diff options
Diffstat (limited to 'hw/ssi')
-rw-r--r-- | hw/ssi/Kconfig | 8 | ||||
-rw-r--r-- | hw/ssi/allwinner-a10-spi.c | 561 | ||||
-rw-r--r-- | hw/ssi/aspeed_smc.c | 91 | ||||
-rw-r--r-- | hw/ssi/bcm2835_spi.c | 4 | ||||
-rw-r--r-- | hw/ssi/ibex_spi_host.c | 8 | ||||
-rw-r--r-- | hw/ssi/imx_spi.c | 4 | ||||
-rw-r--r-- | hw/ssi/meson.build | 3 | ||||
-rw-r--r-- | hw/ssi/mss-spi.c | 4 | ||||
-rw-r--r-- | hw/ssi/npcm7xx_fiu.c | 21 | ||||
-rw-r--r-- | hw/ssi/npcm_pspi.c | 2 | ||||
-rw-r--r-- | hw/ssi/omap_spi.c | 380 | ||||
-rw-r--r-- | hw/ssi/pl022.c | 4 | ||||
-rw-r--r-- | hw/ssi/pnv_spi.c | 1231 | ||||
-rw-r--r-- | hw/ssi/sifive_spi.c | 7 | ||||
-rw-r--r-- | hw/ssi/ssi.c | 7 | ||||
-rw-r--r-- | hw/ssi/stm32f2xx_spi.c | 4 | ||||
-rw-r--r-- | hw/ssi/trace-events | 31 | ||||
-rw-r--r-- | hw/ssi/xilinx_spi.c | 39 | ||||
-rw-r--r-- | hw/ssi/xilinx_spips.c | 22 | ||||
-rw-r--r-- | hw/ssi/xlnx-versal-ospi.c | 7 |
20 files changed, 1961 insertions, 477 deletions
diff --git a/hw/ssi/Kconfig b/hw/ssi/Kconfig index 83ee53c..1bd5646 100644 --- a/hw/ssi/Kconfig +++ b/hw/ssi/Kconfig @@ -24,3 +24,11 @@ config STM32F2XX_SPI config BCM2835_SPI bool select SSI + +config PNV_SPI + bool + select SSI + +config ALLWINNER_A10_SPI + bool + select SSI diff --git a/hw/ssi/allwinner-a10-spi.c b/hw/ssi/allwinner-a10-spi.c new file mode 100644 index 0000000..6b7cca8 --- /dev/null +++ b/hw/ssi/allwinner-a10-spi.c @@ -0,0 +1,561 @@ +/* + * Allwinner SPI Bus Serial Interface Emulation + * + * Copyright (C) 2024 Strahinja Jankovic <strahinja.p.jankovic@gmail.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of the GNU General Public License as published by the + * Free Software Foundation; either version 2 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, but WITHOUT + * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or + * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License + * for more details. + * + * You should have received a copy of the GNU General Public License along + * with this program; if not, see <http://www.gnu.org/licenses/>. + * + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +#include "qemu/osdep.h" +#include "hw/irq.h" +#include "hw/ssi/allwinner-a10-spi.h" +#include "migration/vmstate.h" +#include "qemu/log.h" +#include "qemu/module.h" +#include "trace.h" + +/* Allwinner SPI memory map */ +#define SPI_RXDATA_REG 0x00 /* receive data register */ +#define SPI_TXDATA_REG 0x04 /* transmit data register */ +#define SPI_CTL_REG 0x08 /* control register */ +#define SPI_INTCTL_REG 0x0c /* interrupt control register */ +#define SPI_INT_STA_REG 0x10 /* interrupt status register */ +#define SPI_DMACTL_REG 0x14 /* DMA control register */ +#define SPI_WAIT_REG 0x18 /* wait clock counter register */ +#define SPI_CCTL_REG 0x1c /* clock rate control register */ +#define SPI_BC_REG 0x20 /* burst control register */ +#define SPI_TC_REG 0x24 /* transmit counter register */ +#define SPI_FIFO_STA_REG 0x28 /* FIFO status register */ + +/* Data register */ +#define SPI_DATA_RESET 0 + +/* Control register */ +#define SPI_CTL_SDC (1 << 19) +#define SPI_CTL_TP_EN (1 << 18) +#define SPI_CTL_SS_LEVEL (1 << 17) +#define SPI_CTL_SS_CTRL (1 << 16) +#define SPI_CTL_DHB (1 << 15) +#define SPI_CTL_DDB (1 << 14) +#define SPI_CTL_SS (3 << 12) +#define SPI_CTL_SS_SHIFT 12 +#define SPI_CTL_RPSM (1 << 11) +#define SPI_CTL_XCH (1 << 10) +#define SPI_CTL_RF_RST (1 << 9) +#define SPI_CTL_TF_RST (1 << 8) +#define SPI_CTL_SSCTL (1 << 7) +#define SPI_CTL_LMTF (1 << 6) +#define SPI_CTL_DMAMC (1 << 5) +#define SPI_CTL_SSPOL (1 << 4) +#define SPI_CTL_POL (1 << 3) +#define SPI_CTL_PHA (1 << 2) +#define SPI_CTL_MODE (1 << 1) +#define SPI_CTL_EN (1 << 0) +#define SPI_CTL_MASK 0xFFFFFu +#define SPI_CTL_RESET 0x0002001Cu + +/* Interrupt control register */ +#define SPI_INTCTL_SS_INT_EN (1 << 17) +#define SPI_INTCTL_TX_INT_EN (1 << 16) +#define SPI_INTCTL_TF_UR_INT_EN (1 << 14) +#define SPI_INTCTL_TF_OF_INT_EN (1 << 13) +#define SPI_INTCTL_TF_E34_INT_EN (1 << 12) +#define SPI_INTCTL_TF_E14_INT_EN (1 << 11) +#define SPI_INTCTL_TF_FL_INT_EN (1 << 10) +#define SPI_INTCTL_TF_HALF_EMP_INT_EN (1 << 9) +#define SPI_INTCTL_TF_EMP_INT_EN (1 << 8) +#define SPI_INTCTL_RF_UR_INT_EN (1 << 6) +#define SPI_INTCTL_RF_OF_INT_EN (1 << 5) +#define SPI_INTCTL_RF_E34_INT_EN (1 << 4) +#define SPI_INTCTL_RF_E14_INT_EN (1 << 3) +#define SPI_INTCTL_RF_FU_INT_EN (1 << 2) +#define SPI_INTCTL_RF_HALF_FU_INT_EN (1 << 1) +#define SPI_INTCTL_RF_RDY_INT_EN (1 << 0) +#define SPI_INTCTL_MASK 0x37F7Fu +#define SPI_INTCTL_RESET 0 + +/* Interrupt status register */ +#define SPI_INT_STA_INT_CBF (1 << 31) +#define SPI_INT_STA_SSI (1 << 17) +#define SPI_INT_STA_TC (1 << 16) +#define SPI_INT_STA_TU (1 << 14) +#define SPI_INT_STA_TO (1 << 13) +#define SPI_INT_STA_TE34 (1 << 12) +#define SPI_INT_STA_TE14 (1 << 11) +#define SPI_INT_STA_TF (1 << 10) +#define SPI_INT_STA_THE (1 << 9) +#define SPI_INT_STA_TE (1 << 8) +#define SPI_INT_STA_RU (1 << 6) +#define SPI_INT_STA_RO (1 << 5) +#define SPI_INT_STA_RF34 (1 << 4) +#define SPI_INT_STA_RF14 (1 << 3) +#define SPI_INT_STA_RF (1 << 2) +#define SPI_INT_STA_RHF (1 << 1) +#define SPI_INT_STA_RR (1 << 0) +#define SPI_INT_STA_MASK 0x80037F7Fu +#define SPI_INT_STA_RESET 0x00001B00u + +/* DMA control register - not implemented */ +#define SPI_DMACTL_RESET 0 + +/* Wait clock register */ +#define SPI_WAIT_REG_WCC_MASK 0xFFFFu +#define SPI_WAIT_RESET 0 + +/* Clock control register - not implemented */ +#define SPI_CCTL_RESET 2 + +/* Burst count register */ +#define SPI_BC_BC_MASK 0xFFFFFFu +#define SPI_BC_RESET 0 + +/* Transmi counter register */ +#define SPI_TC_WTC_MASK 0xFFFFFFu +#define SPI_TC_RESET 0 + +/* FIFO status register */ +#define SPI_FIFO_STA_CNT_MASK 0x7F +#define SPI_FIFO_STA_TF_CNT_SHIFT 16 +#define SPI_FIFO_STA_RF_CNT_SHIFT 0 +#define SPI_FIFO_STA_RESET 0 + +#define REG_INDEX(offset) (offset / sizeof(uint32_t)) + + +static const char *allwinner_a10_spi_get_regname(unsigned offset) +{ + switch (offset) { + case SPI_RXDATA_REG: + return "RXDATA"; + case SPI_TXDATA_REG: + return "TXDATA"; + case SPI_CTL_REG: + return "CTL"; + case SPI_INTCTL_REG: + return "INTCTL"; + case SPI_INT_STA_REG: + return "INT_STA"; + case SPI_DMACTL_REG: + return "DMACTL"; + case SPI_WAIT_REG: + return "WAIT"; + case SPI_CCTL_REG: + return "CCTL"; + case SPI_BC_REG: + return "BC"; + case SPI_TC_REG: + return "TC"; + case SPI_FIFO_STA_REG: + return "FIFO_STA"; + default: + return "[?]"; + } +} + +static bool allwinner_a10_spi_is_enabled(AWA10SPIState *s) +{ + return s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_EN; +} + +static void allwinner_a10_spi_txfifo_reset(AWA10SPIState *s) +{ + fifo8_reset(&s->tx_fifo); + s->regs[REG_INDEX(SPI_INT_STA_REG)] |= (SPI_INT_STA_TE | SPI_INT_STA_TE14 | + SPI_INT_STA_THE | SPI_INT_STA_TE34); + s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~(SPI_INT_STA_TU | SPI_INT_STA_TO); +} + +static void allwinner_a10_spi_rxfifo_reset(AWA10SPIState *s) +{ + fifo8_reset(&s->rx_fifo); + s->regs[REG_INDEX(SPI_INT_STA_REG)] &= + ~(SPI_INT_STA_RU | SPI_INT_STA_RO | SPI_INT_STA_RF | SPI_INT_STA_RR | + SPI_INT_STA_RHF | SPI_INT_STA_RF14 | SPI_INT_STA_RF34); +} + +static uint8_t allwinner_a10_spi_selected_channel(AWA10SPIState *s) +{ + return (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_SS) >> SPI_CTL_SS_SHIFT; +} + +static void allwinner_a10_spi_reset_hold(Object *obj, ResetType type) +{ + AWA10SPIState *s = AW_A10_SPI(obj); + + s->regs[REG_INDEX(SPI_RXDATA_REG)] = SPI_DATA_RESET; + s->regs[REG_INDEX(SPI_TXDATA_REG)] = SPI_DATA_RESET; + s->regs[REG_INDEX(SPI_CTL_REG)] = SPI_CTL_RESET; + s->regs[REG_INDEX(SPI_INTCTL_REG)] = SPI_INTCTL_RESET; + s->regs[REG_INDEX(SPI_INT_STA_REG)] = SPI_INT_STA_RESET; + s->regs[REG_INDEX(SPI_DMACTL_REG)] = SPI_DMACTL_RESET; + s->regs[REG_INDEX(SPI_WAIT_REG)] = SPI_WAIT_RESET; + s->regs[REG_INDEX(SPI_CCTL_REG)] = SPI_CCTL_RESET; + s->regs[REG_INDEX(SPI_BC_REG)] = SPI_BC_RESET; + s->regs[REG_INDEX(SPI_TC_REG)] = SPI_TC_RESET; + s->regs[REG_INDEX(SPI_FIFO_STA_REG)] = SPI_FIFO_STA_RESET; + + allwinner_a10_spi_txfifo_reset(s); + allwinner_a10_spi_rxfifo_reset(s); +} + +static void allwinner_a10_spi_update_irq(AWA10SPIState *s) +{ + bool level; + + if (fifo8_is_empty(&s->rx_fifo)) { + s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_RR; + } else { + s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RR; + } + + if (fifo8_num_used(&s->rx_fifo) >= (AW_A10_SPI_FIFO_SIZE >> 2)) { + s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RF14; + } else { + s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_RF14; + } + + if (fifo8_num_used(&s->rx_fifo) >= (AW_A10_SPI_FIFO_SIZE >> 1)) { + s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RHF; + } else { + s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_RHF; + } + + if (fifo8_num_free(&s->rx_fifo) <= (AW_A10_SPI_FIFO_SIZE >> 2)) { + s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RF34; + } else { + s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_RF34; + } + + if (fifo8_is_full(&s->rx_fifo)) { + s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RF; + } else { + s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_RF; + } + + if (fifo8_is_empty(&s->tx_fifo)) { + s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TE; + } else { + s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_TE; + } + + if (fifo8_num_free(&s->tx_fifo) >= (AW_A10_SPI_FIFO_SIZE >> 2)) { + s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TE14; + } else { + s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_TE14; + } + + if (fifo8_num_free(&s->tx_fifo) >= (AW_A10_SPI_FIFO_SIZE >> 1)) { + s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_THE; + } else { + s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_THE; + } + + if (fifo8_num_used(&s->tx_fifo) <= (AW_A10_SPI_FIFO_SIZE >> 2)) { + s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TE34; + } else { + s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_TE34; + } + + if (fifo8_is_full(&s->rx_fifo)) { + s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TF; + } else { + s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~SPI_INT_STA_TF; + } + + level = (s->regs[REG_INDEX(SPI_INT_STA_REG)] & + s->regs[REG_INDEX(SPI_INTCTL_REG)]) != 0; + + qemu_set_irq(s->irq, level); + + trace_allwinner_a10_spi_update_irq(level); +} + +static void allwinner_a10_spi_flush_txfifo(AWA10SPIState *s) +{ + uint32_t burst_count = s->regs[REG_INDEX(SPI_BC_REG)]; + uint32_t tx_burst = s->regs[REG_INDEX(SPI_TC_REG)]; + trace_allwinner_a10_spi_burst_length(tx_burst); + + trace_allwinner_a10_spi_flush_txfifo_begin(fifo8_num_used(&s->tx_fifo), + fifo8_num_used(&s->rx_fifo)); + + while (!fifo8_is_empty(&s->tx_fifo)) { + uint8_t tx = fifo8_pop(&s->tx_fifo); + uint8_t rx = 0; + bool fill_rx = true; + + trace_allwinner_a10_spi_tx(tx); + + /* Write one byte at a time */ + rx = ssi_transfer(s->bus, tx); + + trace_allwinner_a10_spi_rx(rx); + + /* Check DHB here to determine if RX bytes should be stored */ + if (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_DHB) { + /* Store rx bytes only after WTC transfers */ + if (tx_burst > 0u) { + fill_rx = false; + tx_burst--; + } + } + + if (fill_rx) { + if (fifo8_is_full(&s->rx_fifo)) { + s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_RF; + } else { + fifo8_push(&s->rx_fifo, rx); + } + } + + allwinner_a10_spi_update_irq(s); + + burst_count--; + + if (burst_count == 0) { + s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TC; + s->regs[REG_INDEX(SPI_CTL_REG)] &= ~SPI_CTL_XCH; + break; + } + } + + if (fifo8_is_empty(&s->tx_fifo)) { + s->regs[REG_INDEX(SPI_INT_STA_REG)] |= SPI_INT_STA_TC; + s->regs[REG_INDEX(SPI_CTL_REG)] &= ~SPI_CTL_XCH; + } + + trace_allwinner_a10_spi_flush_txfifo_end(fifo8_num_used(&s->tx_fifo), + fifo8_num_used(&s->rx_fifo)); +} + +static