+ return atomic_read_i64(&timers_state.qemu_icount_bias) +
+ cpu_icount_to_ns(icount);
+}
+
+int64_t cpu_get_icount_raw(void)
+{
+ int64_t icount;
+ unsigned start;
+
+ do {
+ start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
+ icount = cpu_get_icount_raw_locked();
+ } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
+
+ return icount;
+}
+
+/* Return the virtual CPU time, based on the instruction counter. */
+int64_t cpu_get_icount(void)
+{
+ int64_t icount;
+ unsigned start;
+
+ do {
+ start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
+ icount = cpu_get_icount_locked();
+ } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
+
+ return icount;
+}
+
+int64_t cpu_icount_to_ns(int64_t icount)
+{
+ return icount << atomic_read(&timers_state.icount_time_shift);
+}
+
+static int64_t cpu_get_ticks_locked(void)
+{
+ int64_t ticks = timers_state.cpu_ticks_offset;
+ if (timers_state.cpu_ticks_enabled) {
+ ticks += cpu_get_host_ticks();
+ }
+
+ if (timers_state.cpu_ticks_prev > ticks) {
+ /* Non increasing ticks may happen if the host uses software suspend. */
+ timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
+ ticks = timers_state.cpu_ticks_prev;
+ }
+
+ timers_state.cpu_ticks_prev = ticks;
+ return ticks;
+}
+
+/* return the time elapsed in VM between vm_start and vm_stop. Unless
+ * icount is active, cpu_get_ticks() uses units of the host CPU cycle
+ * counter.
+ */
+int64_t cpu_get_ticks(void)
+{
+ int64_t ticks;
+
+ if (use_icount) {
+ return cpu_get_icount();
+ }
+
+ qemu_spin_lock(&timers_state.vm_clock_lock);
+ ticks = cpu_get_ticks_locked();
+ qemu_spin_unlock(&timers_state.vm_clock_lock);
+ return ticks;
+}
+
+static int64_t cpu_get_clock_locked(void)
+{
+ int64_t time;
+
+ time = timers_state.cpu_clock_offset;
+ if (timers_state.cpu_ticks_enabled) {
+ time += get_clock();
+ }
+
+ return time;
+}
+
+/* Return the monotonic time elapsed in VM, i.e.,
+ * the time between vm_start and vm_stop
+ */
+int64_t cpu_get_clock(void)
+{
+ int64_t ti;
+ unsigned start;
+
+ do {
+ start = seqlock_read_begin(&timers_state.vm_clock_seqlock);
+ ti = cpu_get_clock_locked();
+ } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, start));
+
+ return ti;
+}
+
+/* enable cpu_get_ticks()
+ * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
+ */
+void cpu_enable_ticks(void)
+{
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ if (!timers_state.cpu_ticks_enabled) {
+ timers_state.cpu_ticks_offset -= cpu_get_host_ticks();
+ timers_state.cpu_clock_offset -= get_clock();
+ timers_state.cpu_ticks_enabled = 1;
+ }
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+}
+
+/* disable cpu_get_ticks() : the clock is stopped. You must not call
+ * cpu_get_ticks() after that.
+ * Caller must hold BQL which serves as mutex for vm_clock_seqlock.
+ */
+void cpu_disable_ticks(void)
+{
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ if (timers_state.cpu_ticks_enabled) {
+ timers_state.cpu_ticks_offset += cpu_get_host_ticks();
+ timers_state.cpu_clock_offset = cpu_get_clock_locked();
+ timers_state.cpu_ticks_enabled = 0;
+ }
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+}
+
+/* Correlation between real and virtual time is always going to be
+ fairly approximate, so ignore small variation.
+ When the guest is idle real and virtual time will be aligned in
+ the IO wait loop. */
+#define ICOUNT_WOBBLE (NANOSECONDS_PER_SECOND / 10)
+
+static void icount_adjust(void)
+{
+ int64_t cur_time;
+ int64_t cur_icount;
+ int64_t delta;
+
+ /* Protected by TimersState mutex. */
+ static int64_t last_delta;
+
+ /* If the VM is not running, then do nothing. */
+ if (!runstate_is_running()) {
+ return;
+ }
+
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ cur_time = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
+ cpu_get_clock_locked());
+ cur_icount = cpu_get_icount_locked();
+
+ delta = cur_icount - cur_time;
+ /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
+ if (delta > 0
+ && last_delta + ICOUNT_WOBBLE < delta * 2
+ && timers_state.icount_time_shift > 0) {
+ /* The guest is getting too far ahead. Slow time down. */
+ atomic_set(&timers_state.icount_time_shift,
+ timers_state.icount_time_shift - 1);
+ }
+ if (delta < 0
+ && last_delta - ICOUNT_WOBBLE > delta * 2
+ && timers_state.icount_time_shift < MAX_ICOUNT_SHIFT) {
+ /* The guest is getting too far behind. Speed time up. */
+ atomic_set(&timers_state.icount_time_shift,
+ timers_state.icount_time_shift + 1);
+ }
+ last_delta = delta;
+ atomic_set_i64(&timers_state.qemu_icount_bias,
+ cur_icount - (timers_state.qemu_icount
+ << timers_state.icount_time_shift));
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+}
+
+static void icount_adjust_rt(void *opaque)
+{
+ timer_mod(timers_state.icount_rt_timer,
+ qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
+ icount_adjust();
+}
+
+static void icount_adjust_vm(void *opaque)
+{
+ timer_mod(timers_state.icount_vm_timer,
+ qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
+ NANOSECONDS_PER_SECOND / 10);
+ icount_adjust();
+}
+
+static int64_t qemu_icount_round(int64_t count)
+{
+ int shift = atomic_read(&timers_state.icount_time_shift);
+ return (count + (1 << shift) - 1) >> shift;
+}
+
+static void icount_warp_rt(void)
+{
+ unsigned seq;
+ int64_t warp_start;
+
+ /* The icount_warp_timer is rescheduled soon after vm_clock_warp_start
+ * changes from -1 to another value, so the race here is okay.
+ */
+ do {
+ seq = seqlock_read_begin(&timers_state.vm_clock_seqlock);
+ warp_start = timers_state.vm_clock_warp_start;
+ } while (seqlock_read_retry(&timers_state.vm_clock_seqlock, seq));
+
+ if (warp_start == -1) {
+ return;
+ }
+
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ if (runstate_is_running()) {
+ int64_t clock = REPLAY_CLOCK_LOCKED(REPLAY_CLOCK_VIRTUAL_RT,
+ cpu_get_clock_locked());
+ int64_t warp_delta;
+
+ warp_delta = clock - timers_state.vm_clock_warp_start;
+ if (use_icount == 2) {
+ /*
+ * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
+ * far ahead of real time.
+ */
+ int64_t cur_icount = cpu_get_icount_locked();
+ int64_t delta = clock - cur_icount;
+ warp_delta = MIN(warp_delta, delta);
+ }
+ atomic_set_i64(&timers_state.qemu_icount_bias,
+ timers_state.qemu_icount_bias + warp_delta);
+ }
+ timers_state.vm_clock_warp_start = -1;
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+
+ if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ }
+}
+
+static void icount_timer_cb(void *opaque)
+{
+ /* No need for a checkpoint because the timer already synchronizes
+ * with CHECKPOINT_CLOCK_VIRTUAL_RT.
