diff options
Diffstat (limited to 'hw/nvme/ctrl.c')
-rw-r--r-- | hw/nvme/ctrl.c | 6365 |
1 files changed, 6365 insertions, 0 deletions
diff --git a/hw/nvme/ctrl.c b/hw/nvme/ctrl.c new file mode 100644 index 0000000..0bcaf71 --- /dev/null +++ b/hw/nvme/ctrl.c @@ -0,0 +1,6365 @@ +/* + * QEMU NVM Express Controller + * + * Copyright (c) 2012, Intel Corporation + * + * Written by Keith Busch <keith.busch@intel.com> + * + * This code is licensed under the GNU GPL v2 or later. + */ + +/** + * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e + * + * https://nvmexpress.org/developers/nvme-specification/ + * + * + * Notes on coding style + * --------------------- + * While QEMU coding style prefers lowercase hexadecimals in constants, the + * NVMe subsystem use thes format from the NVMe specifications in the comments + * (i.e. 'h' suffix instead of '0x' prefix). + * + * Usage + * ----- + * See docs/system/nvme.rst for extensive documentation. + * + * Add options: + * -drive file=<file>,if=none,id=<drive_id> + * -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id> + * -device nvme,serial=<serial>,id=<bus_name>, \ + * cmb_size_mb=<cmb_size_mb[optional]>, \ + * [pmrdev=<mem_backend_file_id>,] \ + * max_ioqpairs=<N[optional]>, \ + * aerl=<N[optional]>,aer_max_queued=<N[optional]>, \ + * mdts=<N[optional]>,vsl=<N[optional]>, \ + * zoned.zasl=<N[optional]>, \ + * subsys=<subsys_id> + * -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\ + * zoned=<true|false[optional]>, \ + * subsys=<subsys_id>,detached=<true|false[optional]> + * + * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at + * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the + * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to + * always enable the CMBLOC and CMBSZ registers (v1.3 behavior). + * + * Enabling pmr emulation can be achieved by pointing to memory-backend-file. + * For example: + * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \ + * size=<size> .... -device nvme,...,pmrdev=<mem_id> + * + * The PMR will use BAR 4/5 exclusively. + * + * To place controller(s) and namespace(s) to a subsystem, then provide + * nvme-subsys device as above. + * + * nvme subsystem device parameters + * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + * - `nqn` + * This parameter provides the `<nqn_id>` part of the string + * `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field + * of subsystem controllers. Note that `<nqn_id>` should be unique per + * subsystem, but this is not enforced by QEMU. If not specified, it will + * default to the value of the `id` parameter (`<subsys_id>`). + * + * nvme device parameters + * ~~~~~~~~~~~~~~~~~~~~~~ + * - `subsys` + * Specifying this parameter attaches the controller to the subsystem and + * the SUBNQN field in the controller will report the NQN of the subsystem + * device. This also enables multi controller capability represented in + * Identify Controller data structure in CMIC (Controller Multi-path I/O and + * Namesapce Sharing Capabilities). + * + * - `aerl` + * The Asynchronous Event Request Limit (AERL). Indicates the maximum number + * of concurrently outstanding Asynchronous Event Request commands support + * by the controller. This is a 0's based value. + * + * - `aer_max_queued` + * This is the maximum number of events that the device will enqueue for + * completion when there are no outstanding AERs. When the maximum number of + * enqueued events are reached, subsequent events will be dropped. + * + * - `mdts` + * Indicates the maximum data transfer size for a command that transfers data + * between host-accessible memory and the controller. The value is specified + * as a power of two (2^n) and is in units of the minimum memory page size + * (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB). + * + * - `vsl` + * Indicates the maximum data size limit for the Verify command. Like `mdts`, + * this value is specified as a power of two (2^n) and is in units of the + * minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512 + * KiB). + * + * - `zoned.zasl` + * Indicates the maximum data transfer size for the Zone Append command. Like + * `mdts`, the value is specified as a power of two (2^n) and is in units of + * the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e. + * defaulting to the value of `mdts`). + * + * nvme namespace device parameters + * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + * - `shared` + * When the parent nvme device (as defined explicitly by the 'bus' parameter + * or implicitly by the most recently defined NvmeBus) is linked to an + * nvme-subsys device, the namespace will be attached to all controllers in + * the subsystem. If set to 'off' (the default), the namespace will remain a + * private namespace and may only be attached to a single