uint64_t allwinner_a10_spi_read(void *opaque, hwaddr offset, + unsigned size) +{ + uint32_t value = 0; + AWA10SPIState *s = opaque; + uint32_t index = offset >> 2; + + if (offset > SPI_FIFO_STA_REG) { + qemu_log_mask(LOG_GUEST_ERROR, + "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n", + TYPE_AW_A10_SPI, __func__, offset); + return 0; + } + + value = s->regs[index]; + + if (allwinner_a10_spi_is_enabled(s)) { + switch (offset) { + case SPI_RXDATA_REG: + if (fifo8_is_empty(&s->rx_fifo)) { + /* value is undefined */ + value = 0xdeadbeef; + } else { + /* read from the RX FIFO */ + value = fifo8_pop(&s->rx_fifo); + } + break; + case SPI_TXDATA_REG: + qemu_log_mask(LOG_GUEST_ERROR, + "[%s]%s: Trying to read from TX FIFO\n", + TYPE_AW_A10_SPI, __func__); + + /* Reading from TXDATA gives 0 */ + break; + case SPI_FIFO_STA_REG: + /* Read current tx/rx fifo data count */ + value = fifo8_num_used(&s->tx_fifo) << SPI_FIFO_STA_TF_CNT_SHIFT | + fifo8_num_used(&s->rx_fifo) << SPI_FIFO_STA_RF_CNT_SHIFT; + break; + case SPI_CTL_REG: + case SPI_INTCTL_REG: + case SPI_INT_STA_REG: + case SPI_DMACTL_REG: + case SPI_WAIT_REG: + case SPI_CCTL_REG: + case SPI_BC_REG: + case SPI_TC_REG: + break; + default: + qemu_log_mask(LOG_GUEST_ERROR, + "%s: bad offset 0x%x\n", __func__, + (uint32_t)offset); + break; + } + + allwinner_a10_spi_update_irq(s); + } + trace_allwinner_a10_spi_read(allwinner_a10_spi_get_regname(offset), value); + + return value; +} + +static bool allwinner_a10_spi_update_cs_level(AWA10SPIState *s, int cs_line_nr) +{ + if (cs_line_nr == allwinner_a10_spi_selected_channel(s)) { + return (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_SS_LEVEL) != 0; + } else { + return (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_SSPOL) != 0; + } +} + +static void allwinner_a10_spi_write(void *opaque, hwaddr offset, uint64_t value, + unsigned size) +{ + AWA10SPIState *s = opaque; + uint32_t index = offset >> 2; + int i = 0; + + if (offset > SPI_FIFO_STA_REG) { + qemu_log_mask(LOG_GUEST_ERROR, + "[%s]%s: Bad register at offset 0x%" HWADDR_PRIx "\n", + TYPE_AW_A10_SPI, __func__, offset); + return; + } + + trace_allwinner_a10_spi_write(allwinner_a10_spi_get_regname(offset), + (uint32_t)value); + + if (!allwinner_a10_spi_is_enabled(s)) { + /* Block is disabled */ + if (offset != SPI_CTL_REG) { + /* Ignore access */ + return; + } + } + + switch (offset) { + case SPI_RXDATA_REG: + qemu_log_mask(LOG_GUEST_ERROR, "[%s]%s: Trying to write to RX FIFO\n", + TYPE_AW_A10_SPI, __func__); + break; + case SPI_TXDATA_REG: + if (fifo8_is_full(&s->tx_fifo)) { + /* Ignore writes if queue is full */ + break; + } + + fifo8_push(&s->tx_fifo, (uint8_t)value); + + break; + case SPI_INT_STA_REG: + /* Handle W1C bits - everything except SPI_INT_STA_INT_CBF. */ + value &= ~SPI_INT_STA_INT_CBF; + s->regs[REG_INDEX(SPI_INT_STA_REG)] &= ~(value & SPI_INT_STA_MASK); + break; + case SPI_CTL_REG: + s->regs[REG_INDEX(SPI_CTL_REG)] = value; + + for (i = 0; i < AW_A10_SPI_CS_LINES_NR; i++) { + qemu_set_irq( + s->cs_lines[i], + allwinner_a10_spi_update_cs_level(s, i)); + } + + if (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_XCH) { + /* Request to start emitting */ + allwinner_a10_spi_flush_txfifo(s); + } + if (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_TF_RST) { + allwinner_a10_spi_txfifo_reset(s); + s->regs[REG_INDEX(SPI_CTL_REG)] &= ~SPI_CTL_TF_RST; + } + if (s->regs[REG_INDEX(SPI_CTL_REG)] & SPI_CTL_RF_RST) { + allwinner_a10_spi_rxfifo_reset(s); + s->regs[REG_INDEX(SPI_CTL_REG)] &= ~SPI_CTL_RF_RST; + } + break; + case SPI_INTCTL_REG: + case SPI_DMACTL_REG: + case SPI_WAIT_REG: + case SPI_CCTL_REG: + case SPI_BC_REG: + case SPI_TC_REG: + case SPI_FIFO_STA_REG: + s->regs[index] = value; + break; + default: + qemu_log_mask(LOG_GUEST_ERROR, + "%s: bad offset 0x%x\n", __func__, + (uint32_t)offset); + break; + } + + allwinner_a10_spi_update_irq(s); +} + +static const MemoryRegionOps allwinner_a10_spi_ops = { + .read = allwinner_a10_spi_read, + .write = allwinner_a10_spi_write, + .valid.min_access_size = 1, + .valid.max_access_size = 4, + .endianness = DEVICE_LITTLE_ENDIAN, +}; + +static const VMStateDescription allwinner_a10_spi_vmstate = { + .name = TYPE_AW_A10_SPI, + .version_id = 1, + .minimum_version_id = 1, + .fields = (const VMStateField[]) { + VMSTATE_FIFO8(tx_fifo, AWA10SPIState), + VMSTATE_FIFO8(rx_fifo, AWA10SPIState), + VMSTATE_UINT32_ARRAY(regs, AWA10SPIState, AW_A10_SPI_REGS_NUM), + VMSTATE_END_OF_LIST() + } +}; + +static void allwinner_a10_spi_realize(DeviceState *dev, Error **errp) +{ + AWA10SPIState *s = AW_A10_SPI(dev); + int i = 0; + + memory_region_init_io(&s->iomem, OBJECT(s), &allwinner_a10_spi_ops, s, + TYPE_AW_A10_SPI, AW_A10_SPI_IOSIZE); + sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->iomem); + sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq); + + s->bus = ssi_create_bus(dev, "spi"); + for (i = 0; i < AW_A10_SPI_CS_LINES_NR; i++) { + sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->cs_lines[i]); + } + fifo8_create(&s->tx_fifo, AW_A10_SPI_FIFO_SIZE); + fifo8_create(&s->rx_fifo, AW_A10_SPI_FIFO_SIZE); +} + +static void allwinner_a10_spi_class_init(ObjectClass *klass, const void *data) +{ + DeviceClass *dc = DEVICE_CLASS(klass); + ResettableClass *rc = RESETTABLE_CLASS(klass); + + rc->phases.hold = allwinner_a10_spi_reset_hold; + dc->vmsd = &allwinner_a10_spi_vmstate; + dc->realize = allwinner_a10_spi_realize; + dc->desc = "Allwinner A10 SPI Controller"; +} + +static const TypeInfo allwinner_a10_spi_type_info = { + .name = TYPE_AW_A10_SPI, + .parent = TYPE_SYS_BUS_DEVICE, + .instance_size = sizeof(AWA10SPIState), + .class_init = allwinner_a10_spi_class_init, +}; + +static void allwinner_a10_spi_register_types(void) +{ + type_register_static(&allwinner_a10_spi_type_info); +} + +type_init(allwinner_a10_spi_register_types) diff --git a/hw/ssi/aspeed_smc.c b/hw/ssi/aspeed_smc.c index 49205ab..614528b 100644 --- a/hw/ssi/aspeed_smc.c +++ b/hw/ssi/aspeed_smc.c @@ -359,7 +359,7 @@ static const MemoryRegionOps aspeed_smc_flash_default_ops = { .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 1, - .max_access_size = 4, + .max_access_size = 8, }, }; @@ -417,7 +417,7 @@ static void aspeed_smc_flash_do_select(AspeedSMCFlash *fl, bool unselect) AspeedSMCState *s = fl->controller; trace_aspeed_smc_flash_select(fl->cs, unselect ? "un" : ""); - + s->unselect = unselect; qemu_set_irq(s->cs_lines[fl->cs], unselect); } @@ -670,29 +670,42 @@ static const MemoryRegionOps aspeed_smc_flash_ops = { .endianness = DEVICE_LITTLE_ENDIAN, .valid = { .min_access_size = 1, - .max_access_size = 4, + .max_access_size = 8, }, }; static void aspeed_smc_flash_update_ctrl(AspeedSMCFlash *fl, uint32_t value) { AspeedSMCState *s = fl->controller; - bool unselect; + bool unselect = false; + uint32_t old_mode; + uint32_t new_mode; - /* User mode selects the CS, other modes unselect */ - unselect = (value & CTRL_CMD_MODE_MASK) != CTRL_USERMODE; + old_mode = s->regs[s->r_ctrl0 + fl->cs] & CTRL_CMD_MODE_MASK; + new_mode = value & CTRL_CMD_MODE_MASK; - /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */ - if (!(s->regs[s->r_ctrl0 + fl->cs] & CTRL_CE_STOP_ACTIVE) && - value & CTRL_CE_STOP_ACTIVE) { - unselect = true; + if (old_mode == CTRL_USERMODE) { + if (new_mode != CTRL_USERMODE) { + unselect = true; + } + + /* A change of CTRL_CE_STOP_ACTIVE from 0 to 1, unselects the CS */ + if (!(s->regs[s->r_ctrl0 + fl->cs] & CTRL_CE_STOP_ACTIVE) && + value & CTRL_CE_STOP_ACTIVE) { + unselect = true; + } + } else { + if (new_mode != CTRL_USERMODE) { + unselect = true; + } } s->regs[s->r_ctrl0 + fl->cs] = value; - s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START; - - aspeed_smc_flash_do_select(fl, unselect); + if (unselect != s->unselect) { + s->snoop_index = unselect ? SNOOP_OFF : SNOOP_START; + aspeed_smc_flash_do_select(fl, unselect); + } } static void aspeed_smc_reset(DeviceState *d) @@ -729,6 +742,8 @@ static void aspeed_smc_reset(DeviceState *d) qemu_set_irq(s->cs_lines[i], true); } + s->unselect = true; + /* setup the default segment register values and regions for all */ for (i = 0; i < asc->cs_num_max; ++i) { aspeed_smc_flash_set_segment_region(s, i, @@ -789,8 +804,7 @@ static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask) } } - aspeed_smc_error("invalid HCLK mask %x", hclk_mask); - return 0; + g_assert_not_reached(); } /* @@ -1262,30 +1276,30 @@ static void aspeed_smc_realize(DeviceState *dev, Error **errp) static const VMStateDescription vmstate_aspeed_smc = { .name = "aspeed.smc", - .version_id = 2, + .version_id = 3, .minimum_version_id = 2, .fields = (const VMStateField[]) { VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX), VMSTATE_UINT8(snoop_index, AspeedSMCState), VMSTATE_UINT8(snoop_dummies, AspeedSMCState), + VMSTATE_BOOL_V(unselect, AspeedSMCState, 3), VMSTATE_END_OF_LIST() } }; -static Property aspeed_smc_properties[] = { +static const Property aspeed_smc_properties[] = { DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false), DEFINE_PROP_UINT64("dram-base", AspeedSMCState, dram_base, 0), DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr, TYPE_MEMORY_REGION, MemoryRegion *), - DEFINE_PROP_END_OF_LIST(), }; -static void aspeed_smc_class_init(ObjectClass *klass, void *data) +static void aspeed_smc_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = aspeed_smc_realize; - dc->reset = aspeed_smc_reset; + device_class_set_legacy_reset(dc, aspeed_smc_reset); device_class_set_props(dc, aspeed_smc_properties); dc->vmsd = &vmstate_aspeed_smc; } @@ -1321,14 +1335,13 @@ static void aspeed_smc_flash_realize(DeviceState *dev, Error **errp) sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio); } -static Property aspeed_smc_flash_properties[] = { +static const Property aspeed_smc_flash_properties[] = { DEFINE_PROP_UINT8("cs", AspeedSMCFlash, cs, 0), DEFINE_PROP_LINK("controller", AspeedSMCFlash, controller, TYPE_ASPEED_SMC, AspeedSMCState *), - DEFINE_PROP_END_OF_LIST(), }; -static void aspeed_smc_flash_class_init(ObjectClass *klass, void *data) +static void aspeed_smc_flash_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); @@ -1370,7 +1383,7 @@ static const AspeedSegments aspeed_2400_smc_segments[] = { { 0x10000000, 32 * MiB }, }; -static void aspeed_2400_smc_class_init(ObjectClass *klass, void *data) +static void aspeed_2400_smc_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); @@ -1416,7 +1429,7 @@ static const AspeedSegments aspeed_2400_fmc_segments[] = { { 0x2A000000, 32 * MiB } }; -static void aspeed_2400_fmc_class_init(ObjectClass *klass, void *data) +static void aspeed_2400_fmc_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); @@ -1460,7 +1473,7 @@ static int aspeed_2400_spi1_addr_width(const AspeedSMCState *s) return s->regs[R_SPI_CTRL0] & CTRL_AST2400_SPI_4BYTE ? 