+ */
+ icount_warp_rt();
+}
+
+void qtest_clock_warp(int64_t dest)
+{
+ int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+ AioContext *aio_context;
+ assert(qtest_enabled());
+ aio_context = qemu_get_aio_context();
+ while (clock < dest) {
+ int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
+ QEMU_TIMER_ATTR_ALL);
+ int64_t warp = qemu_soonest_timeout(dest - clock, deadline);
+
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ atomic_set_i64(&timers_state.qemu_icount_bias,
+ timers_state.qemu_icount_bias + warp);
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+
+ qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
+ timerlist_run_timers(aio_context->tlg.tl[QEMU_CLOCK_VIRTUAL]);
+ clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+ }
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+}
+
+void qemu_start_warp_timer(void)
+{
+ int64_t clock;
+ int64_t deadline;
+
+ if (!use_icount) {
+ return;
+ }
+
+ /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
+ * do not fire, so computing the deadline does not make sense.
+ */
+ if (!runstate_is_running()) {
+ return;
+ }
+
+ if (replay_mode != REPLAY_MODE_PLAY) {
+ if (!all_cpu_threads_idle()) {
+ return;
+ }
+
+ if (qtest_enabled()) {
+ /* When testing, qtest commands advance icount. */
+ return;
+ }
+
+ replay_checkpoint(CHECKPOINT_CLOCK_WARP_START);
+ } else {
+ /* warp clock deterministically in record/replay mode */
+ if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_START)) {
+ /* vCPU is sleeping and warp can't be started.
+ It is probably a race condition: notification sent
+ to vCPU was processed in advance and vCPU went to sleep.
+ Therefore we have to wake it up for doing someting. */
+ if (replay_has_checkpoint()) {
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ }
+ return;
+ }
+ }
+
+ /* We want to use the earliest deadline from ALL vm_clocks */
+ clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
+ deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
+ ~QEMU_TIMER_ATTR_EXTERNAL);
+ if (deadline < 0) {
+ static bool notified;
+ if (!icount_sleep && !notified) {
+ warn_report("icount sleep disabled and no active timers");
+ notified = true;
+ }
+ return;
+ }
+
+ if (deadline > 0) {
+ /*
+ * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
+ * sleep. Otherwise, the CPU might be waiting for a future timer
+ * interrupt to wake it up, but the interrupt never comes because
+ * the vCPU isn't running any insns and thus doesn't advance the
+ * QEMU_CLOCK_VIRTUAL.
+ */
+ if (!icount_sleep) {
+ /*
+ * We never let VCPUs sleep in no sleep icount mode.
+ * If there is a pending QEMU_CLOCK_VIRTUAL timer we just advance
+ * to the next QEMU_CLOCK_VIRTUAL event and notify it.
+ * It is useful when we want a deterministic execution time,
+ * isolated from host latencies.
+ */
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ atomic_set_i64(&timers_state.qemu_icount_bias,
+ timers_state.qemu_icount_bias + deadline);
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ } else {
+ /*
+ * We do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL after some
+ * "real" time, (related to the time left until the next event) has
+ * passed. The QEMU_CLOCK_VIRTUAL_RT clock will do this.
+ * This avoids that the warps are visible externally; for example,
+ * you will not be sending network packets continuously instead of
+ * every 100ms.
+ */
+ seqlock_write_lock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ if (timers_state.vm_clock_warp_start == -1
+ || timers_state.vm_clock_warp_start > clock) {
+ timers_state.vm_clock_warp_start = clock;
+ }
+ seqlock_write_unlock(&timers_state.vm_clock_seqlock,
+ &timers_state.vm_clock_lock);
+ timer_mod_anticipate(timers_state.icount_warp_timer,
+ clock + deadline);
+ }
+ } else if (deadline == 0) {
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ }
+}
+
+static void qemu_account_warp_timer(void)
+{
+ if (!use_icount || !icount_sleep) {
+ return;
+ }
+
+ /* Nothing to do if the VM is stopped: QEMU_CLOCK_VIRTUAL timers
+ * do not fire, so computing the deadline does not make sense.
+ */
+ if (!runstate_is_running()) {
+ return;
+ }
+
+ /* warp clock deterministically in record/replay mode */
+ if (!replay_checkpoint(CHECKPOINT_CLOCK_WARP_ACCOUNT)) {
+ return;
+ }
+
+ timer_del(timers_state.icount_warp_timer);
+ icount_warp_rt();
+}
+
+static bool icount_state_needed(void *opaque)
+{
+ return use_icount;
+}
+
+static bool warp_timer_state_needed(void *opaque)
+{
+ TimersState *s = opaque;
+ return s->icount_warp_timer != NULL;
+}
+
+static bool adjust_timers_state_needed(void *opaque)
+{
+ TimersState *s = opaque;
+ return s->icount_rt_timer != NULL;
+}
+
+static bool shift_state_needed(void *opaque)
+{
+ return use_icount == 2;
+}
+
+/*
+ * Subsection for warp timer migration is optional, because may not be created
+ */
+static const VMStateDescription icount_vmstate_warp_timer = {
+ .name = "timer/icount/warp_timer",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .needed = warp_timer_state_needed,
+ .fields = (VMStateField[]) {
+ VMSTATE_INT64(vm_clock_warp_start, TimersState),
+ VMSTATE_TIMER_PTR(icount_warp_timer, TimersState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static const VMStateDescription icount_vmstate_adjust_timers = {
+ .name = "timer/icount/timers",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .needed = adjust_timers_state_needed,
+ .fields = (VMStateField[]) {
+ VMSTATE_TIMER_PTR(icount_rt_timer, TimersState),
+ VMSTATE_TIMER_PTR(icount_vm_timer, TimersState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static const VMStateDescription icount_vmstate_shift = {
+ .name = "timer/icount/shift",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .needed = shift_state_needed,
+ .fields = (VMStateField[]) {
+ VMSTATE_INT16(icount_time_shift, TimersState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+/*
+ * This is a subsection for icount migration.