controller at a + * time. + * + * - `detached` + * This parameter is only valid together with the `subsys` parameter. If left + * at the default value (`false/off`), the namespace will be attached to all + * controllers in the NVMe subsystem at boot-up. If set to `true/on`, the + * namespace will be be available in the subsystem not not attached to any + * controllers. + * + * Setting `zoned` to true selects Zoned Command Set at the namespace. + * In this case, the following namespace properties are available to configure + * zoned operation: + * zoned.zone_size=<zone size in bytes, default: 128MiB> + * The number may be followed by K, M, G as in kilo-, mega- or giga-. + * + * zoned.zone_capacity=<zone capacity in bytes, default: zone size> + * The value 0 (default) forces zone capacity to be the same as zone + * size. The value of this property may not exceed zone size. + * + * zoned.descr_ext_size=<zone descriptor extension size, default 0> + * This value needs to be specified in 64B units. If it is zero, + * namespace(s) will not support zone descriptor extensions. + * + * zoned.max_active=<Maximum Active Resources (zones), default: 0> + * The default value means there is no limit to the number of + * concurrently active zones. + * + * zoned.max_open=<Maximum Open Resources (zones), default: 0> + * The default value means there is no limit to the number of + * concurrently open zones. + * + * zoned.cross_read=<enable RAZB, default: false> + * Setting this property to true enables Read Across Zone Boundaries. + */ + +#include "qemu/osdep.h" +#include "qemu/cutils.h" +#include "qemu/error-report.h" +#include "qemu/log.h" +#include "qemu/units.h" +#include "qapi/error.h" +#include "qapi/visitor.h" +#include "sysemu/sysemu.h" +#include "sysemu/block-backend.h" +#include "sysemu/hostmem.h" +#include "hw/pci/msix.h" +#include "migration/vmstate.h" + +#include "nvme.h" +#include "trace.h" + +#define NVME_MAX_IOQPAIRS 0xffff +#define NVME_DB_SIZE 4 +#define NVME_SPEC_VER 0x00010400 +#define NVME_CMB_BIR 2 +#define NVME_PMR_BIR 4 +#define NVME_TEMPERATURE 0x143 +#define NVME_TEMPERATURE_WARNING 0x157 +#define NVME_TEMPERATURE_CRITICAL 0x175 +#define NVME_NUM_FW_SLOTS 1 +#define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB) + +#define NVME_GUEST_ERR(trace, fmt, ...) \ + do { \ + (trace_##trace)(__VA_ARGS__); \ + qemu_log_mask(LOG_GUEST_ERROR, #trace \ + " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \ + } while (0) + +static const bool nvme_feature_support[NVME_FID_MAX] = { + [NVME_ARBITRATION] = true, + [NVME_POWER_MANAGEMENT] = true, + [NVME_TEMPERATURE_THRESHOLD] = true, + [NVME_ERROR_RECOVERY] = true, + [NVME_VOLATILE_WRITE_CACHE] = true, + [NVME_NUMBER_OF_QUEUES] = true, + [NVME_INTERRUPT_COALESCING] = true, + [NVME_INTERRUPT_VECTOR_CONF] = true, + [NVME_WRITE_ATOMICITY] = true, + [NVME_ASYNCHRONOUS_EVENT_CONF] = true, + [NVME_TIMESTAMP] = true, + [NVME_COMMAND_SET_PROFILE] = true, +}; + +static const uint32_t nvme_feature_cap[NVME_FID_MAX] = { + [NVME_TEMPERATURE_THRESHOLD] = NVME_FEAT_CAP_CHANGE, + [NVME_ERROR_RECOVERY] = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS, + [NVME_VOLATILE_WRITE_CACHE] = NVME_FEAT_CAP_CHANGE, + [NVME_NUMBER_OF_QUEUES] = NVME_FEAT_CAP_CHANGE, + [NVME_ASYNCHRONOUS_EVENT_CONF] = NVME_FEAT_CAP_CHANGE, + [NVME_TIMESTAMP] = NVME_FEAT_CAP_CHANGE, + [NVME_COMMAND_SET_PROFILE] = NVME_FEAT_CAP_CHANGE, +}; + +static const uint32_t nvme_cse_acs[256] = { + [NVME_ADM_CMD_DELETE_SQ] = NVME_CMD_EFF_CSUPP, + [NVME_ADM_CMD_CREATE_SQ] = NVME_CMD_EFF_CSUPP, + [NVME_ADM_CMD_GET_LOG_PAGE] = NVME_CMD_EFF_CSUPP, + [NVME_ADM_CMD_DELETE_CQ] = NVME_CMD_EFF_CSUPP, + [NVME_ADM_CMD_CREATE_CQ] = NVME_CMD_EFF_CSUPP, + [NVME_ADM_CMD_IDENTIFY] = NVME_CMD_EFF_CSUPP, + [NVME_ADM_CMD_ABORT] = NVME_CMD_EFF_CSUPP, + [NVME_ADM_CMD_SET_FEATURES] = NVME_CMD_EFF_CSUPP, + [NVME_ADM_CMD_GET_FEATURES] = NVME_CMD_EFF_CSUPP, + [NVME_ADM_CMD_ASYNC_EV_REQ] = NVME_CMD_EFF_CSUPP, + [NVME_ADM_CMD_NS_ATTACHMENT] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC, + [NVME_ADM_CMD_FORMAT_NVM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, +}; + +static const uint32_t nvme_cse_iocs_none[256]; + +static const uint32_t nvme_cse_iocs_nvm[256] = { + [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, + [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, + [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, + [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, + [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, + [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, + [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, + [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, +}; + +static const uint32_t