4 : 3; } -static void aspeed_2400_spi1_class_init(ObjectClass *klass, void *data) +static void aspeed_2400_spi1_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); @@ -1502,7 +1515,7 @@ static const AspeedSegments aspeed_2500_fmc_segments[] = { { 0x2A000000, 32 * MiB }, }; -static void aspeed_2500_fmc_class_init(ObjectClass *klass, void *data) +static void aspeed_2500_fmc_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); @@ -1542,7 +1555,7 @@ static const AspeedSegments aspeed_2500_spi1_segments[] = { { 0x32000000, 96 * MiB }, /* end address is readonly */ }; -static void aspeed_2500_spi1_class_init(ObjectClass *klass, void *data) +static void aspeed_2500_spi1_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); @@ -1578,7 +1591,7 @@ static const AspeedSegments aspeed_2500_spi2_segments[] = { { 0x3A000000, 96 * MiB }, /* end address is readonly */ }; -static void aspeed_2500_spi2_class_init(ObjectClass *klass, void *data) +static void aspeed_2500_spi2_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); @@ -1661,7 +1674,7 @@ static const AspeedSegments aspeed_2600_fmc_segments[] = { { 0x0, 0 }, /* disabled */ }; -static void aspeed_2600_fmc_class_init(ObjectClass *klass, void *data) +static void aspeed_2600_fmc_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); @@ -1702,7 +1715,7 @@ static const AspeedSegments aspeed_2600_spi1_segments[] = { { 0x0, 0 }, /* disabled */ }; -static void aspeed_2600_spi1_class_init(ObjectClass *klass, void *data) +static void aspeed_2600_spi1_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); @@ -1743,7 +1756,7 @@ static const AspeedSegments aspeed_2600_spi2_segments[] = { { 0x0, 0 }, /* disabled */ }; -static void aspeed_2600_spi2_class_init(ObjectClass *klass, void *data) +static void aspeed_2600_spi2_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); @@ -1826,7 +1839,7 @@ static const AspeedSegments aspeed_1030_fmc_segments[] = { { 0x0, 0 }, /* disabled */ }; -static void aspeed_1030_fmc_class_init(ObjectClass *klass, void *data) +static void aspeed_1030_fmc_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); @@ -1866,7 +1879,7 @@ static const AspeedSegments aspeed_1030_spi1_segments[] = { { 0x0, 0 }, /* disabled */ }; -static void aspeed_1030_spi1_class_init(ObjectClass *klass, void *data) +static void aspeed_1030_spi1_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); @@ -1904,7 +1917,7 @@ static const AspeedSegments aspeed_1030_spi2_segments[] = { { 0x0, 0 }, /* disabled */ }; -static void aspeed_1030_spi2_class_init(ObjectClass *klass, void *data) +static void aspeed_1030_spi2_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); @@ -2009,7 +2022,7 @@ static const AspeedSegments aspeed_2700_fmc_segments[] = { { 0x0, 0 }, /* disabled */ }; -static void aspeed_2700_fmc_class_init(ObjectClass *klass, void *data) +static void aspeed_2700_fmc_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); @@ -2051,7 +2064,7 @@ static const AspeedSegments aspeed_2700_spi0_segments[] = { { 0x0, 0 }, /* disabled */ }; -static void aspeed_2700_spi0_class_init(ObjectClass *klass, void *data) +static void aspeed_2700_spi0_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); @@ -2091,7 +2104,7 @@ static const AspeedSegments aspeed_2700_spi1_segments[] = { { 0x0, 0 }, /* disabled */ }; -static void aspeed_2700_spi1_class_init(ObjectClass *klass, void *data) +static void aspeed_2700_spi1_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); @@ -2131,7 +2144,7 @@ static const AspeedSegments aspeed_2700_spi2_segments[] = { { 0x0, 0 }, /* disabled */ }; -static void aspeed_2700_spi2_class_init(ObjectClass *klass, void *data) +static void aspeed_2700_spi2_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); AspeedSMCClass *asc = ASPEED_SMC_CLASS(klass); diff --git a/hw/ssi/bcm2835_spi.c b/hw/ssi/bcm2835_spi.c index 6ecb42d..bf8ba35 100644 --- a/hw/ssi/bcm2835_spi.c +++ b/hw/ssi/bcm2835_spi.c @@ -264,11 +264,11 @@ static const VMStateDescription vmstate_bcm2835_spi = { } }; -static void bcm2835_spi_class_init(ObjectClass *klass, void *data) +static void bcm2835_spi_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); - dc->reset = bcm2835_spi_reset; + device_class_set_legacy_reset(dc, bcm2835_spi_reset); dc->realize = bcm2835_spi_realize; dc->vmsd = &vmstate_bcm2835_spi; } diff --git a/hw/ssi/ibex_spi_host.c b/hw/ssi/ibex_spi_host.c index 863b5fd..f05be68 100644 --- a/hw/ssi/ibex_spi_host.c +++ b/hw/ssi/ibex_spi_host.c @@ -154,7 +154,6 @@ static void ibex_spi_host_reset(DeviceState *dev) ibex_spi_txfifo_reset(s); s->init_status = true; - return; } /* @@ -561,9 +560,8 @@ static const MemoryRegionOps ibex_spi_ops = { .endianness = DEVICE_LITTLE_ENDIAN, }; -static Property ibex_spi_properties[] = { +static const Property ibex_spi_properties[] = { DEFINE_PROP_UINT32("num_cs", IbexSPIHostState, num_cs, 1), - DEFINE_PROP_END_OF_LIST(), }; static const VMStateDescription vmstate_ibex = { @@ -624,11 +622,11 @@ static void ibex_spi_host_init(Object *obj) sysbus_init_mmio(SYS_BUS_DEVICE(obj), &s->mmio); } -static void ibex_spi_host_class_init(ObjectClass *klass, void *data) +static void ibex_spi_host_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = ibex_spi_host_realize; - dc->reset = ibex_spi_host_reset; + device_class_set_legacy_reset(dc, ibex_spi_host_reset); dc->vmsd = &vmstate_ibex; device_class_set_props(dc, ibex_spi_properties); } diff --git a/hw/ssi/imx_spi.c b/hw/ssi/imx_spi.c index 12d897d..1312f58 100644 --- a/hw/ssi/imx_spi.c +++ b/hw/ssi/imx_spi.c @@ -475,13 +475,13 @@ static void imx_spi_realize(DeviceState *dev, Error **errp) fifo32_create(&s->rx_fifo, ECSPI_FIFO_SIZE); } -static void imx_spi_class_init(ObjectClass *klass, void *data) +static void imx_spi_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = imx_spi_realize; dc->vmsd = &vmstate_imx_spi; - dc->reset = imx_spi_reset; + device_class_set_legacy_reset(dc, imx_spi_reset); dc->desc = "i.MX SPI Controller"; } diff --git a/hw/ssi/meson.build b/hw/ssi/meson.build index b999aeb..6afb1ea 100644 --- a/hw/ssi/meson.build +++ b/hw/ssi/meson.build @@ -1,3 +1,4 @@ +system_ss.add(when: 'CONFIG_ALLWINNER_A10_SPI', if_true: files('allwinner-a10-spi.c')) system_ss.add(when: 'CONFIG_ASPEED_SOC', if_true: files('aspeed_smc.c')) system_ss.add(when: 'CONFIG_MSF2', if_true: files('mss-spi.c')) system_ss.add(when: 'CONFIG_NPCM7XX', if_true: files('npcm7xx_fiu.c', 'npcm_pspi.c')) @@ -9,6 +10,6 @@ system_ss.add(when: 'CONFIG_XILINX_SPI', if_true: files('xilinx_spi.c')) system_ss.add(when: 'CONFIG_XILINX_SPIPS', if_true: files('xilinx_spips.c')) system_ss.add(when: 'CONFIG_XLNX_VERSAL', if_true: files('xlnx-versal-ospi.c')) system_ss.add(when: 'CONFIG_IMX', if_true: files('imx_spi.c')) -system_ss.add(when: 'CONFIG_OMAP', if_true: files('omap_spi.c')) system_ss.add(when: 'CONFIG_IBEX', if_true: files('ibex_spi_host.c')) system_ss.add(when: 'CONFIG_BCM2835_SPI', if_true: files('bcm2835_spi.c')) +system_ss.add(when: 'CONFIG_PNV_SPI', if_true: files('pnv_spi.c')) diff --git a/hw/ssi/mss-spi.c b/hw/ssi/mss-spi.c index 1d25ba2..fd7ba7e 100644 --- a/hw/ssi/mss-spi.c +++ b/hw/ssi/mss-spi.c @@ -398,12 +398,12 @@ static const VMStateDescription vmstate_mss_spi = { } }; -static void mss_spi_class_init(ObjectClass *klass, void *data) +static void mss_spi_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = mss_spi_realize; - dc->reset = mss_spi_reset; + device_class_set_legacy_reset(dc, mss_spi_reset); dc->vmsd = &vmstate_mss_spi; } diff --git a/hw/ssi/npcm7xx_fiu.c b/hw/ssi/npcm7xx_fiu.c index 119c38c..056ce13 100644 --- a/hw/ssi/npcm7xx_fiu.c +++ b/hw/ssi/npcm7xx_fiu.c @@ -29,7 +29,7 @@ #include "trace.h" /* Up to 128 MiB of flash may be accessed directly as memory. */ -#define NPCM7XX_FIU_FLASH_WINDOW_SIZE (128 * MiB) +#define NPCM7XX_FIU_MAX_FLASH_WINDOW_SIZE (128 * MiB) /* Each module has 4 KiB of register space. Only a fraction of it is used. */ #define NPCM7XX_FIU_CTRL_REGS_SIZE (4 * KiB) @@ -507,6 +507,17 @@ static void npcm7xx_fiu_realize(DeviceState *dev, Error **errp) return; } + if (s->flash_size == 0) { + error_setg(errp, "%s: flash size must be set", dev->canonical_path); + return; + } + + if (s->flash_size > NPCM7XX_FIU_MAX_FLASH_WINDOW_SIZE) { + error_setg(errp, "%s: flash size should not exceed 128 MiB", + dev->canonical_path); + return; + } + s->spi = ssi_create_bus(dev, "spi"); s->cs_lines = g_new0(qemu_irq, s->cs_count); qdev_init_gpio_out_named(DEVICE(s), s->cs_lines, "cs", s->cs_count); @@ -525,7 +536,7 @@ static void npcm7xx_fiu_realize(DeviceState *dev, Error **errp) flash->fiu = s; memory_region_init_io(&flash->direct_access, OBJECT(s), &npcm7xx_fiu_flash_ops, &s->flash[i], "flash", - NPCM7XX_FIU_FLASH_WINDOW_SIZE); + s->flash_size); sysbus_init_mmio(sbd, &flash->direct_access); } } @@ -541,12 +552,12 @@ static const VMStateDescription vmstate_npcm7xx_fiu = { }, }; -static Property npcm7xx_fiu_properties[] = { +static const Property npcm7xx_fiu_properties[] = { DEFINE_PROP_INT32("cs-count", NPCM7xxFIUState, cs_count, 0), - DEFINE_PROP_END_OF_LIST(), + DEFINE_PROP_SIZE("flash-size", NPCM7xxFIUState, flash_size, 0), }; -static void npcm7xx_fiu_class_init(ObjectClass *klass, void *data) +static void npcm7xx_fiu_class_init(ObjectClass *klass, const void *data) { ResettableClass *rc = RESETTABLE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); diff --git a/hw/ssi/npcm_pspi.c b/hw/ssi/npcm_pspi.c index 41a5323..a31dcc0 100644 --- a/hw/ssi/npcm_pspi.c +++ b/hw/ssi/npcm_pspi.c @@ -199,7 +199,7 @@ static const VMStateDescription vmstate_npcm_pspi = { }; -static void npcm_pspi_class_init(ObjectClass *klass, void *data) +static void npcm_pspi_class_init(ObjectClass *klass, const void *data) { ResettableClass *rc = RESETTABLE_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); diff --git a/hw/ssi/omap_spi.c b/hw/ssi/omap_spi.c deleted file mode 100644 index 8f85c3e..0000000 --- a/hw/ssi/omap_spi.c +++ /dev/null @@ -1,380 +0,0 @@ -/* - * TI OMAP processor's Multichannel SPI emulation. - * - * Copyright (C) 2007-2009 Nokia Corporation - * - * Original code for OMAP2 by Andrzej Zaborowski <andrew@openedhand.com> - * - * This program is free software; you can redistribute it and/or - * modify it under the terms of the GNU General Public License as - * published by the Free Software Foundation; either version 2 or - * (at your option) any later version of the License. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License along - * with this program; if not, write to the Free Software Foundation, Inc., - * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. - */ - -#include "qemu/osdep.h" -#include "qemu/log.h" -#include "hw/hw.h" -#include "hw/irq.h" -#include "hw/arm/omap.h" - -/* Multichannel SPI */ -struct omap_mcspi_s { - MemoryRegion iomem; - qemu_irq irq; - int chnum; - - uint32_t sysconfig; - uint32_t systest; - uint32_t irqst; - uint32_t irqen; - uint32_t wken; - uint32_t control; - - struct omap_mcspi_ch_s { - qemu_irq txdrq; - qemu_irq rxdrq; - uint32_t (*txrx)(void *opaque, uint32_t, int); - void *opaque; - - uint32_t tx; - uint32_t rx; - - uint32_t config; - uint32_t status; - uint32_t control; - } ch[4]; -}; - -static inline void omap_mcspi_interrupt_update(struct omap_mcspi_s *s) -{ - qemu_set_irq(s->irq, s->irqst & s->irqen); -} - -static inline void omap_mcspi_dmarequest_update(struct omap_mcspi_ch_s *ch) -{ - qemu_set_irq(ch->txdrq, - (ch->control & 1) && /* EN */ - (ch->config & (1 << 14)) && /* DMAW */ - (ch->status & (1 << 1)) && /* TXS */ - ((ch->config >> 12) & 3) != 1); /* TRM */ - qemu_set_irq(ch->rxdrq, - (ch->control & 1) && /* EN */ - (ch->config & (1 << 15)) && /* DMAW */ - (ch->status & (1 << 0)) && /* RXS */ - ((ch->config >> 12) & 3) != 2); /* TRM */ -} - -static void omap_mcspi_transfer_run(struct omap_mcspi_s *s, int chnum) -{ - struct omap_mcspi_ch_s *ch = s->ch + chnum; - - if (!(ch->control & 1)) /* EN */ - return; - if ((ch->status & (1 << 0)) && /* RXS */ - ((ch->config >> 12) & 3) != 2 && /* TRM */ - !(ch->config & (1 << 19))) /* TURBO */ - goto intr_update; - if ((ch->status & (1 << 1)) && /* TXS */ - ((ch->config >> 12) & 3) != 1) /* TRM */ - goto intr_update; - - if (!(s->control & 1) || /* SINGLE */ - (ch->config & (1 << 20))) { /* FORCE */ - if (ch->txrx) - ch->rx = ch->txrx(ch->opaque, ch->tx, /* WL */ - 1 + (0x1f & (ch->config >> 7))); - } - - ch->tx = 0; - ch->status |= 1 << 2; /* EOT */ - ch->status |= 1 << 1; /* TXS */ - if (((ch->config >> 12) & 3) != 2) /* TRM */ - ch->status |= 1 << 0; /* RXS */ - -intr_update: - if ((ch->status & (1 << 0)) && /* RXS */ - ((ch->config >> 12) & 3) != 2 && /* TRM */ - !