+ */
+static const VMStateDescription icount_vmstate_timers = {
+ .name = "timer/icount",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .needed = icount_state_needed,
+ .fields = (VMStateField[]) {
+ VMSTATE_INT64(qemu_icount_bias, TimersState),
+ VMSTATE_INT64(qemu_icount, TimersState),
+ VMSTATE_END_OF_LIST()
+ },
+ .subsections = (const VMStateDescription*[]) {
+ &icount_vmstate_warp_timer,
+ &icount_vmstate_adjust_timers,
+ &icount_vmstate_shift,
+ NULL
+ }
+};
+
+static const VMStateDescription vmstate_timers = {
+ .name = "timer",
+ .version_id = 2,
+ .minimum_version_id = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_INT64(cpu_ticks_offset, TimersState),
+ VMSTATE_UNUSED(8),
+ VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
+ VMSTATE_END_OF_LIST()
+ },
+ .subsections = (const VMStateDescription*[]) {
+ &icount_vmstate_timers,
+ NULL
+ }
+};
+
+void cpu_ticks_init(void)
+{
+ seqlock_init(&timers_state.vm_clock_seqlock);
+ qemu_spin_init(&timers_state.vm_clock_lock);
+ vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
+ cpu_throttle_init();
+}
+
+void configure_icount(QemuOpts *opts, Error **errp)
+{
+ const char *option = qemu_opt_get(opts, "shift");
+ bool sleep = qemu_opt_get_bool(opts, "sleep", true);
+ bool align = qemu_opt_get_bool(opts, "align", false);
+ long time_shift = -1;
+
+ if (!option) {
+ if (qemu_opt_get(opts, "align") != NULL) {
+ error_setg(errp, "Please specify shift option when using align");
+ }
+ return;
+ }
+
+ if (align && !sleep) {
+ error_setg(errp, "align=on and sleep=off are incompatible");
+ return;
+ }
+
+ if (strcmp(option, "auto") != 0) {
+ if (qemu_strtol(option, NULL, 0, &time_shift) < 0
+ || time_shift < 0 || time_shift > MAX_ICOUNT_SHIFT) {
+ error_setg(errp, "icount: Invalid shift value");
+ return;
+ }
+ } else if (icount_align_option) {
+ error_setg(errp, "shift=auto and align=on are incompatible");
+ return;
+ } else if (!icount_sleep) {
+ error_setg(errp, "shift=auto and sleep=off are incompatible");
+ return;
+ }
+
+ icount_sleep = sleep;
+ if (icount_sleep) {
+ timers_state.icount_warp_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL_RT,
+ icount_timer_cb, NULL);
+ }
+
+ icount_align_option = align;
+
+ if (time_shift >= 0) {
+ timers_state.icount_time_shift = time_shift;
+ use_icount = 1;
+ return;
+ }
+
+ use_icount = 2;
+
+ /* 125MIPS seems a reasonable initial guess at the guest speed.
+ It will be corrected fairly quickly anyway. */
+ timers_state.icount_time_shift = 3;
+
+ /* Have both realtime and virtual time triggers for speed adjustment.
+ The realtime trigger catches emulated time passing too slowly,
+ the virtual time trigger catches emulated time passing too fast.
+ Realtime triggers occur even when idle, so use them less frequently
+ than VM triggers. */
+ timers_state.vm_clock_warp_start = -1;
+ timers_state.icount_rt_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL_RT,
+ icount_adjust_rt, NULL);
+ timer_mod(timers_state.icount_rt_timer,
+ qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL_RT) + 1000);
+ timers_state.icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
+ icount_adjust_vm, NULL);
+ timer_mod(timers_state.icount_vm_timer,
+ qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
+ NANOSECONDS_PER_SECOND / 10);
+}
+
+/***********************************************************/
+/* TCG vCPU kick timer
+ *
+ * The kick timer is responsible for moving single threaded vCPU
+ * emulation on to the next vCPU. If more than one vCPU is running a
+ * timer event with force a cpu->exit so the next vCPU can get
+ * scheduled.
+ *
+ * The timer is removed if all vCPUs are idle and restarted again once
+ * idleness is complete.
+ */
+
+static QEMUTimer *tcg_kick_vcpu_timer;
+static CPUState *tcg_current_rr_cpu;
+
+#define TCG_KICK_PERIOD (NANOSECONDS_PER_SECOND / 10)
+
+static inline int64_t qemu_tcg_next_kick(void)
+{
+ return qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + TCG_KICK_PERIOD;
+}
+
+/* Kick the currently round-robin scheduled vCPU to next */
+static void qemu_cpu_kick_rr_next_cpu(void)
+{
+ CPUState *cpu;
+ do {
+ cpu = atomic_mb_read(&tcg_current_rr_cpu);
+ if (cpu) {
+ cpu_exit(cpu);
+ }
+ } while (cpu != atomic_mb_read(&tcg_current_rr_cpu));
+}
+
+/* Kick all RR vCPUs */
+static void qemu_cpu_kick_rr_cpus(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ cpu_exit(cpu);
+ };
+}
+
+static void do_nothing(CPUState *cpu, run_on_cpu_data unused)
+{
+}
+
+void qemu_timer_notify_cb(void *opaque, QEMUClockType type)
+{
+ if (!use_icount || type != QEMU_CLOCK_VIRTUAL) {
+ qemu_notify_event();
+ return;
+ }
+
+ if (qemu_in_vcpu_thread()) {
+ /* A CPU is currently running; kick it back out to the
+ * tcg_cpu_exec() loop so it will recalculate its
+ * icount deadline immediately.
+ */
+ qemu_cpu_kick(current_cpu);
+ } else if (first_cpu) {
+ /* qemu_cpu_kick is not enough to kick a halted CPU out of
+ * qemu_tcg_wait_io_event. async_run_on_cpu, instead,
+ * causes cpu_thread_is_idle to return false. This way,
+ * handle_icount_deadline can run.
+ * If we have no CPUs at all for some reason, we don't
+ * need to do anything.
+ */
+ async_run_on_cpu(first_cpu, do_nothing, RUN_ON_CPU_NULL);
+ }
+}
+
+static void kick_tcg_thread(void *opaque)
+{
+ timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
+ qemu_cpu_kick_rr_next_cpu();
+}
+
+static void start_tcg_kick_timer(void)
+{
+ assert(!mttcg_enabled);
+ if (!tcg_kick_vcpu_timer && CPU_NEXT(first_cpu)) {
+ tcg_kick_vcpu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
+ kick_tcg_thread, NULL);
+ }
+ if (tcg_kick_vcpu_timer && !timer_pending(tcg_kick_vcpu_timer)) {
+ timer_mod(tcg_kick_vcpu_timer, qemu_tcg_next_kick());
+ }
+}
+
+static void stop_tcg_kick_timer(void)
+{
+ assert(!mttcg_enabled);
+ if (tcg_kick_vcpu_timer && timer_pending(tcg_kick_vcpu_timer)) {
+ timer_del(tcg_kick_vcpu_timer);
+ }
+}
+
+/***********************************************************/
+void hw_error(const char *fmt, ...)
+{
+ va_list ap;
+ CPUState *cpu;
+
+ va_start(ap, fmt);
+ fprintf(stderr, "qemu: hardware error: ");
+ vfprintf(stderr, fmt, ap);
+ fprintf(stderr, "\n");
+ CPU_FOREACH(cpu) {
+ fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
+ cpu_dump_state(cpu, stderr, CPU_DUMP_FPU);
+ }
+ va_end(ap);
+ abort();
+}
+
+void cpu_synchronize_all_states(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ cpu_synchronize_state(cpu);
+ }
+}
+
+void cpu_synchronize_all_post_reset(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ cpu_synchronize_post_reset(cpu);
+ }
+}
+
+void cpu_synchronize_all_post_init(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ cpu_synchronize_post_init(cpu);
+ }
+}
+
+void cpu_synchronize_all_pre_loadvm(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ cpu_synchronize_pre_loadvm(cpu);
+ }
+}
+
+static int do_vm_stop(RunState state, bool send_stop)
+{
+ int ret = 0;
+
+ if (runstate_is_running()) {
+ runstate_set(state);
+ cpu_disable_ticks();
+ pause_all_vcpus();
+ vm_state_notify(0, state);
+ if (send_stop) {
+ qapi_event_send_stop();
+ }
+ }
+
+ bdrv_drain_all();
+ ret = bdrv_flush_all();
+
+ return ret;
+}
+
+/* Special vm_stop() variant for terminating the process. Historically clients
+ * did not expect a QMP STOP event and so we need to retain compatibility.