(ch->config & (1 << 19))) /* TURBO */ - s->irqst |= 1 << (2 + 4 * chnum); /* RX_FULL */ - if ((ch->status & (1 << 1)) && /* TXS */ - ((ch->config >> 12) & 3) != 1) /* TRM */ - s->irqst |= 1 << (0 + 4 * chnum); /* TX_EMPTY */ - omap_mcspi_interrupt_update(s); - omap_mcspi_dmarequest_update(ch); -} - -void omap_mcspi_reset(struct omap_mcspi_s *s) -{ - int ch; - - s->sysconfig = 0; - s->systest = 0; - s->irqst = 0; - s->irqen = 0; - s->wken = 0; - s->control = 4; - - for (ch = 0; ch < 4; ch ++) { - s->ch[ch].config = 0x060000; - s->ch[ch].status = 2; /* TXS */ - s->ch[ch].control = 0; - - omap_mcspi_dmarequest_update(s->ch + ch); - } - - omap_mcspi_interrupt_update(s); -} - -static uint64_t omap_mcspi_read(void *opaque, hwaddr addr, unsigned size) -{ - struct omap_mcspi_s *s = opaque; - int ch = 0; - uint32_t ret; - - if (size != 4) { - return omap_badwidth_read32(opaque, addr); - } - - switch (addr) { - case 0x00: /* MCSPI_REVISION */ - return 0x91; - - case 0x10: /* MCSPI_SYSCONFIG */ - return s->sysconfig; - - case 0x14: /* MCSPI_SYSSTATUS */ - return 1; /* RESETDONE */ - - case 0x18: /* MCSPI_IRQSTATUS */ - return s->irqst; - - case 0x1c: /* MCSPI_IRQENABLE */ - return s->irqen; - - case 0x20: /* MCSPI_WAKEUPENABLE */ - return s->wken; - - case 0x24: /* MCSPI_SYST */ - return s->systest; - - case 0x28: /* MCSPI_MODULCTRL */ - return s->control; - - case 0x68: ch ++; - /* fall through */ - case 0x54: ch ++; - /* fall through */ - case 0x40: ch ++; - /* fall through */ - case 0x2c: /* MCSPI_CHCONF */ - return s->ch[ch].config; - - case 0x6c: ch ++; - /* fall through */ - case 0x58: ch ++; - /* fall through */ - case 0x44: ch ++; - /* fall through */ - case 0x30: /* MCSPI_CHSTAT */ - return s->ch[ch].status; - - case 0x70: ch ++; - /* fall through */ - case 0x5c: ch ++; - /* fall through */ - case 0x48: ch ++; - /* fall through */ - case 0x34: /* MCSPI_CHCTRL */ - return s->ch[ch].control; - - case 0x74: ch ++; - /* fall through */ - case 0x60: ch ++; - /* fall through */ - case 0x4c: ch ++; - /* fall through */ - case 0x38: /* MCSPI_TX */ - return s->ch[ch].tx; - - case 0x78: ch ++; - /* fall through */ - case 0x64: ch ++; - /* fall through */ - case 0x50: ch ++; - /* fall through */ - case 0x3c: /* MCSPI_RX */ - s->ch[ch].status &= ~(1 << 0); /* RXS */ - ret = s->ch[ch].rx; - omap_mcspi_transfer_run(s, ch); - return ret; - } - - OMAP_BAD_REG(addr); - return 0; -} - -static void omap_mcspi_write(void *opaque, hwaddr addr, - uint64_t value, unsigned size) -{ - struct omap_mcspi_s *s = opaque; - int ch = 0; - - if (size != 4) { - omap_badwidth_write32(opaque, addr, value); - return; - } - - switch (addr) { - case 0x00: /* MCSPI_REVISION */ - case 0x14: /* MCSPI_SYSSTATUS */ - case 0x30: /* MCSPI_CHSTAT0 */ - case 0x3c: /* MCSPI_RX0 */ - case 0x44: /* MCSPI_CHSTAT1 */ - case 0x50: /* MCSPI_RX1 */ - case 0x58: /* MCSPI_CHSTAT2 */ - case 0x64: /* MCSPI_RX2 */ - case 0x6c: /* MCSPI_CHSTAT3 */ - case 0x78: /* MCSPI_RX3 */ - OMAP_RO_REG(addr); - return; - - case 0x10: /* MCSPI_SYSCONFIG */ - if (value & (1 << 1)) /* SOFTRESET */ - omap_mcspi_reset(s); - s->sysconfig = value & 0x31d; - break; - - case 0x18: /* MCSPI_IRQSTATUS */ - if (!((s->control & (1 << 3)) && (s->systest & (1 << 11)))) { - s->irqst &= ~value; - omap_mcspi_interrupt_update(s); - } - break; - - case 0x1c: /* MCSPI_IRQENABLE */ - s->irqen = value & 0x1777f; - omap_mcspi_interrupt_update(s); - break; - - case 0x20: /* MCSPI_WAKEUPENABLE */ - s->wken = value & 1; - break; - - case 0x24: /* MCSPI_SYST */ - if (s->control & (1 << 3)) /* SYSTEM_TEST */ - if (value & (1 << 11)) { /* SSB */ - s->irqst |= 0x1777f; - omap_mcspi_interrupt_update(s); - } - s->systest = value & 0xfff; - break; - - case 0x28: /* MCSPI_MODULCTRL */ - if (value & (1 << 3)) /* SYSTEM_TEST */ - if (s->systest & (1 << 11)) { /* SSB */ - s->irqst |= 0x1777f; - omap_mcspi_interrupt_update(s); - } - s->control = value & 0xf; - break; - - case 0x68: ch ++; - /* fall through */ - case 0x54: ch ++; - /* fall through */ - case 0x40: ch ++; - /* fall through */ - case 0x2c: /* MCSPI_CHCONF */ - if ((value ^ s->ch[ch].config) & (3 << 14)) /* DMAR | DMAW */ - omap_mcspi_dmarequest_update(s->ch + ch); - if (((value >> 12) & 3) == 3) { /* TRM */ - qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid TRM value (3)\n", - __func__); - } - if (((value >> 7) & 0x1f) < 3) { /* WL */ - qemu_log_mask(LOG_GUEST_ERROR, - "%s: invalid WL value (%" PRIx64 ")\n", - __func__, (value >> 7) & 0x1f); - } - s->ch[ch].config = value & 0x7fffff; - break; - - case 0x70: ch ++; - /* fall through */ - case 0x5c: ch ++; - /* fall through */ - case 0x48: ch ++; - /* fall through */ - case 0x34: /* MCSPI_CHCTRL */ - if (value & ~s->ch[ch].control & 1) { /* EN */ - s->ch[ch].control |= 1; - omap_mcspi_transfer_run(s, ch); - } else - s->ch[ch].control = value & 1; - break; - - case 0x74: ch ++; - /* fall through */ - case 0x60: ch ++; - /* fall through */ - case 0x4c: ch ++; - /* fall through */ - case 0x38: /* MCSPI_TX */ - s->ch[ch].tx = value; - s->ch[ch].status &= ~(1 << 1); /* TXS */ - omap_mcspi_transfer_run(s, ch); - break; - - default: - OMAP_BAD_REG(addr); - return; - } -} - -static const MemoryRegionOps omap_mcspi_ops = { - .read = omap_mcspi_read, - .write = omap_mcspi_write, - .endianness = DEVICE_NATIVE_ENDIAN, -}; - -struct omap_mcspi_s *omap_mcspi_init(struct omap_target_agent_s *ta, int chnum, - qemu_irq irq, qemu_irq *drq, omap_clk fclk, omap_clk iclk) -{ - struct omap_mcspi_s *s = g_new0(struct omap_mcspi_s, 1); - struct omap_mcspi_ch_s *ch = s->ch; - - s->irq = irq; - s->chnum = chnum; - while (chnum --) { - ch->txdrq = *drq ++; - ch->rxdrq = *drq ++; - ch ++; - } - omap_mcspi_reset(s); - - memory_region_init_io(&s->iomem, NULL, &omap_mcspi_ops, s, "omap.mcspi", - omap_l4_region_size(ta, 0)); - omap_l4_attach(ta, 0, &s->iomem); - - return s; -} - -void omap_mcspi_attach(struct omap_mcspi_s *s, - uint32_t (*txrx)(void *opaque, uint32_t, int), void *opaque, - int chipselect) -{ - if (chipselect < 0 || chipselect >= s->chnum) - hw_error("%s: Bad chipselect %i\n", __func__, chipselect); - - s->ch[chipselect].txrx = txrx; - s->ch[chipselect].opaque = opaque; -} diff --git a/hw/ssi/pl022.c b/hw/ssi/pl022.c index b8be8dd..1dc0bcb 100644 --- a/hw/ssi/pl022.c +++ b/hw/ssi/pl022.c @@ -292,11 +292,11 @@ static void pl022_realize(DeviceState *dev, Error **errp) s->ssi = ssi_create_bus(dev, "ssi"); } -static void pl022_class_init(ObjectClass *klass, void *data) +static void pl022_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); - dc->reset = pl022_reset; + device_class_set_legacy_reset(dc, pl022_reset); dc->vmsd = &vmstate_pl022; dc->realize = pl022_realize; } diff --git a/hw/ssi/pnv_spi.c b/hw/ssi/pnv_spi.c new file mode 100644 index 0000000..f40e883 --- /dev/null +++ b/hw/ssi/pnv_spi.c @@ -0,0 +1,1231 @@ +/* + * QEMU PowerPC SPI model + * + * Copyright (c) 2024, IBM Corporation. + * + * SPDX-License-Identifier: GPL-2.0-or-later + */ + +#include "qemu/osdep.h" +#include "qemu/log.h" +#include "hw/qdev-properties.h" +#include "hw/ppc/pnv_xscom.h" +#include "hw/ssi/pnv_spi.h" +#include "hw/ssi/pnv_spi_regs.h" +#include "hw/ssi/ssi.h" +#include <libfdt.h> +#include "hw/irq.h" +#include "trace.h" + +#define PNV_SPI_OPCODE_LO_NIBBLE(x) (x & 0x0F) +#define PNV_SPI_MASKED_OPCODE(x) (x & 0xF0) +#define PNV_SPI_FIFO_SIZE 16 +#define RDR_MATCH_FAILURE_LIMIT 16 + +/* + * Macro from include/hw/ppc/fdt.h + * fdt.h cannot be included here as it contain ppc target specific dependency. + */ +#define _FDT(exp) \ + do { \ + int _ret = (exp); \ + if (_ret < 0) { \ + qemu_log_mask(LOG_GUEST_ERROR, \ + "error creating device tree: %s: %s", \ + #exp, fdt_strerror(_ret)); \ + exit(1); \ + } \ + } while (0) + +static bool does_rdr_match(PnvSpi *s) +{ + /* + * According to spec, the mask bits that are 0 are compared and the + * bits that are 1 are ignored. + */ + uint16_t rdr_match_mask = GETFIELD(SPI_MM_RDR_MATCH_MASK, s->regs[SPI_MM_REG]); + uint16_t rdr_match_val = GETFIELD(SPI_MM_RDR_MATCH_VAL, s->regs[SPI_MM_REG]); + + if ((~rdr_match_mask & rdr_match_val) == ((~rdr_match_mask) & + GETFIELD(PPC_BITMASK(48, 63), s->regs[SPI_RCV_DATA_REG]))) { + return true; + } + return false; +} + +static uint8_t get_from_offset(PnvSpi *s, uint8_t offset) +{ + uint8_t byte; + + /* + * Offset is an index between 0 and PNV_SPI_REG_SIZE - 1 + * Check the offset before using it. + */ + if (offset < PNV_SPI_REG_SIZE) { + byte = (s->regs[SPI_XMIT_DATA_REG] >> (56 - offset * 8)) & 0xFF; + } else { + /* + * Log an error and return a 0xFF since we have to assign something + * to byte before returning. + */ + qemu_log_mask(LOG_GUEST_ERROR, "Invalid offset = %d used to get byte " + "from TDR\n", offset); + byte = 0xff; + } + return byte; +} + +static uint8_t read_from_frame(PnvSpi *s, uint8_t nr_bytes, uint8_t ecc_count, + uint8_t shift_in_count) +{ + uint8_t byte; + int count = 0; + + while (count < nr_bytes) { + shift_in_count++; + if ((ecc_count != 0) && + (shift_in_count == (PNV_SPI_REG_SIZE + ecc_count))) { + shift_in_count = 0; + } else if (!fifo8_is_empty(&s->rx_fifo)) { + byte = fifo8_pop(&s->rx_fifo); + trace_pnv_spi_shift_rx(byte, count); + s->regs[SPI_RCV_DATA_REG] = (s->regs[SPI_RCV_DATA_REG] << 8) | byte; + } else { + qemu_log_mask(LOG_GUEST_ERROR, "pnv_spi: Reading empty RX_FIFO\n"); + } + count++; + } /* end of while */ + return shift_in_count; +} + +static void spi_response(PnvSpi *s) +{ + uint8_t ecc_count; + uint8_t shift_in_count; + uint32_t rx_len; + int i; + + /* + * Processing here must handle: + * - Which bytes in the payload we should move to the RDR + * - Explicit mode counter configuration settings + * - RDR full and RDR overrun status + */ + + /* + * First check that the response payload is the exact same + * number of bytes as the request payload was + */ + rx_len = fifo8_num_used(&s->rx_fifo); + if (rx_len != (s->N1_bytes + s->N2_bytes)) { + qemu_log_mask(LOG_GUEST_ERROR, "Invalid response payload size in " + "bytes, expected %d, got %d\n", + (s->N1_bytes + s->N2_bytes), rx_len); + } else { + uint8_t ecc_control; + trace_pnv_spi_rx_received(rx_len); + trace_pnv_spi_log_Ncounts(s->N1_bits, s->N1_bytes, s->N1_tx, + s->N1_rx, s->N2_bits, s->N2_bytes, s->N2_tx, s->N2_rx); + /* + * Adding an ECC count let's us know when we have found a payload byte + * that was shifted in but cannot be loaded into RDR. Bits 29-30 of + * clock_config_reset_control register equal to either 0b00 or 0b10 + * indicate that we are taking in data with ECC and either applying + * the ECC or discarding it. + */ + ecc_count = 0; + ecc_control = GETFIELD(SPI_CLK_CFG_ECC_CTRL, s->regs[SPI_CLK_CFG_REG]); + if (ecc_control == 0 || ecc_control == 2) { + ecc_count = 1; + } + /* + * Use the N1_rx and N2_rx counts to control shifting data from the + * payload into the RDR. Keep an overall count of the number of bytes + * shifted into RDR so we can discard every 9th byte when ECC is + * enabled. + */ + shift_in_count = 0; + /* Handle the N1 portion of the frame first */ + if (s->N1_rx != 0) { + trace_pnv_spi_rx_read_N1frame(); + shift_in_count = read_from_frame(s, s->N1_bytes, ecc_count, shift_in_count); + } + /* Handle the N2 portion of the frame */ + if (s->N2_rx != 0) { + /* pop out N1_bytes from rx_fifo if not already */ + if (s->N1_rx == 0) { + for (i = 0; i < s->N1_bytes; i++) { + if (!fifo8_is_empty(&s->rx_fifo)) { + fifo8_pop(&s->rx_fifo); + } else { + qemu_log_mask(LOG_GUEST_ERROR, "pnv_spi: Reading empty" + " RX_FIFO\n"); + } + } + } + trace_pnv_spi_rx_read_N2frame(); + shift_in_count = read_from_frame(s, s->N2_bytes, ecc_count, shift_in_count); + } + if ((s->N1_rx + s->N2_rx) > 0) { + /* + * Data was received so