+ */
+int vm_shutdown(void)
+{
+ return do_vm_stop(RUN_STATE_SHUTDOWN, false);
+}
+
+static bool cpu_can_run(CPUState *cpu)
+{
+ if (cpu->stop) {
+ return false;
+ }
+ if (cpu_is_stopped(cpu)) {
+ return false;
+ }
+ return true;
+}
+
+static void cpu_handle_guest_debug(CPUState *cpu)
+{
+ gdb_set_stop_cpu(cpu);
+ qemu_system_debug_request();
+ cpu->stopped = true;
+}
+
+#ifdef CONFIG_LINUX
+static void sigbus_reraise(void)
+{
+ sigset_t set;
+ struct sigaction action;
+
+ memset(&action, 0, sizeof(action));
+ action.sa_handler = SIG_DFL;
+ if (!sigaction(SIGBUS, &action, NULL)) {
+ raise(SIGBUS);
+ sigemptyset(&set);
+ sigaddset(&set, SIGBUS);
+ pthread_sigmask(SIG_UNBLOCK, &set, NULL);
+ }
+ perror("Failed to re-raise SIGBUS!\n");
+ abort();
+}
+
+static void sigbus_handler(int n, siginfo_t *siginfo, void *ctx)
+{
+ if (siginfo->si_code != BUS_MCEERR_AO && siginfo->si_code != BUS_MCEERR_AR) {
+ sigbus_reraise();
+ }
+
+ if (current_cpu) {
+ /* Called asynchronously in VCPU thread. */
+ if (kvm_on_sigbus_vcpu(current_cpu, siginfo->si_code, siginfo->si_addr)) {
+ sigbus_reraise();
+ }
+ } else {
+ /* Called synchronously (via signalfd) in main thread. */
+ if (kvm_on_sigbus(siginfo->si_code, siginfo->si_addr)) {
+ sigbus_reraise();
+ }
+ }
+}
+
+static void qemu_init_sigbus(void)
+{
+ struct sigaction action;
+
+ memset(&action, 0, sizeof(action));
+ action.sa_flags = SA_SIGINFO;
+ action.sa_sigaction = sigbus_handler;
+ sigaction(SIGBUS, &action, NULL);
+
+ prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
+}
+#else /* !CONFIG_LINUX */
+static void qemu_init_sigbus(void)
+{
+}
+#endif /* !CONFIG_LINUX */
+
+static QemuThread io_thread;
+
+/* cpu creation */
+static QemuCond qemu_cpu_cond;
+/* system init */
+static QemuCond qemu_pause_cond;
+
+void qemu_init_cpu_loop(void)
+{
+ qemu_init_sigbus();
+ qemu_cond_init(&qemu_cpu_cond);
+ qemu_cond_init(&qemu_pause_cond);
+ qemu_mutex_init(&qemu_global_mutex);
+
+ qemu_thread_get_self(&io_thread);
+}
+
+void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data)
+{
+ do_run_on_cpu(cpu, func, data, &qemu_global_mutex);
+}
+
+static void qemu_kvm_destroy_vcpu(CPUState *cpu)
+{
+ if (kvm_destroy_vcpu(cpu) < 0) {
+ error_report("kvm_destroy_vcpu failed");
+ exit(EXIT_FAILURE);
+ }
+}
+
+static void qemu_tcg_destroy_vcpu(CPUState *cpu)
+{
+}
+
+static void qemu_cpu_stop(CPUState *cpu, bool exit)
+{
+ g_assert(qemu_cpu_is_self(cpu));
+ cpu->stop = false;
+ cpu->stopped = true;
+ if (exit) {
+ cpu_exit(cpu);
+ }
+ qemu_cond_broadcast(&qemu_pause_cond);
+}
+
+static void qemu_wait_io_event_common(CPUState *cpu)
+{
+ atomic_mb_set(&cpu->thread_kicked, false);
+ if (cpu->stop) {
+ qemu_cpu_stop(cpu, false);
+ }
+ process_queued_cpu_work(cpu);
+}
+
+static void qemu_tcg_rr_wait_io_event(void)
+{
+ CPUState *cpu;
+
+ while (all_cpu_threads_idle()) {
+ stop_tcg_kick_timer();
+ qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
+ }
+
+ start_tcg_kick_timer();
+
+ CPU_FOREACH(cpu) {
+ qemu_wait_io_event_common(cpu);
+ }
+}
+
+static void qemu_wait_io_event(CPUState *cpu)
+{
+ bool slept = false;
+
+ while (cpu_thread_is_idle(cpu)) {
+ if (!slept) {
+ slept = true;
+ qemu_plugin_vcpu_idle_cb(cpu);
+ }
+ qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
+ }
+ if (slept) {
+ qemu_plugin_vcpu_resume_cb(cpu);
+ }
+
+#ifdef _WIN32
+ /* Eat dummy APC queued by qemu_cpu_kick_thread. */
+ if (!tcg_enabled()) {
+ SleepEx(0, TRUE);
+ }
+#endif
+ qemu_wait_io_event_common(cpu);
+}
+
+static void *qemu_kvm_cpu_thread_fn(void *arg)
+{
+ CPUState *cpu = arg;
+ int r;
+
+ rcu_register_thread();
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->can_do_io = 1;
+ current_cpu = cpu;
+
+ r = kvm_init_vcpu(cpu);
+ if (r < 0) {
+ error_report("kvm_init_vcpu failed: %s", strerror(-r));
+ exit(1);
+ }
+
+ kvm_init_cpu_signals(cpu);
+
+ /* signal CPU creation */
+ cpu->created = true;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_guest_random_seed_thread_part2(cpu->random_seed);
+
+ do {
+ if (cpu_can_run(cpu)) {
+ r = kvm_cpu_exec(cpu);
+ if (r == EXCP_DEBUG) {
+ cpu_handle_guest_debug(cpu);
+ }
+ }
+ qemu_wait_io_event(cpu);
+ } while (!cpu->unplug || cpu_can_run(cpu));
+
+ qemu_kvm_destroy_vcpu(cpu);
+ cpu->created = false;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_mutex_unlock_iothread();
+ rcu_unregister_thread();
+ return NULL;
+}
+
+static void *qemu_dummy_cpu_thread_fn(void *arg)
+{
+#ifdef _WIN32
+ error_report("qtest is not supported under Windows");
+ exit(1);
+#else
+ CPUState *cpu = arg;
+ sigset_t waitset;
+ int r;
+
+ rcu_register_thread();
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->can_do_io = 1;
+ current_cpu = cpu;
+
+ sigemptyset(&waitset);
+ sigaddset(&waitset, SIG_IPI);
+
+ /* signal CPU creation */
+ cpu->created = true;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_guest_random_seed_thread_part2(cpu->random_seed);
+
+ do {
+ qemu_mutex_unlock_iothread();
+ do {
+ int sig;
+ r = sigwait(&waitset, &sig);
+ } while (r == -1 && (errno == EAGAIN || errno == EINTR));
+ if (r == -1) {
+ perror("sigwait");
+ exit(1);
+ }
+ qemu_mutex_lock_iothread();
+ qemu_wait_io_event(cpu);
+ } while (!cpu->unplug);
+
+ qemu_mutex_unlock_iothread();
+ rcu_unregister_thread();
+ return NULL;
+#endif
+}
+
+static int64_t tcg_get_icount_limit(void)
+{
+ int64_t deadline;
+
+ if (replay_mode != REPLAY_MODE_PLAY) {
+ /*
+ * Include all the timers, because they may need an attention.