handle RDR status. + * It is easier to handle RDR_full and RDR_overrun status here + * since the RDR register's shift_byte_in method is called + * multiple times in a row. Controlling RDR status is done here + * instead of in the RDR scoped methods for that reason. + */ + if (GETFIELD(SPI_STS_RDR_FULL, s->status) == 1) { + /* + * Data was shifted into the RDR before having been read + * causing previous data to have been overrun. + */ + s->status = SETFIELD(SPI_STS_RDR_OVERRUN, s->status, 1); + } else { + /* + * Set status to indicate that the received data register is + * full. This flag is only cleared once the RDR is unloaded. + */ + s->status = SETFIELD(SPI_STS_RDR_FULL, s->status, 1); + } + } + } /* end of else */ +} /* end of spi_response() */ + +static void transfer(PnvSpi *s) +{ + uint32_t tx, rx, payload_len; + uint8_t rx_byte; + + payload_len = fifo8_num_used(&s->tx_fifo); + for (int offset = 0; offset < payload_len; offset += s->transfer_len) { + tx = 0; + for (int i = 0; i < s->transfer_len; i++) { + if ((offset + i) >= payload_len) { + tx <<= 8; + } else if (!fifo8_is_empty(&s->tx_fifo)) { + tx = (tx << 8) | fifo8_pop(&s->tx_fifo); + } else { + qemu_log_mask(LOG_GUEST_ERROR, "pnv_spi: TX_FIFO underflow\n"); + } + } + rx = ssi_transfer(s->ssi_bus, tx); + for (int i = 0; i < s->transfer_len; i++) { + if ((offset + i) >= payload_len) { + break; + } + rx_byte = (rx >> (8 * (s->transfer_len - 1) - i * 8)) & 0xFF; + if (!fifo8_is_full(&s->rx_fifo)) { + fifo8_push(&s->rx_fifo, rx_byte); + } else { + qemu_log_mask(LOG_GUEST_ERROR, "pnv_spi: RX_FIFO is full\n"); + break; + } + } + } + spi_response(s); + /* Reset fifo for next frame */ + fifo8_reset(&s->tx_fifo); + fifo8_reset(&s->rx_fifo); +} + +/* + * Calculate the N1 counters based on passed in opcode and + * internal register values. + * The method assumes that the opcode is a Shift_N1 opcode + * and doesn't test it. + * The counters returned are: + * N1 bits: Number of bits in the payload data that are significant + * to the responder. + * N1_bytes: Total count of payload bytes for the N1 (portion of the) frame. + * N1_tx: Total number of bytes taken from TDR for N1 + * N1_rx: Total number of bytes taken from the payload for N1 + */ +static void calculate_N1(PnvSpi *s, uint8_t opcode) +{ + /* + * Shift_N1 opcode form: 0x3M + * Implicit mode: + * If M != 0 the shift count is M bytes and M is the number of tx bytes. + * Forced Implicit mode: + * M is the shift count but tx and rx is determined by the count control + * register fields. Note that we only check for forced Implicit mode when + * M != 0 since the mode doesn't make sense when M = 0. + * Explicit mode: + * If M == 0 then shift count is number of bits defined in the + * Counter Configuration Register's shift_count_N1 field. + */ + if (PNV_SPI_OPCODE_LO_NIBBLE(opcode) == 0) { + /* Explicit mode */ + s->N1_bits = GETFIELD(SPI_CTR_CFG_N1, s->regs[SPI_CTR_CFG_REG]); + s->N1_bytes = (s->N1_bits + 7) / 8; + s->N1_tx = 0; + s->N1_rx = 0; + /* If tx count control for N1 is set, load the tx value */ + if (GETFIELD(SPI_CTR_CFG_N1_CTRL_B2, s->regs[SPI_CTR_CFG_REG]) == 1) { + s->N1_tx = s->N1_bytes; + } + /* If rx count control for N1 is set, load the rx value */ + if (GETFIELD(SPI_CTR_CFG_N1_CTRL_B3, s->regs[SPI_CTR_CFG_REG]) == 1) { + s->N1_rx = s->N1_bytes; + } + } else { + /* Implicit mode/Forced Implicit mode, use M field from opcode */ + s->N1_bytes = PNV_SPI_OPCODE_LO_NIBBLE(opcode); + s->N1_bits = s->N1_bytes * 8; + /* + * Assume that we are going to transmit the count + * (pure Implicit only) + */ + s->N1_tx = s->N1_bytes; + s->N1_rx = 0; + /* Let Forced Implicit mode have an effect on the counts */ + if (GETFIELD(SPI_CTR_CFG_N1_CTRL_B1, s->regs[SPI_CTR_CFG_REG]) == 1) { + /* + * If Forced Implicit mode and count control doesn't + * indicate transmit then reset the tx count to 0 + */ + if (GETFIELD(SPI_CTR_CFG_N1_CTRL_B2, s->regs[SPI_CTR_CFG_REG]) == 0) { + s->N1_tx = 0; + } + /* If rx count control for N1 is set, load the rx value */ + if (GETFIELD(SPI_CTR_CFG_N1_CTRL_B3, s->regs[SPI_CTR_CFG_REG]) == 1) { + s->N1_rx = s->N1_bytes; + } + } + } + /* + * Enforce an upper limit on the size of N1 that is equal to the known size + * of the shift register, 64 bits or 72 bits if ECC is enabled. + * If the size exceeds 72 bits it is a user error so log an error, + * cap the size at a max of 64 bits or 72 bits and set the sequencer FSM + * error bit. + */ + uint8_t ecc_control = GETFIELD(SPI_CLK_CFG_ECC_CTRL, s->regs[SPI_CLK_CFG_REG]); + if (ecc_control == 0 || ecc_control == 2) { + if (s->N1_bytes > (PNV_SPI_REG_SIZE + 1)) { + qemu_log_mask(LOG_GUEST_ERROR, "Unsupported N1 shift size when " + "ECC enabled, bytes = 0x%x, bits = 0x%x\n", + s->N1_bytes, s->N1_bits); + s->N1_bytes = PNV_SPI_REG_SIZE + 1; + s->N1_bits = s->N1_bytes * 8; + } + } else if (s->N1_bytes > PNV_SPI_REG_SIZE) { + qemu_log_mask(LOG_GUEST_ERROR, "Unsupported N1 shift size, " + "bytes = 0x%x, bits = 0x%x\n", s->N1_bytes, s->N1_bits); + s->N1_bytes = PNV_SPI_REG_SIZE; + s->N1_bits = s->N1_bytes * 8; + } +} /* end of calculate_N1 */ + +/* + * Shift_N1 operation handler method + */ +static bool operation_shiftn1(PnvSpi *s, uint8_t opcode, bool send_n1_alone) +{ + uint8_t n1_count; + bool stop = false; + /* + * Use a combination of N1 counters to build the N1 portion of the + * transmit payload. + * We only care about transmit at this time since the request payload + * only represents data going out on the controller output line. + * Leave mode specific considerations in the calculate function since + * all we really care about are counters that tell use exactly how + * many bytes are in the payload and how many of those bytes to + * include from the TDR into the payload. + */ + calculate_N1(s, opcode); + trace_pnv_spi_log_Ncounts(s->N1_bits, s->N1_bytes, s->N1_tx, + s->N1_rx, s->N2_bits, s->N2_bytes, s->N2_tx, s->N2_rx); + /* + * Zero out the N2 counters here in case there is no N2 operation following + * the N1 operation in the sequencer. This keeps leftover N2 information + * from interfering with spi_response logic. + */ + s->N2_bits = 0; + s->N2_bytes = 0; + s->N2_tx = 0; + s->N2_rx = 0; + /* + * N1_bytes is the overall size of the N1 portion of the frame regardless of + * whether N1 is used for tx, rx or both. Loop over the size to build a + * payload that is N1_bytes long. + * N1_tx is the count of bytes to take from the TDR and "shift" into the + * frame which means append those bytes to the payload for the N1 portion + * of the frame. + * If N1_tx is 0 or if the count exceeds the size of the TDR append 0xFF to + * the frame until the overall N1 count is reached. + */ + n1_count = 0; + while (n1_count < s->N1_bytes) { + /* + * Assuming that if N1_tx is not equal to 0 then it is the same as + * N1_bytes. + */ + if ((s->N1_tx != 0) && (n1_count < PNV_SPI_REG_SIZE)) { + + if (GETFIELD(SPI_STS_TDR_FULL, s->status) == 1) { + /* + * Note that we are only appending to the payload IF the TDR + * is full otherwise we don't touch the payload because we are + * going to NOT send the payload and instead tell the sequencer + * that called us to stop and wait for a TDR write so we have + * data to load into the payload. + */ + uint8_t n1_byte = 0x00; + n1_byte = get_from_offset(s, n1_count); + if (!fifo8_is_full(&s->tx_fifo)) { + trace_pnv_spi_tx_append("n1_byte", n1_byte, n1_count); + fifo8_push(&s->tx_fifo, n1_byte); + } else { + qemu_log_mask(LOG_GUEST_ERROR, "pnv_spi: TX_FIFO is full\n"); + break; + } + } else { + /* + * We hit a shift_n1 opcode TX but the TDR is empty, tell the + * sequencer to stop and break this loop. + */ + trace_pnv_spi_sequencer_stop_requested("Shift N1" + "set for transmit but TDR is empty"); + stop = true; + break; + } + } else { + /* + * Cases here: + * - we are receiving during the N1 frame segment and the RDR + * is full so we need to stop until the RDR is read + * - we are transmitting and we don't care about RDR status + * since we won't be loading RDR during the frame segment. + * - we are receiving and the RDR is empty so we allow the operation + * to proceed. + */ + if ((s->N1_rx != 0) && (GETFIELD(SPI_STS_RDR_FULL, s->status) == 1)) { + trace_pnv_spi_sequencer_stop_requested("shift N1" + "set for receive but RDR is full"); + stop = true; + break; + } else if (!fifo8_is_full(&s->tx_fifo)) { + trace_pnv_spi_tx_append_FF("n1_byte"); + fifo8_push(&s->tx_fifo, 0xff); + } else { + qemu_log_mask(LOG_GUEST_ERROR, "pnv_spi: TX_FIFO is full\n"); + break; + } + } + n1_count++; + } /* end of while */ + /* + * If we are not stopping due to an empty TDR and we are doing an N1 TX + * and the TDR is full we need to clear the TDR_full status. + * Do this here instead of up in the loop above so we don't log the message + * in every loop iteration. + * Ignore the send_n1_alone flag, all that does is defer the TX until the N2 + * operation, which was found immediately after the current opcode. The TDR + * was unloaded and will be shifted so we have to clear the TDR_full status. + */ + if (!stop && (s->N1_tx != 0) && + (GETFIELD(SPI_STS_TDR_FULL, s->status) == 1)) { + s->status = SETFIELD(SPI_STS_TDR_FULL, s->status, 0); + } + /* + * There are other reasons why the shifter would stop, such as a TDR empty + * or RDR full condition with N1 set to receive. If we haven't stopped due + * to either one of those conditions then check if the send_n1_alone flag is + * equal to False, indicating the next opcode is an N2 operation, AND if + * the N2 counter reload switch (bit 0 of the N2 count control field) is + * set. This condition requires a pacing write to "kick" off the N2 + * shift which includes the N1 shift as well when send_n1_alone is False. + */ + if (!stop && !send_n1_alone && + (GETFIELD(SPI_CTR_CFG_N2_CTRL_B0, s->regs[SPI_CTR_CFG_REG]) == 1)) { + trace_pnv_spi_sequencer_stop_requested("N2 counter reload " + "active, stop N1 shift, TDR_underrun set to 1"); + stop = true; + s->status = SETFIELD(SPI_STS_TDR_UNDERRUN, s->status, 1); + } + /* + * If send_n1_alone is set AND we have a full TDR then this is the first and + * last payload to send and we don't have an N2 frame segment to add to the + * payload. + */ + if (send_n1_alone && !stop) { + /* We have a TX and a full TDR or an RX and an empty RDR */ + trace_pnv_spi_tx_request("Shifting N1 frame", fifo8_num_used(&s->tx_fifo)); + transfer(s); + /* The N1 frame shift is complete so reset the N1 counters */ + s->N2_bits = 0; + s->N2_bytes = 0; + s->N2_tx = 0; + s->N2_rx = 0; + } + return stop; +} /* end of operation_shiftn1() */ + +/* + * Calculate the N2 counters based on passed in opcode and + * internal register values. + * The method assumes that the opcode is a Shift_N2 opcode + * and doesn't test it. + * The counters returned are: + * N2 bits: Number of bits in the payload data that are significant + * to the responder. + * N2_bytes: Total count of payload bytes for the N2 frame. + * N2_tx: Total number of bytes taken from TDR for N2 + * N2_rx: Total number of bytes taken from the payload for N2 + */ +static void calculate_N2(PnvSpi *s, uint8_t opcode) +{ + /* + * Shift_N2 opcode form: 0x4M + * Implicit mode: + * If M!