+ * Too long CPU execution may create unnecessary delay in UI.
+ */
+ deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
+ QEMU_TIMER_ATTR_ALL);
+ /* Check realtime timers, because they help with input processing */
+ deadline = qemu_soonest_timeout(deadline,
+ qemu_clock_deadline_ns_all(QEMU_CLOCK_REALTIME,
+ QEMU_TIMER_ATTR_ALL));
+
+ /* Maintain prior (possibly buggy) behaviour where if no deadline
+ * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
+ * INT32_MAX nanoseconds ahead, we still use INT32_MAX
+ * nanoseconds.
+ */
+ if ((deadline < 0) || (deadline > INT32_MAX)) {
+ deadline = INT32_MAX;
+ }
+
+ return qemu_icount_round(deadline);
+ } else {
+ return replay_get_instructions();
+ }
+}
+
+static void notify_aio_contexts(void)
+{
+ /* Wake up other AioContexts. */
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
+}
+
+static void handle_icount_deadline(void)
+{
+ assert(qemu_in_vcpu_thread());
+ if (use_icount) {
+ int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL,
+ QEMU_TIMER_ATTR_ALL);
+
+ if (deadline == 0) {
+ notify_aio_contexts();
+ }
+ }
+}
+
+static void prepare_icount_for_run(CPUState *cpu)
+{
+ if (use_icount) {
+ int insns_left;
+
+ /* These should always be cleared by process_icount_data after
+ * each vCPU execution. However u16.high can be raised
+ * asynchronously by cpu_exit/cpu_interrupt/tcg_handle_interrupt
+ */
+ g_assert(cpu_neg(cpu)->icount_decr.u16.low == 0);
+ g_assert(cpu->icount_extra == 0);
+
+ cpu->icount_budget = tcg_get_icount_limit();
+ insns_left = MIN(0xffff, cpu->icount_budget);
+ cpu_neg(cpu)->icount_decr.u16.low = insns_left;
+ cpu->icount_extra = cpu->icount_budget - insns_left;
+
+ replay_mutex_lock();
+
+ if (cpu->icount_budget == 0 && replay_has_checkpoint()) {
+ notify_aio_contexts();
+ }
+ }
+}
+
+static void process_icount_data(CPUState *cpu)
+{
+ if (use_icount) {
+ /* Account for executed instructions */
+ cpu_update_icount(cpu);
+
+ /* Reset the counters */
+ cpu_neg(cpu)->icount_decr.u16.low = 0;
+ cpu->icount_extra = 0;
+ cpu->icount_budget = 0;
+
+ replay_account_executed_instructions();
+
+ replay_mutex_unlock();
+ }
+}
+
+
+static int tcg_cpu_exec(CPUState *cpu)
+{
+ int ret;
+#ifdef CONFIG_PROFILER
+ int64_t ti;
+#endif
+
+ assert(tcg_enabled());
+#ifdef CONFIG_PROFILER
+ ti = profile_getclock();
+#endif
+ cpu_exec_start(cpu);
+ ret = cpu_exec(cpu);
+ cpu_exec_end(cpu);
+#ifdef CONFIG_PROFILER
+ atomic_set(&tcg_ctx->prof.cpu_exec_time,
+ tcg_ctx->prof.cpu_exec_time + profile_getclock() - ti);
+#endif
+ return ret;
+}
+
+/* Destroy any remaining vCPUs which have been unplugged and have
+ * finished running
+ */
+static void deal_with_unplugged_cpus(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ if (cpu->unplug && !cpu_can_run(cpu)) {
+ qemu_tcg_destroy_vcpu(cpu);
+ cpu->created = false;
+ qemu_cond_signal(&qemu_cpu_cond);
+ break;
+ }
+ }
+}
+
+/* Single-threaded TCG
+ *
+ * In the single-threaded case each vCPU is simulated in turn. If
+ * there is more than a single vCPU we create a simple timer to kick
+ * the vCPU and ensure we don't get stuck in a tight loop in one vCPU.
+ * This is done explicitly rather than relying on side-effects
+ * elsewhere.
+ */
+
+static void *qemu_tcg_rr_cpu_thread_fn(void *arg)
+{
+ CPUState *cpu = arg;
+
+ assert(tcg_enabled());
+ rcu_register_thread();
+ tcg_register_thread();
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->created = true;
+ cpu->can_do_io = 1;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_guest_random_seed_thread_part2(cpu->random_seed);
+
+ /* wait for initial kick-off after machine start */
+ while (first_cpu->stopped) {
+ qemu_cond_wait(first_cpu->halt_cond, &qemu_global_mutex);
+
+ /* process any pending work */
+ CPU_FOREACH(cpu) {
+ current_cpu = cpu;
+ qemu_wait_io_event_common(cpu);
+ }
+ }
+
+ start_tcg_kick_timer();
+
+ cpu = first_cpu;
+
+ /* process any pending work */
+ cpu->exit_request = 1;
+
+ while (1) {
+ qemu_mutex_unlock_iothread();
+ replay_mutex_lock();
+ qemu_mutex_lock_iothread();
+ /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
+ qemu_account_warp_timer();
+
+ /* Run the timers here. This is much more efficient than
+ * waking up the I/O thread and waiting for completion.
+ */
+ handle_icount_deadline();
+
+ replay_mutex_unlock();
+
+ if (!cpu) {
+ cpu = first_cpu;
+ }
+
+ while (cpu && cpu_work_list_empty(cpu) && !cpu->exit_request) {
+
+ atomic_mb_set(&tcg_current_rr_cpu, cpu);
+ current_cpu = cpu;
+
+ qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
+ (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
+
+ if (cpu_can_run(cpu)) {
+ int r;
+
+ qemu_mutex_unlock_iothread();
+ prepare_icount_for_run(cpu);
+
+ r = tcg_cpu_exec(cpu);
+
+ process_icount_data(cpu);
+ qemu_mutex_lock_iothread();
+
+ if (r == EXCP_DEBUG) {
+ cpu_handle_guest_debug(cpu);
+ break;
+ } else if (r == EXCP_ATOMIC) {
+ qemu_mutex_unlock_iothread();
+ cpu_exec_step_atomic(cpu);
+ qemu_mutex_lock_iothread();
+ break;
+ }
+ } else if (cpu->stop) {
+ if (cpu->unplug) {
+ cpu = CPU_NEXT(cpu);
+ }
+ break;
+ }
+
+ cpu = CPU_NEXT(cpu);
+ } /* while (cpu && !cpu->exit_request).. */
+
+ /* Does not need atomic_mb_set because a spurious wakeup is okay. */
+ atomic_set(&tcg_current_rr_cpu, NULL);
+
+ if (cpu && cpu->exit_request) {
+ atomic_mb_set(&cpu->exit_request, 0);
+ }
+
+ if (use_icount && all_cpu_threads_idle()) {
+ /*
+ * When all cpus are sleeping (e.g in WFI), to avoid a deadlock
+ * in the main_loop, wake it up in order to start the warp timer.