=0 the shift count is M bytes and M is the number of rx bytes. + * Forced Implicit mode: + * M is the shift count but tx and rx is determined by the count control + * register fields. Note that we only check for Forced Implicit mode when + * M != 0 since the mode doesn't make sense when M = 0. + * Explicit mode: + * If M==0 then shift count is number of bits defined in the + * Counter Configuration Register's shift_count_N1 field. + */ + if (PNV_SPI_OPCODE_LO_NIBBLE(opcode) == 0) { + /* Explicit mode */ + s->N2_bits = GETFIELD(SPI_CTR_CFG_N2, s->regs[SPI_CTR_CFG_REG]); + s->N2_bytes = (s->N2_bits + 7) / 8; + s->N2_tx = 0; + s->N2_rx = 0; + /* If tx count control for N2 is set, load the tx value */ + if (GETFIELD(SPI_CTR_CFG_N2_CTRL_B2, s->regs[SPI_CTR_CFG_REG]) == 1) { + s->N2_tx = s->N2_bytes; + } + /* If rx count control for N2 is set, load the rx value */ + if (GETFIELD(SPI_CTR_CFG_N2_CTRL_B3, s->regs[SPI_CTR_CFG_REG]) == 1) { + s->N2_rx = s->N2_bytes; + } + } else { + /* Implicit mode/Forced Implicit mode, use M field from opcode */ + s->N2_bytes = PNV_SPI_OPCODE_LO_NIBBLE(opcode); + s->N2_bits = s->N2_bytes * 8; + /* Assume that we are going to receive the count */ + s->N2_rx = s->N2_bytes; + s->N2_tx = 0; + /* Let Forced Implicit mode have an effect on the counts */ + if (GETFIELD(SPI_CTR_CFG_N2_CTRL_B1, s->regs[SPI_CTR_CFG_REG]) == 1) { + /* + * If Forced Implicit mode and count control doesn't + * indicate a receive then reset the rx count to 0 + */ + if (GETFIELD(SPI_CTR_CFG_N2_CTRL_B3, s->regs[SPI_CTR_CFG_REG]) == 0) { + s->N2_rx = 0; + } + /* If tx count control for N2 is set, load the tx value */ + if (GETFIELD(SPI_CTR_CFG_N2_CTRL_B2, s->regs[SPI_CTR_CFG_REG]) == 1) { + s->N2_tx = s->N2_bytes; + } + } + } + /* + * Enforce an upper limit on the size of N1 that is equal to the + * known size of the shift register, 64 bits or 72 bits if ECC + * is enabled. + * If the size exceeds 72 bits it is a user error so log an error, + * cap the size at a max of 64 bits or 72 bits and set the sequencer FSM + * error bit. + */ + uint8_t ecc_control = GETFIELD(SPI_CLK_CFG_ECC_CTRL, s->regs[SPI_CLK_CFG_REG]); + if (ecc_control == 0 || ecc_control == 2) { + if (s->N2_bytes > (PNV_SPI_REG_SIZE + 1)) { + /* Unsupported N2 shift size when ECC enabled */ + s->N2_bytes = PNV_SPI_REG_SIZE + 1; + s->N2_bits = s->N2_bytes * 8; + } + } else if (s->N2_bytes > PNV_SPI_REG_SIZE) { + /* Unsupported N2 shift size */ + s->N2_bytes = PNV_SPI_REG_SIZE; + s->N2_bits = s->N2_bytes * 8; + } +} /* end of calculate_N2 */ + +/* + * Shift_N2 operation handler method + */ + +static bool operation_shiftn2(PnvSpi *s, uint8_t opcode) +{ + uint8_t n2_count; + bool stop = false; + /* + * Use a combination of N2 counters to build the N2 portion of the + * transmit payload. + */ + calculate_N2(s, opcode); + trace_pnv_spi_log_Ncounts(s->N1_bits, s->N1_bytes, s->N1_tx, + s->N1_rx, s->N2_bits, s->N2_bytes, s->N2_tx, s->N2_rx); + /* + * The only difference between this code and the code for shift N1 is + * that this code has to account for the possible presence of N1 transmit + * bytes already taken from the TDR. + * If there are bytes to be transmitted for the N2 portion of the frame + * and there are still bytes in TDR that have not been copied into the + * TX data of the payload, this code will handle transmitting those + * remaining bytes. + * If for some reason the transmit count(s) add up to more than the size + * of the TDR we will just append 0xFF to the transmit payload data until + * the payload is N1 + N2 bytes long. + */ + n2_count = 0; + while (n2_count < s->N2_bytes) { + /* + * If the RDR is full and we need to RX just bail out, letting the + * code continue will end up building the payload twice in the same + * buffer since RDR full causes a sequence stop and restart. + */ + if ((s->N2_rx != 0) && (GETFIELD(SPI_STS_RDR_FULL, s->status) == 1)) { + trace_pnv_spi_sequencer_stop_requested("shift N2 set" + "for receive but RDR is full"); + stop = true; + break; + } + if ((s->N2_tx != 0) && ((s->N1_tx + n2_count) < PNV_SPI_REG_SIZE)) { + /* Always append data for the N2 segment if it is set for TX */ + uint8_t n2_byte = 0x00; + n2_byte = get_from_offset(s, (s->N1_tx + n2_count)); + if (!fifo8_is_full(&s->tx_fifo)) { + trace_pnv_spi_tx_append("n2_byte", n2_byte, (s->N1_tx + n2_count)); + fifo8_push(&s->tx_fifo, n2_byte); + } else { + qemu_log_mask(LOG_GUEST_ERROR, "pnv_spi: TX_FIFO is full\n"); + break; + } + } else if (!fifo8_is_full(&s->tx_fifo)) { + /* + * Regardless of whether or not N2 is set for TX or RX, we need + * the number of bytes in the payload to match the overall length + * of the operation. + */ + trace_pnv_spi_tx_append_FF("n2_byte"); + fifo8_push(&s->tx_fifo, 0xff); + } else { + qemu_log_mask(LOG_GUEST_ERROR, "pnv_spi: TX_FIFO is full\n"); + break; + } + n2_count++; + } /* end of while */ + if (!stop) { + /* We have a TX and a full TDR or an RX and an empty RDR */ + trace_pnv_spi_tx_request("Shifting N2 frame", fifo8_num_used(&s->tx_fifo)); + transfer(s); + /* + * If we are doing an N2 TX and the TDR is full we need to clear the + * TDR_full status. Do this here instead of up in the loop above so we + * don't log the message in every loop iteration. + */ + if ((s->N2_tx != 0) && (GETFIELD(SPI_STS_TDR_FULL, s->status) == 1)) { + s->status = SETFIELD(SPI_STS_TDR_FULL, s->status, 0); + } + /* + * The N2 frame shift is complete so reset the N2 counters. + * Reset the N1 counters also in case the frame was a combination of + * N1 and N2 segments. + */ + s->N2_bits = 0; + s->N2_bytes = 0; + s->N2_tx = 0; + s->N2_rx = 0; + s->N1_bits = 0; + s->N1_bytes = 0; + s->N1_tx = 0; + s->N1_rx = 0; + } + return stop; +} /* end of operation_shiftn2()*/ + +static void operation_sequencer(PnvSpi *s) +{ + /* + * Loop through each sequencer operation ID and perform the requested + * operations. + * Flag for indicating if we should send the N1 frame or wait to combine + * it with a preceding N2 frame. + */ + bool send_n1_alone = true; + bool stop = false; /* Flag to stop the sequencer */ + uint8_t opcode = 0; + uint8_t masked_opcode = 0; + uint8_t seq_index; + + /* + * Clear the sequencer FSM error bit - general_SPI_status[3] + * before starting a sequence. + */ + s->status = SETFIELD(SPI_STS_GEN_STATUS_B3, s->status, 0); + /* + * If the FSM is idle set the sequencer index to 0 + * (new/restarted sequence) + */ + if (GETFIELD(SPI_STS_SEQ_FSM, s->status) == SEQ_STATE_IDLE) { + s->status = SETFIELD(SPI_STS_SEQ_INDEX, s->status, 0); + } + /* + * SPI_STS_SEQ_INDEX of status register is kept in seq_index variable and + * updated back to status register at the end of operation_sequencer(). + */ + seq_index = GETFIELD(SPI_STS_SEQ_INDEX, s->status); + /* + * There are only 8 possible operation IDs to iterate through though + * some operations may cause more than one frame to be sequenced. + */ + while (seq_index < NUM_SEQ_OPS) { + opcode = s->seq_op[seq_index]; + /* Set sequencer state to decode */ + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_DECODE); + /* + * Only the upper nibble of the operation ID is needed to know what + * kind of operation is requested. + */ + masked_opcode = PNV_SPI_MASKED_OPCODE(opcode); + switch (masked_opcode) { + /* + * Increment the operation index in each case instead of just + * once at the end in case an operation like the branch + * operation needs to change the index. + */ + case SEQ_OP_STOP: + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE); + /* A stop operation in any position stops the sequencer */ + trace_pnv_spi_sequencer_op("STOP", seq_index); + + stop = true; + s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_IDLE); + s->loop_counter_1 = 0; + s->loop_counter_2 = 0; + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_IDLE); + break; + + case SEQ_OP_SELECT_SLAVE: + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE); + trace_pnv_spi_sequencer_op("SELECT_SLAVE", seq_index); + /* + * This device currently only supports a single responder + * connection at position 0. De-selecting a responder is fine + * and expected at the end of a sequence but selecting any + * responder other than 0 should cause an error. + */ + s->responder_select = PNV_SPI_OPCODE_LO_NIBBLE(opcode); + if (s->responder_select == 0) { + trace_pnv_spi_shifter_done(); + qemu_set_irq(s->cs_line[0], 1); + seq_index++; + s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_DONE); + } else if (s->responder_select != 1) { + qemu_log_mask(LOG_GUEST_ERROR, "Slave selection other than 1 " + "not supported, select = 0x%x\n", s->responder_select); + trace_pnv_spi_sequencer_stop_requested("invalid responder select"); + s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_IDLE); + stop = true; + } else { + /* + * Only allow an FSM_START state when a responder is + * selected + */ + s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_START); + trace_pnv_spi_shifter_stating(); + qemu_set_irq(s->cs_line[0], 0); + /* + * A Shift_N2 operation is only valid after a Shift_N1 + * according to the spec. The spec doesn't say if that means + * immediately after or just after at any point. We will track + * the occurrence of a Shift_N1 to enforce this requirement in + * the most generic way possible by assuming that the rule + * applies once a valid responder select has occurred. + */ + s->shift_n1_done = false; + seq_index++; + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, + SEQ_STATE_INDEX_INCREMENT); + } + break; + + case SEQ_OP_SHIFT_N1: + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE); + trace_pnv_spi_sequencer_op("SHIFT_N1", seq_index); + /* + * Only allow a shift_n1 when the state is not IDLE or DONE. + * In either of those two cases the sequencer is not in a proper + * state to perform shift operations because the sequencer has: + * - processed a responder deselect (DONE) + * - processed a stop opcode (IDLE) + * - encountered an error (IDLE) + */ + if ((GETFIELD(SPI_STS_SHIFTER_FSM, s->status) == FSM_IDLE) || + (GETFIELD(SPI_STS_SHIFTER_FSM, s->status) == FSM_DONE)) { + qemu_log_mask(LOG_GUEST_ERROR, "Shift_N1 not allowed in " + "shifter state = 0x%llx", GETFIELD( + SPI_STS_SHIFTER_FSM, s->status)); + /* + * Set sequencer FSM error bit 3 (general_SPI_status[3]) + * in status reg. + */ + s->status = SETFIELD(SPI_STS_GEN_STATUS_B3, s->status, 1); + trace_pnv_spi_sequencer_stop_requested("invalid shifter state"); + stop = true; + } else { + /* + * Look for the special case where there is a shift_n1 set for + * transmit and it is followed by a shift_n2 set for transmit + * AND the combined transmit length of the two operations is + * less than or equal to the size of the TDR register. In this + * case we want to use both this current shift_n1 opcode and the + * following shift_n2 opcode to assemble the frame for + * transmission to the responder without requiring a refill of + * the TDR between the two operations. + */ + if ((seq_index != 7) && + PNV_SPI_MASKED_OPCODE(s->seq_op[(seq_index + 1)]) == + SEQ_OP_SHIFT_N2) { + send_n1_alone = false; + } + s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_SHIFT_N1); + stop = operation_shiftn1(s, opcode, send_n1_alone); + if (stop) { + /* + * The operation code says to stop, this can occur if: + * (1) RDR is full and the N1 shift is set for receive + * (2) TDR was empty at the time of the N1 shift so we need + * to wait for data. + * (3) Neither 1 nor 2 are occurring and we aren't sending + * N1 alone and N2 counter reload is set (bit 0 of the N2 + * counter reload field). In this case TDR_underrun will + * will be set and the Payload has been loaded so it is + * ok to advance the sequencer. + */ + if (GETFIELD(SPI_STS_TDR_UNDERRUN, s->status)) { + s->shift_n1_done = true; + s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, + FSM_SHIFT_N2); + seq_index++; + } else { + /* + * This is case (1) or (2) so the sequencer needs to + * wait and NOT go to the next sequence yet. + */ + s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_WAIT); + } + } else { + /* Ok to move on to the next index */ + s->shift_n1_done = true; + seq_index++; + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, + SEQ_STATE_INDEX_INCREMENT); + } + } + break; + + case SEQ_OP_SHIFT_N2: + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE); + trace_pnv_spi_sequencer_op("SHIFT_N2", seq_index); + if (!s->shift_n1_done) { + qemu_log_mask(LOG_GUEST_ERROR, "Shift_N2 is not allowed if a " + "Shift_N1 is not done, shifter state = 0x%llx", + GETFIELD(SPI_STS_SHIFTER_FSM, s->status)); + /* + * In case the sequencer actually stops if an N2 shift is + * requested before any N1 shift is done. Set sequencer FSM + * error bit 3 (general_SPI_status[3]) in status reg. + */ + s->status = SETFIELD(SPI_STS_GEN_STATUS_B3, s->status, 1); + trace_pnv_spi_sequencer_stop_requested("shift_n2 w/no shift_n1 done"); + stop = true; + } else { + /* Ok to do a Shift_N2 */ + s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_SHIFT_N2); + stop = operation_shiftn2(s, opcode); + /* + * If the operation code says to stop set the shifter state to + * wait and stop + */ + if (stop) { + s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_WAIT); + } else { + /* Ok to move on to the next index */ + seq_index++; + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, + SEQ_STATE_INDEX_INCREMENT); + } + } + break; + + case SEQ_OP_BRANCH_IFNEQ_RDR: + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE); + trace_pnv_spi_sequencer_op("BRANCH_IFNEQ_RDR", seq_index); + /* + * The memory mapping register RDR match value is compared against + * the 16 rightmost bytes of the RDR (potentially with masking). + * Since this comparison is performed against the contents of the + * RDR then a receive must have previously occurred otherwise + * there is no data to compare and the operation cannot be + * completed and will stop the sequencer until RDR full is set to + * 1. + */ + if (GETFIELD(SPI_STS_RDR_FULL, s->status) == 1) { + bool rdr_matched = false; + rdr_matched = does_rdr_match(s); + if (rdr_matched) { + trace_pnv_spi_RDR_match("success"); + s->fail_count = 0; + /* A match occurred, increment the sequencer index. */ + seq_index++; + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, + SEQ_STATE_INDEX_INCREMENT); + } else { + trace_pnv_spi_RDR_match("failed"); + s->fail_count++; + /* + * Branch the sequencer to the index coded into the op + * code. + */ + seq_index = PNV_SPI_OPCODE_LO_NIBBLE(opcode); + } + if (s->fail_count >= RDR_MATCH_FAILURE_LIMIT) { + qemu_log_mask(LOG_GUEST_ERROR, "pnv_spi: RDR match failure" + " limit crossed %d times hence requesting " + "sequencer to stop.\n", + RDR_MATCH_FAILURE_LIMIT); + stop = true; + } + /* + * Regardless of where the branch ended up we want the + * sequencer to continue shifting so we have to clear + * RDR_full. + */ + s->status = SETFIELD(SPI_STS_RDR_FULL, s->status, 0); + } else { + trace_pnv_spi_sequencer_stop_requested("RDR not" + "full for 0x6x opcode"); + stop = true; + s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_WAIT); + } + break; + + case SEQ_OP_TRANSFER_TDR: + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE); + qemu_log_mask(LOG_GUEST_ERROR, "Transfer TDR is not supported\n"); + seq_index++; + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_INDEX_INCREMENT); + break; + + case SEQ_OP_BRANCH_IFNEQ_INC_1: + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE); + trace_pnv_spi_sequencer_op("BRANCH_IFNEQ_INC_1", seq_index); + /* + * The spec says the loop should execute count compare + 1 times. + * However we learned from engineering that we really only loop + * count_compare times, count compare = 0 makes this op code a + * no-op + */ + if (s->loop_counter_1 != + GETFIELD(SPI_CTR_CFG_CMP1, s->regs[SPI_CTR_CFG_REG])) { + /* + * Next index is the lower nibble of the branch operation ID, + * mask off all but the first three bits so we don't try to + * access beyond the sequencer_operation_reg boundary. + */ + seq_index = PNV_SPI_OPCODE_LO_NIBBLE(opcode); + s->loop_counter_1++; + } else { + /* Continue to next index if loop counter is reached */ + seq_index++; + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, + SEQ_STATE_INDEX_INCREMENT); + } + break; + + case SEQ_OP_BRANCH_IFNEQ_INC_2: + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE); + trace_pnv_spi_sequencer_op("BRANCH_IFNEQ_INC_2", seq_index); + uint8_t condition2 = GETFIELD(SPI_CTR_CFG_CMP2, + s->regs[SPI_CTR_CFG_REG]); + /* + * The spec says the loop should execute count compare + 1 times. + * However we learned from engineering that we really only loop + * count_compare times, count compare = 0 makes this op code a + * no-op + */ + if (s->loop_counter_2 != condition2) { + /* + * Next index is the lower nibble of the branch operation ID, + * mask off all but the first three bits so we don't try to + * access beyond the sequencer_operation_reg boundary. + */ + seq_index = PNV_SPI_OPCODE_LO_NIBBLE(opcode); + s->loop_counter_2++; + } else { + /* Continue to next index if loop counter is reached */ + seq_index++; + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, + SEQ_STATE_INDEX_INCREMENT); + } + break; + + default: + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE); + /* Ignore unsupported operations. */ + seq_index++; + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_INDEX_INCREMENT); + break; + } /* end of switch */ + /* + * If we used all 8 opcodes without seeing a 00 - STOP in the sequence + * we need to go ahead and end things as if there was a STOP at the + * end. + */ + if (seq_index == NUM_SEQ_OPS) { + /* All 8 opcodes completed, sequencer idling */ + s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_IDLE); + seq_index = 0; + s->loop_counter_1 = 0; + s->loop_counter_2 = 0; + s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_IDLE); + break; + } + /* Break the loop if a stop was requested */ + if (stop) { + break; + } + } /* end of while */ + /* Update sequencer index field in status.*/ + s->status = SETFIELD(SPI_STS_SEQ_INDEX, s->status, seq_index); +} /* end of operation_sequencer() */ + +/* + * The SPIC engine and its internal sequencer can be interrupted and reset by + * a hardware signal, the sbe_spicst_hard_reset bits from Pervasive + * Miscellaneous Register of sbe_register_bo device. + * Reset immediately aborts any SPI transaction in progress and returns the + * sequencer and state machines to idle state. + * The configuration register values are not changed. The status register is + * not reset. The engine registers are not reset. + * The SPIC engine reset does not have any affect on the attached devices. + * Reset handling of any attached devices is beyond the scope of the engine. + */ +static void do_reset(DeviceState *dev) +{ + PnvSpi *s = PNV_SPI(dev); + DeviceState *ssi_dev; + + trace_pnv_spi_reset(); + + /* Connect cs irq */ + ssi_dev = ssi_get_cs(s->ssi_bus, 0); + if (ssi_dev) { + qemu_irq cs_line = qdev_get_gpio_in_named(ssi_dev, SSI_GPIO_CS, 0); + qdev_connect_gpio_out_named(DEVICE(s), "cs", 0, cs_line); + } + + /* Reset all N1 and N2 counters, and other constants */ + s->N2_bits = 0; + s->N2_bytes = 0; + s->N2_tx = 0; + s->N2_rx = 0; + s->N1_bits = 0; + s->N1_bytes = 0; + s->N1_tx = 0; + s->N1_rx = 0; + s->loop_counter_1 = 0; + s->loop_counter_2 = 0; + /* Disconnected from responder */ + qemu_set_irq(s->cs_line[0], 1); +} + +static uint64_t pnv_spi_xscom_read(void *opaque, hwaddr addr, unsigned size) +{ + PnvSpi *s = PNV_SPI(opaque); + uint32_t reg = addr >> 3; + uint64_t val = ~0ull; + + switch (reg) { + case ERROR_REG: + case SPI_CTR_CFG_REG: + case CONFIG_REG1: + case SPI_CLK_CFG_REG: + case SPI_MM_REG: + case SPI_XMIT_DATA_REG: + val = s->regs[reg]; + break; + case SPI_RCV_DATA_REG: + val = s->regs[reg]; + trace_pnv_spi_read_RDR(val); + s->status = SETFIELD(SPI_STS_RDR_FULL, s->status, 0); + if (GETFIELD(SPI_STS_SHIFTER_FSM, s->status) == FSM_WAIT) { + trace_pnv_spi_start_sequencer(); + operation_sequencer(s); + } + break; + case SPI_SEQ_OP_REG: + val = 0; + for (int i = 0; i < PNV_SPI_REG_SIZE; i++) { + val = (val << 8) | s->seq_op[i]; + } + break; + case SPI_STS_REG: + val = s->status; + break; + default: + qemu_log_mask(LOG_GUEST_ERROR, "pnv_spi_regs: Invalid xscom " + "read at 0x%" PRIx32 "\n", reg); + } + + trace_pnv_spi_read(addr, val); + return val; +} + +static void pnv_spi_xscom_write(void *opaque, hwaddr addr, + uint64_t val, unsigned size) +{ + PnvSpi *s = PNV_SPI(opaque); + uint32_t reg = addr >> 3; + + trace_pnv_spi_write(addr, val); + + switch (reg) { + case ERROR_REG: + case SPI_CTR_CFG_REG: + case CONFIG_REG1: + case SPI_MM_REG: + case SPI_RCV_DATA_REG: + s->regs[reg] = val; + break; + case SPI_CLK_CFG_REG: + /* + * To reset the SPI controller write the sequence 0x5 0xA to + * reset_control field + */ + if ((GETFIELD(SPI_CLK_CFG_RST_CTRL, s->regs[SPI_CLK_CFG_REG]) == 0x5) + && (GETFIELD(SPI_CLK_CFG_RST_CTRL, val) == 0xA)) { + /* SPI controller reset sequence completed, resetting */ + s->regs[reg] = SPI_CLK_CFG_HARD_RST; + } else { + s->regs[reg] = val; + } + break; + case SPI_XMIT_DATA_REG: + /* + * Writing to the transmit data register causes the transmit data + * register full status bit in the status register to be set. Writing + * when the transmit data register full status bit is already set + * causes a "Resource Not Available" condition. This is not possible + * in the model since writes to this register are not asynchronous to + * the operation sequence like it would be in hardware. + */ + s->regs[reg] = val; + trace_pnv_spi_write_TDR(val); + s->status = SETFIELD(SPI_STS_TDR_FULL, s->status, 1); + s->status = SETFIELD(SPI_STS_TDR_UNDERRUN, s->status, 0); + trace_pnv_spi_start_sequencer(); + operation_sequencer(s); + break; + case SPI_SEQ_OP_REG: + for (int i = 0; i < PNV_SPI_REG_SIZE; i++) { + s->seq_op[i] = (val >> (56 - i * 8)) & 0xFF; + } + break; + case SPI_STS_REG: + /* other fields are ignore_write */ + s->status = SETFIELD(SPI_STS_RDR_OVERRUN, s->status, + GETFIELD(SPI_STS_RDR, val)); + s->status = SETFIELD(SPI_STS_TDR_OVERRUN, s->status, + GETFIELD(SPI_STS_TDR, val)); + break; + default: + qemu_log_mask(LOG_GUEST_ERROR, "pnv_spi_regs: Invalid xscom " + "write at 0x%" PRIx32 "\n", reg); + } +} + +static const MemoryRegionOps pnv_spi_xscom_ops = { + .read = pnv_spi_xscom_read, + .write = pnv_spi_xscom_write, + .valid.min_access_size = 8, + .valid.max_access_size = 8, + .impl.min_access_size = 8, + .impl.max_access_size = 8, + .endianness = DEVICE_BIG_ENDIAN, +}; + +static const Property pnv_spi_properties[] = { + DEFINE_PROP_UINT32("spic_num", PnvSpi, spic_num, 0), + DEFINE_PROP_UINT32("chip-id", PnvSpi, chip_id, 0), + DEFINE_PROP_UINT8("transfer_len", PnvSpi, transfer_len, 4), +}; + +static void pnv_spi_realize(DeviceState *dev, Error **errp) +{ + PnvSpi *s = PNV_SPI(dev); + g_autofree char *name = g_strdup_printf("chip%d." TYPE_PNV_SPI_BUS ".