+ */
+ qemu_notify_event();
+ }
+
+ qemu_tcg_rr_wait_io_event();
+ deal_with_unplugged_cpus();
+ }
+
+ rcu_unregister_thread();
+ return NULL;
+}
+
+static void *qemu_hax_cpu_thread_fn(void *arg)
+{
+ CPUState *cpu = arg;
+ int r;
+
+ rcu_register_thread();
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->created = true;
+ current_cpu = cpu;
+
+ hax_init_vcpu(cpu);
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_guest_random_seed_thread_part2(cpu->random_seed);
+
+ do {
+ if (cpu_can_run(cpu)) {
+ r = hax_smp_cpu_exec(cpu);
+ if (r == EXCP_DEBUG) {
+ cpu_handle_guest_debug(cpu);
+ }
+ }
+
+ qemu_wait_io_event(cpu);
+ } while (!cpu->unplug || cpu_can_run(cpu));
+ rcu_unregister_thread();
+ return NULL;
+}
+
+/* The HVF-specific vCPU thread function. This one should only run when the host
+ * CPU supports the VMX "unrestricted guest" feature. */
+static void *qemu_hvf_cpu_thread_fn(void *arg)
+{
+ CPUState *cpu = arg;
+
+ int r;
+
+ assert(hvf_enabled());
+
+ rcu_register_thread();
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->can_do_io = 1;
+ current_cpu = cpu;
+
+ hvf_init_vcpu(cpu);
+
+ /* signal CPU creation */
+ cpu->created = true;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_guest_random_seed_thread_part2(cpu->random_seed);
+
+ do {
+ if (cpu_can_run(cpu)) {
+ r = hvf_vcpu_exec(cpu);
+ if (r == EXCP_DEBUG) {
+ cpu_handle_guest_debug(cpu);
+ }
+ }
+ qemu_wait_io_event(cpu);
+ } while (!cpu->unplug || cpu_can_run(cpu));
+
+ hvf_vcpu_destroy(cpu);
+ cpu->created = false;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_mutex_unlock_iothread();
+ rcu_unregister_thread();
+ return NULL;
+}
+
+static void *qemu_whpx_cpu_thread_fn(void *arg)
+{
+ CPUState *cpu = arg;
+ int r;
+
+ rcu_register_thread();
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+ cpu->thread_id = qemu_get_thread_id();
+ current_cpu = cpu;
+
+ r = whpx_init_vcpu(cpu);
+ if (r < 0) {
+ fprintf(stderr, "whpx_init_vcpu failed: %s\n", strerror(-r));
+ exit(1);
+ }
+
+ /* signal CPU creation */
+ cpu->created = true;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_guest_random_seed_thread_part2(cpu->random_seed);
+
+ do {
+ if (cpu_can_run(cpu)) {
+ r = whpx_vcpu_exec(cpu);
+ if (r == EXCP_DEBUG) {
+ cpu_handle_guest_debug(cpu);
+ }
+ }
+ while (cpu_thread_is_idle(cpu)) {
+ qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
+ }
+ qemu_wait_io_event_common(cpu);
+ } while (!cpu->unplug || cpu_can_run(cpu));
+
+ whpx_destroy_vcpu(cpu);
+ cpu->created = false;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_mutex_unlock_iothread();
+ rcu_unregister_thread();
+ return NULL;
+}
+
+#ifdef _WIN32
+static void CALLBACK dummy_apc_func(ULONG_PTR unused)
+{
+}
+#endif
+
+/* Multi-threaded TCG
+ *
+ * In the multi-threaded case each vCPU has its own thread. The TLS
+ * variable current_cpu can be used deep in the code to find the
+ * current CPUState for a given thread.
+ */
+
+static void *qemu_tcg_cpu_thread_fn(void *arg)
+{
+ CPUState *cpu = arg;
+
+ assert(tcg_enabled());
+ g_assert(!use_icount);
+
+ rcu_register_thread();
+ tcg_register_thread();
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(cpu->thread);
+
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->created = true;
+ cpu->can_do_io = 1;
+ current_cpu = cpu;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_guest_random_seed_thread_part2(cpu->random_seed);
+
+ /* process any pending work */
+ cpu->exit_request = 1;
+
+ do {
+ if (cpu_can_run(cpu)) {
+ int r;
+ qemu_mutex_unlock_iothread();
+ r = tcg_cpu_exec(cpu);
+ qemu_mutex_lock_iothread();
+ switch (r) {
+ case EXCP_DEBUG:
+ cpu_handle_guest_debug(cpu);
+ break;
+ case EXCP_HALTED:
+ /* during start-up the vCPU is reset and the thread is
+ * kicked several times. If we don't ensure we go back
+ * to sleep in the halted state we won't cleanly
+ * start-up when the vCPU is enabled.
+ *
+ * cpu->halted should ensure we sleep in wait_io_event
+ */
+ g_assert(cpu->halted);
+ break;
+ case EXCP_ATOMIC:
+ qemu_mutex_unlock_iothread();
+ cpu_exec_step_atomic(cpu);
+ qemu_mutex_lock_iothread();
+ default:
+ /* Ignore everything else? */
+ break;
+ }
+ }
+
+ atomic_mb_set(&cpu->exit_request, 0);
+ qemu_wait_io_event(cpu);
+ } while (!cpu->unplug || cpu_can_run(cpu));
+
+ qemu_tcg_destroy_vcpu(cpu);
+ cpu->created = false;
+ qemu_cond_signal(&qemu_cpu_cond);
+ qemu_mutex_unlock_iothread();
+ rcu_unregister_thread();
+ return NULL;
+}
+
+static void qemu_cpu_kick_thread(CPUState *cpu)
+{
+#ifndef _WIN32
+ int err;
+
+ if (cpu->thread_kicked) {
+ return;
+ }
+ cpu->thread_kicked = true;
+ err = pthread_kill(cpu->thread->thread, SIG_IPI);
+ if (err && err != ESRCH) {
+ fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
+ exit(1);
+ }
+#else /* _WIN32 */
+ if (!qemu_cpu_is_self(cpu)) {
+ if (whpx_enabled()) {
+ whpx_vcpu_kick(cpu);
+ } else if (!QueueUserAPC(dummy_apc_func, cpu->hThread, 0)) {
+ fprintf(stderr, "%s: QueueUserAPC failed with error %lu\n",
+ __func__, GetLastError());
+ exit(1);
+ }
+ }
+#endif
+}
+
+void qemu_cpu_kick(CPUState *cpu)
+{
+ qemu_cond_broadcast(cpu->halt_cond);
+ if (tcg_enabled()) {
+ if (qemu_tcg_mttcg_enabled()) {
+ cpu_exit(cpu);
+ } else {
+ qemu_cpu_kick_rr_cpus();
+ }
+ } else {
+ if (hax_enabled()) {
+ /*
+ * FIXME: race condition with the exit_request check in
+ * hax_vcpu_hax_exec
+ */
+ cpu->exit_request = 1;
+ }
+ qemu_cpu_kick_thread(cpu);
+ }
+}
+
+void qemu_cpu_kick_self(void)
+{
+ assert(current_cpu);
+ qemu_cpu_kick_thread(current_cpu);
+}
+
+bool qemu_cpu_is_self(CPUState *cpu)
+{
+ return qemu_thread_is_self(cpu->thread);
+}
+
+bool qemu_in_vcpu_thread(void)
+{
+ return current_cpu && qemu_cpu_is_self(current_cpu);
+}
+
+static __thread bool iothread_locked = false;
+
+bool qemu_mutex_iothread_locked(void)
+{
+ return iothread_locked;
+}
+
+/*
+ * The BQL is taken from so many places that it is worth profiling the
+ * callers directly, instead of funneling them all through a single function.
+ */
+void qemu_mutex_lock_iothread_impl(const char *file, int line)
+{
+ QemuMutexLockFunc bql_lock = atomic_read(&qemu_bql_mutex_lock_func);
+
+ g_assert(!qemu_mutex_iothread_locked());
+ bql_lock(&qemu_global_mutex, file, line);
+ iothread_locked = true;
+}
+
+void qemu_mutex_unlock_iothread(void)
+{
+ g_assert(qemu_mutex_iothread_locked());
+ iothread_locked = false;
+ qemu_mutex_unlock(&qemu_global_mutex);
+}
+
+void qemu_cond_wait_iothread(QemuCond *cond)
+{
+ qemu_cond_wait(cond, &qemu_global_mutex);
+}
+
+void qemu_cond_timedwait_iothread(QemuCond *cond, int ms)
+{
+ qemu_cond_timedwait(cond, &qemu_global_mutex, ms);
+}
+
+static bool all_vcpus_paused(void)
+{
+ CPUState *cpu;
+
+ CPU_FOREACH(cpu) {
+ if (!cpu->stopped) {
+ return false;
+ }
+ }
+
+ return true;
+}
+
+void pause_all_vcpus(void)
+{
+ CPUState *cpu;
+
+ qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
+ CPU_FOREACH(cpu) {
+ if (qemu_cpu_is_self(cpu)) {
+ qemu_cpu_stop(cpu, true);
+ } else {
+ cpu->stop = true;
+ qemu_cpu_kick(cpu);
+ }
+ }
+
+ /* We need to drop the replay_lock so any vCPU threads woken up
+ * can finish their replay tasks
+ */
+ replay_mutex_unlock();
+
+ while (!all_vcpus_paused()) {
+ qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
+ CPU_FOREACH(cpu) {
+ qemu_cpu_kick(cpu);
+ }
+ }
+
+ qemu_mutex_unlock_iothread();
+ replay_mutex_lock();
+ qemu_mutex_lock_iothread();
+}
+
+void cpu_resume(CPUState *cpu)
+{
+ cpu->stop = false;
+ cpu->stopped = false;
+ qemu_cpu_kick(cpu);
+}
+
+void resume_all_vcpus(void)
+{
+ CPUState *cpu;
+
+ if (!runstate_is_running()) {
+ return;
+ }
+
+ qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
+ CPU_FOREACH(cpu) {
+ cpu_resume(cpu);
+ }
+}
+
+void cpu_remove_sync(CPUState *cpu)
+{
+ cpu->stop = true;
+ cpu->unplug = true;
+ qemu_cpu_kick(cpu);
+ qemu_mutex_unlock_iothread();
+ qemu_thread_join(cpu->thread);
+ qemu_mutex_lock_iothread();
+}
+
+/* For temporary buffers for forming a name */
+#define VCPU_THREAD_NAME_SIZE 16
+
+static void qemu_tcg_init_vcpu(CPUState *cpu)
+{
+ char thread_name[VCPU_THREAD_NAME_SIZE];
+ static QemuCond *single_tcg_halt_cond;
+ static QemuThread *single_tcg_cpu_thread;
+ static int tcg_region_inited;
+
+ assert(tcg_enabled());
+ /*
+ * Initialize TCG regions--once. Now is a good time, because:
+ * (1) TCG's init context, prologue and target globals have been set up.
+ * (2) qemu_tcg_mttcg_enabled() works now (TCG init code runs before the
+ * -accel flag is processed, so the check doesn't work then).
+ */
+ if (!tcg_region_inited) {
+ tcg_region_inited = 1;
+ tcg_region_init();
+ }
+
+ if (qemu_tcg_mttcg_enabled() || !single_tcg_cpu_thread) {
+ cpu->thread = g_malloc0(sizeof(QemuThread));
+ cpu->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(cpu->halt_cond);
+
+ if (qemu_tcg_mttcg_enabled()) {
+ /* create a thread per vCPU with TCG (MTTCG) */
+ parallel_cpus = true;
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/TCG",
+ cpu->cpu_index);
+
+ qemu_thread_create(cpu->thread, thread_name, qemu_tcg_cpu_thread_fn,
+ cpu, QEMU_THREAD_JOINABLE);
+
+ } else {
+ /* share a single thread for all cpus with TCG */
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "ALL CPUs/TCG");
+ qemu_thread_create(cpu->thread, thread_name,
+ qemu_tcg_rr_cpu_thread_fn,
+ cpu, QEMU_THREAD_JOINABLE);
+
+ single_tcg_halt_cond = cpu->halt_cond;
+ single_tcg_cpu_thread = cpu->thread;
+ }
+#ifdef _WIN32
+ cpu->hThread = qemu_thread_get_handle(cpu->thread);
+#endif
+ } else {
+ /* For non-MTTCG cases we share the thread */
+ cpu->thread = single_tcg_cpu_thread;
+ cpu->halt_cond = single_tcg_halt_cond;
+ cpu->thread_id = first_cpu->thread_id;
+ cpu->can_do_io = 1;
+ cpu->created = true;
+ }
+}
+
+static void qemu_hax_start_vcpu(CPUState *cpu)
+{
+ char thread_name[VCPU_THREAD_NAME_SIZE];
+
+ cpu->thread = g_malloc0(sizeof(QemuThread));
+ cpu->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(cpu->halt_cond);
+
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HAX",
+ cpu->cpu_index);
+ qemu_thread_create(cpu->thread, thread_name, qemu_hax_cpu_thread_fn,
+ cpu, QEMU_THREAD_JOINABLE);
+#ifdef _WIN32
+ cpu->hThread = qemu_thread_get_handle(cpu->thread);
+#endif
+}
+
+static void qemu_kvm_start_vcpu(CPUState *cpu)
+{
+ char thread_name[VCPU_THREAD_NAME_SIZE];
+
+ cpu->thread = g_malloc0(sizeof(QemuThread));
+ cpu->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(cpu->halt_cond);
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/KVM",
+ cpu->cpu_index);
+ qemu_thread_create(cpu->thread, thread_name, qemu_kvm_cpu_thread_fn,
+ cpu, QEMU_THREAD_JOINABLE);
+}
+
+static void qemu_hvf_start_vcpu(CPUState *cpu)
+{
+ char thread_name[VCPU_THREAD_NAME_SIZE];
+
+ /* HVF currently does not support TCG, and only runs in
+ * unrestricted-guest mode. */
+ assert(hvf_enabled());
+
+ cpu->thread = g_malloc0(sizeof(QemuThread));
+ cpu->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(cpu->halt_cond);
+
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/HVF",
+ cpu->cpu_index);
+ qemu_thread_create(cpu->thread, thread_name, qemu_hvf_cpu_thread_fn,
+ cpu, QEMU_THREAD_JOINABLE);
+}
+
+static void qemu_whpx_start_vcpu(CPUState *cpu)
+{
+ char thread_name[VCPU_THREAD_NAME_SIZE];
+
+ cpu->thread = g_malloc0(sizeof(QemuThread));
+ cpu->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(cpu->halt_cond);
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/WHPX",
+ cpu->cpu_index);
+ qemu_thread_create(cpu->thread, thread_name, qemu_whpx_cpu_thread_fn,
+ cpu, QEMU_THREAD_JOINABLE);
+#ifdef _WIN32
+ cpu->hThread = qemu_thread_get_handle(cpu->thread);
+#endif
+}
+
+static void qemu_dummy_start_vcpu(CPUState *cpu)
+{
+ char thread_name[VCPU_THREAD_NAME_SIZE];
+
+ cpu->thread = g_malloc0(sizeof(QemuThread));
+ cpu->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(cpu->halt_cond);
+ snprintf(thread_name, VCPU_THREAD_NAME_SIZE, "CPU %d/DUMMY",
+ cpu->cpu_index);
+ qemu_thread_create(cpu->thread, thread_name, qemu_dummy_cpu_thread_fn, cpu,
+ QEMU_THREAD_JOINABLE);
+}
+
+void qemu_init_vcpu(CPUState *cpu)
+{
+ MachineState *ms = MACHINE(qdev_get_machine());
+
+ cpu->nr_cores = ms->smp.cores;
+ cpu->nr_threads = ms->smp.threads;
+ cpu->stopped = true;
+ cpu->random_seed = qemu_guest_random_seed_thread_part1();
+
+ if (!cpu->as) {
+ /* If the target cpu hasn't set up any address spaces itself,
+ * give it the default one.