%d", + s->chip_id, s->spic_num); + s->ssi_bus = ssi_create_bus(dev, name); + s->cs_line = g_new0(qemu_irq, 1); + qdev_init_gpio_out_named(DEVICE(s), s->cs_line, "cs", 1); + + fifo8_create(&s->tx_fifo, PNV_SPI_FIFO_SIZE); + fifo8_create(&s->rx_fifo, PNV_SPI_FIFO_SIZE); + + /* spi scoms */ + pnv_xscom_region_init(&s->xscom_spic_regs, OBJECT(s), &pnv_spi_xscom_ops, + s, "xscom-spi", PNV10_XSCOM_PIB_SPIC_SIZE); +} + +static int pnv_spi_dt_xscom(PnvXScomInterface *dev, void *fdt, + int offset) +{ + PnvSpi *s = PNV_SPI(dev); + g_autofree char *name; + int s_offset; + const char compat[] = "ibm,power10-spi"; + uint32_t spic_pcba = PNV10_XSCOM_PIB_SPIC_BASE + + s->spic_num * PNV10_XSCOM_PIB_SPIC_SIZE; + uint32_t reg[] = { + cpu_to_be32(spic_pcba), + cpu_to_be32(PNV10_XSCOM_PIB_SPIC_SIZE) + }; + name = g_strdup_printf("pnv_spi@%x", spic_pcba); + s_offset = fdt_add_subnode(fdt, offset, name); + _FDT(s_offset); + + _FDT(fdt_setprop(fdt, s_offset, "reg", reg, sizeof(reg))); + _FDT(fdt_setprop(fdt, s_offset, "compatible", compat, sizeof(compat))); + _FDT((fdt_setprop_cell(fdt, s_offset, "spic_num#", s->spic_num))); + return 0; +} + +static void pnv_spi_class_init(ObjectClass *klass, const void *data) +{ + DeviceClass *dc = DEVICE_CLASS(klass); + PnvXScomInterfaceClass *xscomc = PNV_XSCOM_INTERFACE_CLASS(klass); + + xscomc->dt_xscom = pnv_spi_dt_xscom; + + dc->desc = "PowerNV SPI"; + dc->realize = pnv_spi_realize; + device_class_set_legacy_reset(dc, do_reset); + device_class_set_props(dc, pnv_spi_properties); +} + +static const TypeInfo pnv_spi_info = { + .name = TYPE_PNV_SPI, + .parent = TYPE_SYS_BUS_DEVICE, + .instance_size = sizeof(PnvSpi), + .class_init = pnv_spi_class_init, + .interfaces = (const InterfaceInfo[]) { + { TYPE_PNV_XSCOM_INTERFACE }, + { } + } +}; + +static void pnv_spi_register_types(void) +{ + type_register_static(&pnv_spi_info); +} + +type_init(pnv_spi_register_types); diff --git a/hw/ssi/sifive_spi.c b/hw/ssi/sifive_spi.c index 1b4a401..3e01fef 100644 --- a/hw/ssi/sifive_spi.c +++ b/hw/ssi/sifive_spi.c @@ -328,17 +328,16 @@ static void sifive_spi_realize(DeviceState *dev, Error **errp) fifo8_create(&s->rx_fifo, FIFO_CAPACITY); } -static Property sifive_spi_properties[] = { +static const Property sifive_spi_properties[] = { DEFINE_PROP_UINT32("num-cs", SiFiveSPIState, num_cs, 1), - DEFINE_PROP_END_OF_LIST(), }; -static void sifive_spi_class_init(ObjectClass *klass, void *data) +static void sifive_spi_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); device_class_set_props(dc, sifive_spi_properties); - dc->reset = sifive_spi_reset; + device_class_set_legacy_reset(dc, sifive_spi_reset); dc->realize = sifive_spi_realize; } diff --git a/hw/ssi/ssi.c b/hw/ssi/ssi.c index 3f357e8..d0de640 100644 --- a/hw/ssi/ssi.c +++ b/hw/ssi/ssi.c @@ -55,7 +55,7 @@ static bool ssi_bus_check_address(BusState *b, DeviceState *dev, Error **errp) return true; } -static void ssi_bus_class_init(ObjectClass *klass, void *data) +static void ssi_bus_class_init(ObjectClass *klass, const void *data) { BusClass *k = BUS_CLASS(klass); @@ -108,12 +108,11 @@ static void ssi_peripheral_realize(DeviceState *dev, Error **errp) ssc->realize(s, errp); } -static Property ssi_peripheral_properties[] = { +static const Property ssi_peripheral_properties[] = { DEFINE_PROP_UINT8("cs", SSIPeripheral, cs_index, 0), - DEFINE_PROP_END_OF_LIST(), }; -static void ssi_peripheral_class_init(ObjectClass *klass, void *data) +static void ssi_peripheral_class_init(ObjectClass *klass, const void *data) { SSIPeripheralClass *ssc = SSI_PERIPHERAL_CLASS(klass); DeviceClass *dc = DEVICE_CLASS(klass); diff --git a/hw/ssi/stm32f2xx_spi.c b/hw/ssi/stm32f2xx_spi.c index a37139f..871d573 100644 --- a/hw/ssi/stm32f2xx_spi.c +++ b/hw/ssi/stm32f2xx_spi.c @@ -202,11 +202,11 @@ static void stm32f2xx_spi_init(Object *obj) s->ssi = ssi_create_bus(dev, "ssi"); } -static void stm32f2xx_spi_class_init(ObjectClass *klass, void *data) +static void stm32f2xx_spi_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); - dc->reset = stm32f2xx_spi_reset; + device_class_set_legacy_reset(dc, stm32f2xx_spi_reset); dc->vmsd = &vmstate_stm32f2xx_spi; } diff --git a/hw/ssi/trace-events b/hw/ssi/trace-events index 7b5ad6a..2f36cf9 100644 --- a/hw/ssi/trace-events +++ b/hw/ssi/trace-events @@ -32,3 +32,34 @@ ibex_spi_host_reset(const char *msg) "%s" ibex_spi_host_transfer(uint32_t tx_data, uint32_t rx_data) "tx_data: 0x%" PRIx32 " rx_data: @0x%" PRIx32 ibex_spi_host_write(uint64_t addr, uint32_t size, uint64_t data) "@0x%" PRIx64 " size %u: 0x%" PRIx64 ibex_spi_host_read(uint64_t addr, uint32_t size) "@0x%" PRIx64 " size %u:" + +#pnv_spi.c +pnv_spi_read(uint64_t addr, uint64_t val) "addr 0x%" PRIx64 " val 0x%" PRIx64 +pnv_spi_write(uint64_t addr, uint64_t val) "addr 0x%" PRIx64 " val 0x%" PRIx64 +pnv_spi_read_RDR(uint64_t val) "data extracted = 0x%" PRIx64 +pnv_spi_write_TDR(uint64_t val) "being written, data written = 0x%" PRIx64 +pnv_spi_start_sequencer(void) "" +pnv_spi_reset(void) "spic engine sequencer configuration and spi communication" +pnv_spi_sequencer_op(const char* op, uint8_t index) "%s at index = 0x%x" +pnv_spi_shifter_stating(void) "pull CS line low" +pnv_spi_shifter_done(void) "pull the CS line high" +pnv_spi_log_Ncounts(uint8_t N1_bits, uint8_t N1_bytes, uint8_t N1_tx, uint8_t N1_rx, uint8_t N2_bits, uint8_t N2_bytes, uint8_t N2_tx, uint8_t N2_rx) "N1_bits = %d, N1_bytes = %d, N1_tx = %d, N1_rx = %d, N2_bits = %d, N2_bytes = %d, N2_tx = %d, N2_rx = %d" +pnv_spi_tx_append(const char* frame, uint8_t byte, uint8_t tdr_index) "%s = 0x%2.2x to payload from TDR at index %d" +pnv_spi_tx_append_FF(const char* frame) "%s to Payload" +pnv_spi_tx_request(const char* frame, uint32_t payload_len) "%s, payload len = %d" +pnv_spi_rx_received(uint32_t payload_len) "payload len = %d" +pnv_spi_rx_read_N1frame(void) "" +pnv_spi_rx_read_N2frame(void) "" +pnv_spi_shift_rx(uint8_t byte, uint32_t index) "byte = 0x%2.2x into RDR from payload index %d" +pnv_spi_sequencer_stop_requested(const char* reason) "due to %s" +pnv_spi_RDR_match(const char* result) "%s" + +# allwinner_a10_spi.c +allwinner_a10_spi_update_irq(uint32_t level) "IRQ level is %d" +allwinner_a10_spi_flush_txfifo_begin(uint32_t tx, uint32_t rx) "Begin: TX Fifo Size = %d, RX Fifo Size = %d" +allwinner_a10_spi_flush_txfifo_end(uint32_t tx, uint32_t rx) "End: TX Fifo Size = %d, RX Fifo Size = %d" +allwinner_a10_spi_burst_length(uint32_t len) "Burst length = %d" +allwinner_a10_spi_tx(uint8_t byte) "write 0x%02x" +allwinner_a10_spi_rx(uint8_t byte) "read 0x%02x" +allwinner_a10_spi_read(const char* regname, uint32_t value) "reg[%s] => 0x%08x" +allwinner_a10_spi_write(const char* regname, uint32_t value) "reg[%s] <= 0x%08x" diff --git a/hw/ssi/xilinx_spi.c b/hw/ssi/xilinx_spi.c index 2e0687a..4144c8a 100644 --- a/hw/ssi/xilinx_spi.c +++ b/hw/ssi/xilinx_spi.c @@ -25,6 +25,7 @@ */ #include "qemu/osdep.h" +#include "qapi/error.h" #include "hw/sysbus.h" #include "migration/vmstate.h" #include "qemu/module.h" @@ -32,6 +33,7 @@ #include "hw/irq.h" #include "hw/qdev-properties.h" +#include "hw/qdev-properties-system.h" #include "hw/ssi/ssi.h" #include "qom/object.h" @@ -83,6 +85,7 @@ OBJECT_DECLARE_SIMPLE_TYPE(XilinxSPI, XILINX_SPI) struct XilinxSPI { SysBusDevice parent_obj; + EndianMode model_endianness; MemoryRegion mmio; qemu_irq irq; @@ -313,14 +316,17 @@ done: xlx_spi_update_irq(s); } -static const MemoryRegionOps spi_ops = { - .read = spi_read, - .write = spi_write, - .endianness = DEVICE_NATIVE_ENDIAN, - .valid = { - .min_access_size = 4, - .max_access_size = 4 - } +static const MemoryRegionOps spi_ops[2] = { + [0 ... 1] = { + .read = spi_read, + .write = spi_write, + .valid = { + .min_access_size = 4, + .max_access_size = 4, + }, + }, + [0].endianness = DEVICE_LITTLE_ENDIAN, + [1].endianness = DEVICE_BIG_ENDIAN, }; static void xilinx_spi_realize(DeviceState *dev, Error **errp) @@ -329,6 +335,12 @@ static void xilinx_spi_realize(DeviceState *dev, Error **errp) XilinxSPI *s = XILINX_SPI(dev); int i; + if (s->model_endianness == ENDIAN_MODE_UNSPECIFIED) { + error_setg(errp, TYPE_XILINX_SPI " property 'endianness'" + " must be set to 'big' or 'little'"); + return; + } + DB_PRINT("\n"); s->spi = ssi_create_bus(dev, "spi"); @@ -339,7 +351,8 @@ static void xilinx_spi_realize(DeviceState *dev, Error **errp) sysbus_init_irq(sbd, &s->cs_lines[i]); } - memory_region_init_io(&s->mmio, OBJECT(s), &spi_ops, s, + memory_region_init_io(&s->mmio, OBJECT(s), + &spi_ops[s->model_endianness == ENDIAN_MODE_BIG], s, "xilinx-spi", R_MAX * 4); sysbus_init_mmio(sbd, &s->mmio); @@ -361,17 +374,17 @@ static const VMStateDescription vmstate_xilinx_spi = { } }; -static Property xilinx_spi_properties[] = { +static const Property xilinx_spi_properties[] = { + DEFINE_PROP_ENDIAN_NODEFAULT("endianness", XilinxSPI, model_endianness), DEFINE_PROP_UINT8("num-ss-bits", XilinxSPI, num_cs, 1), - DEFINE_PROP_END_OF_LIST(), }; -static void xilinx_spi_class_init(ObjectClass *klass, void *data) +static void xilinx_spi_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); dc->realize = xilinx_spi_realize; - dc->reset = xlx_spi_reset; + device_class_set_legacy_reset(dc, xlx_spi_reset); device_class_set_props(dc, xilinx_spi_properties); dc->vmsd = &vmstate_xilinx_spi; } diff --git a/hw/ssi/xilinx_spips.c b/hw/ssi/xilinx_spips.c index 71952a4..a79f3b8 100644 --- a/hw/ssi/xilinx_spips.c +++ b/hw/ssi/xilinx_spips.c @@ -33,7 +33,7 @@ #include "hw/ssi/xilinx_spips.h" #include "qapi/error.h" #include "hw/register.h" -#include "sysemu/dma.h" +#include "system/dma.h" #include "migration/blocker.h" #include "migration/vmstate.h" @@ -620,7 +620,9 @@ static void xilinx_spips_flush_txfifo(XilinxSPIPS *s) } else if (s->snoop_state == SNOOP_STRIPING || s->snoop_state == SNOOP_NONE) { for (i = 0; i < num_effective_busses(s); ++i) { - tx_rx[i] = fifo8_pop(&s->tx_fifo); + if (!fifo8_is_empty(&s->tx_fifo)) { + tx_rx[i] = fifo8_pop(&s->tx_fifo); + } } stripe8(tx_rx, num_effective_busses(s), false); } else if (s->snoop_state >= SNOOP_ADDR) { @@ -1418,19 +1420,17 @@ static const VMStateDescription vmstate_xlnx_zynqmp_qspips = { } }; -static Property xilinx_zynqmp_qspips_properties[] = { +static const Property xilinx_zynqmp_qspips_properties[] = { DEFINE_PROP_UINT32("dma-burst-size", XlnxZynqMPQSPIPS, dma_burst_size, 64), - DEFINE_PROP_END_OF_LIST(), }; -static Property xilinx_spips_properties[] = { +static const Property xilinx_spips_properties[] = { DEFINE_PROP_UINT8("num-busses", XilinxSPIPS, num_busses, 1), DEFINE_PROP_UINT8("num-ss-bits", XilinxSPIPS, num_cs, 4), DEFINE_PROP_UINT8("num-txrx-bytes", XilinxSPIPS, num_txrx_bytes, 1), - DEFINE_PROP_END_OF_LIST(), }; -static void xilinx_qspips_class_init(ObjectClass *klass, void * data) +static void xilinx_qspips_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); @@ -1442,13 +1442,13 @@ static void xilinx_qspips_class_init(ObjectClass *klass, void * data) xsc->tx_fifo_size = TXFF_A_Q; } -static void xilinx_spips_class_init(ObjectClass *klass, void *data) +static void xilinx_spips_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); dc->realize = xilinx_spips_realize; - dc->reset = xilinx_spips_reset; + device_class_set_legacy_reset(dc, xilinx_spips_reset); device_class_set_props(dc, xilinx_spips_properties); dc->vmsd = &vmstate_xilinx_spips; @@ -1458,13 +1458,13 @@ static void xilinx_spips_class_init(ObjectClass *klass, void *data) xsc->tx_fifo_size = TXFF_A; } -static void xlnx_zynqmp_qspips_class_init(ObjectClass *klass, void * data) +static void xlnx_zynqmp_qspips_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); XilinxSPIPSClass *xsc = XILINX_SPIPS_CLASS(klass); dc->realize = xlnx_zynqmp_qspips_realize; - dc->reset = xlnx_zynqmp_qspips_reset; + device_class_set_legacy_reset(dc, xlnx_zynqmp_qspips_reset); dc->vmsd = &vmstate_xlnx_zynqmp_qspips; device_class_set_props(dc, xilinx_zynqmp_qspips_properties); xsc->reg_ops = &xlnx_zynqmp_qspips_ops; diff --git a/hw/ssi/xlnx-versal-ospi.c b/hw/ssi/xlnx-versal-ospi.c index c479138..56d51ce 100644 --- a/hw/ssi/xlnx-versal-ospi.c +++ b/hw/ssi/xlnx-versal-ospi.c @@ -1825,18 +1825,17 @@ static const VMStateDescription vmstate_xlnx_versal_ospi = { } }; -static Property xlnx_versal_ospi_properties[] = { +static const Property xlnx_versal_ospi_properties[] = { DEFINE_PROP_BOOL("dac-with-indac", XlnxVersalOspi, dac_with_indac, false), DEFINE_PROP_BOOL("indac-write-disabled", XlnxVersalOspi, ind_write_disabled, false), - DEFINE_PROP_END_OF_LIST(), }; -static void xlnx_versal_ospi_class_init(ObjectClass *klass, void *data) +static void xlnx_versal_ospi_class_init(ObjectClass *klass, const void *data) { DeviceClass *dc = DEVICE_CLASS(klass); - dc->reset = xlnx_versal_ospi_reset; + device_class_set_legacy_reset(dc, xlnx_versal_ospi_reset); dc->realize = xlnx_versal_ospi_realize; dc->vmsd = &vmstate_xlnx_versal_ospi; device_class_set_props(dc, xlnx_versal_ospi_properties); |