+ */
+ cpu->num_ases = 1;
+ cpu_address_space_init(cpu, 0, "cpu-memory", cpu->memory);
+ }
+
+ if (kvm_enabled()) {
+ qemu_kvm_start_vcpu(cpu);
+ } else if (hax_enabled()) {
+ qemu_hax_start_vcpu(cpu);
+ } else if (hvf_enabled()) {
+ qemu_hvf_start_vcpu(cpu);
+ } else if (tcg_enabled()) {
+ qemu_tcg_init_vcpu(cpu);
+ } else if (whpx_enabled()) {
+ qemu_whpx_start_vcpu(cpu);
+ } else {
+ qemu_dummy_start_vcpu(cpu);
+ }
+
+ while (!cpu->created) {
+ qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
+ }
+}
+
+void cpu_stop_current(void)
+{
+ if (current_cpu) {
+ current_cpu->stop = true;
+ cpu_exit(current_cpu);
+ }
+}
+
+int vm_stop(RunState state)
+{
+ if (qemu_in_vcpu_thread()) {
+ qemu_system_vmstop_request_prepare();
+ qemu_system_vmstop_request(state);
+ /*
+ * FIXME: should not return to device code in case
+ * vm_stop() has been requested.
+ */
+ cpu_stop_current();
+ return 0;
+ }
+
+ return do_vm_stop(state, true);
+}
+
+/**
+ * Prepare for (re)starting the VM.
+ * Returns -1 if the vCPUs are not to be restarted (e.g. if they are already
+ * running or in case of an error condition), 0 otherwise.
+ */
+int vm_prepare_start(void)
+{
+ RunState requested;
+
+ qemu_vmstop_requested(&requested);
+ if (runstate_is_running() && requested == RUN_STATE__MAX) {
+ return -1;
+ }
+
+ /* Ensure that a STOP/RESUME pair of events is emitted if a
+ * vmstop request was pending. The BLOCK_IO_ERROR event, for
+ * example, according to documentation is always followed by
+ * the STOP event.
+ */
+ if (runstate_is_running()) {
+ qapi_event_send_stop();
+ qapi_event_send_resume();
+ return -1;
+ }
+
+ /* We are sending this now, but the CPUs will be resumed shortly later */
+ qapi_event_send_resume();
+
+ cpu_enable_ticks();
+ runstate_set(RUN_STATE_RUNNING);
+ vm_state_notify(1, RUN_STATE_RUNNING);
+ return 0;
+}
+
+void vm_start(void)
+{
+ if (!vm_prepare_start()) {
+ resume_all_vcpus();
+ }
+}
+
+/* does a state transition even if the VM is already stopped,
+ current state is forgotten forever */
+int vm_stop_force_state(RunState state)
+{
+ if (runstate_is_running()) {
+ return vm_stop(state);
+ } else {
+ runstate_set(state);
+
+ bdrv_drain_all();
+ /* Make sure to return an error if the flush in a previous vm_stop()
+ * failed. */
+ return bdrv_flush_all();
+ }
+}
+
+void list_cpus(const char *optarg)
+{
+ /* XXX: implement xxx_cpu_list for targets that still miss it */
+#if defined(cpu_list)
+ cpu_list();
+#endif
+}
+
+void qmp_memsave(int64_t addr, int64_t size, const char *filename,
+ bool has_cpu, int64_t cpu_index, Error **errp)
+{
+ FILE *f;
+ uint32_t l;
+ CPUState *cpu;
+ uint8_t buf[1024];
+ int64_t orig_addr = addr, orig_size = size;
+
+ if (!has_cpu) {
+ cpu_index = 0;
+ }
+
+ cpu = qemu_get_cpu(cpu_index);
+ if (cpu == NULL) {
+ error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
+ "a CPU number");
+ return;
+ }
+
+ f = fopen(filename, "wb");
+ if (!f) {
+ error_setg_file_open(errp, errno, filename);
+ return;
+ }
+
+ while (size != 0) {
+ l = sizeof(buf);
+ if (l > size)
+ l = size;
+ if (cpu_memory_rw_debug(cpu, addr, buf, l, 0) != 0) {
+ error_setg(errp, "Invalid addr 0x%016" PRIx64 "/size %" PRId64
+ " specified", orig_addr, orig_size);
+ goto exit;
+ }
+ if (fwrite(buf, 1, l, f) != l) {
+ error_setg(errp, QERR_IO_ERROR);
+ goto exit;
+ }
+ addr += l;
+ size -= l;
+ }
+
+exit:
+ fclose(f);
+}
+
+void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
+ Error **errp)
+{
+ FILE *f;
+ uint32_t l;
+ uint8_t buf[1024];
+
+ f = fopen(filename, "wb");
+ if (!f) {
+ error_setg_file_open(errp, errno, filename);
+ return;
+ }
+
+ while (size != 0) {
+ l = sizeof(buf);
+ if (l > size)
+ l = size;
+ cpu_physical_memory_read(addr, buf, l);
+ if (fwrite(buf, 1, l, f) != l) {
+ error_setg(errp, QERR_IO_ERROR);
+ goto exit;
+ }
+ addr += l;
+ size -= l;
+ }
+
+exit:
+ fclose(f);
+}
+
+void qmp_inject_nmi(Error **errp)
+{
+ nmi_monitor_handle(monitor_get_cpu_index(), errp);
+}
+
+void dump_drift_info(void)
+{
+ if (!use_icount) {
+ return;
+ }
+
+ qemu_printf("Host - Guest clock %"PRIi64" ms\n",
+ (cpu_get_clock() - cpu_get_icount())/SCALE_MS);
+ if (icount_align_option) {
+ qemu_printf("Max guest delay %"PRIi64" ms\n",
+ -max_delay / SCALE_MS);
+ qemu_printf("Max guest advance %"PRIi64" ms\n",
+ max_advance / SCALE_MS);
+ } else {
+ qemu_printf("Max guest delay NA\n");
+ qemu_printf("Max guest advance NA\n");
+ }
+}