nvme_cse_iocs_zoned[256] = { + [NVME_CMD_FLUSH] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, + [NVME_CMD_WRITE_ZEROES] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, + [NVME_CMD_WRITE] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, + [NVME_CMD_READ] = NVME_CMD_EFF_CSUPP, + [NVME_CMD_DSM] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, + [NVME_CMD_VERIFY] = NVME_CMD_EFF_CSUPP, + [NVME_CMD_COPY] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, + [NVME_CMD_COMPARE] = NVME_CMD_EFF_CSUPP, + [NVME_CMD_ZONE_APPEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, + [NVME_CMD_ZONE_MGMT_SEND] = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC, + [NVME_CMD_ZONE_MGMT_RECV] = NVME_CMD_EFF_CSUPP, +}; + +static void nvme_process_sq(void *opaque); + +static uint16_t nvme_sqid(NvmeRequest *req) +{ + return le16_to_cpu(req->sq->sqid); +} + +static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone, + NvmeZoneState state) +{ + if (QTAILQ_IN_USE(zone, entry)) { + switch (nvme_get_zone_state(zone)) { + case NVME_ZONE_STATE_EXPLICITLY_OPEN: + QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry); + break; + case NVME_ZONE_STATE_IMPLICITLY_OPEN: + QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); + break; + case NVME_ZONE_STATE_CLOSED: + QTAILQ_REMOVE(&ns->closed_zones, zone, entry); + break; + case NVME_ZONE_STATE_FULL: + QTAILQ_REMOVE(&ns->full_zones, zone, entry); + default: + ; + } + } + + nvme_set_zone_state(zone, state); + + switch (state) { + case NVME_ZONE_STATE_EXPLICITLY_OPEN: + QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry); + break; + case NVME_ZONE_STATE_IMPLICITLY_OPEN: + QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry); + break; + case NVME_ZONE_STATE_CLOSED: + QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry); + break; + case NVME_ZONE_STATE_FULL: + QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry); + case NVME_ZONE_STATE_READ_ONLY: + break; + default: + zone->d.za = 0; + } +} + +/* + * Check if we can open a zone without exceeding open/active limits. + * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5). + */ +static int nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn) +{ + if (ns->params.max_active_zones != 0 && + ns->nr_active_zones + act > ns->params.max_active_zones) { + trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones); + return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR; + } + if (ns->params.max_open_zones != 0 && + ns->nr_open_zones + opn > ns->params.max_open_zones) { + trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones); + return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR; + } + + return NVME_SUCCESS; +} + +static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr) +{ + hwaddr hi, lo; + + if (!n->cmb.cmse) { + return false; + } + + lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; + hi = lo + int128_get64(n->cmb.mem.size); + + return addr >= lo && addr < hi; +} + +static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr) +{ + hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba; + return &n->cmb.buf[addr - base]; +} + +static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr) +{ + hwaddr hi; + + if (!n->pmr.cmse) { + return false; + } + + hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size); + + return addr >= n->pmr.cba && addr < hi; +} + +static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr) +{ + return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba); +} + +static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size) +{ + hwaddr hi = addr + size - 1; + if (hi < addr) { + return 1; + } + + if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { + memcpy(buf, nvme_addr_to_cmb(n, addr), size); + return 0; + } + + if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { + memcpy(buf, nvme_addr_to_pmr(n, addr), size); + return 0; + } + + return pci_dma_read(&n->parent_obj, addr, buf, size); +} + +static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, void *buf, int size) +{ + hwaddr hi = addr + size - 1; + if (hi < addr) { + return 1; + } + + if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) { + memcpy(nvme_addr_to_cmb(n, addr), buf, size); + return 0; + } + + if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) { + memcpy(nvme_addr_to_pmr(n, addr), buf, size); + return 0; + } + + return pci_dma_write(&n->parent_obj, addr, buf, size); +} + +static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid) +{ + return nsid && + (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES); +} + +static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid) +{ + return sqid < n->params.max_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1; +} + +static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid) +{ + return cqid < n->params.max_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1; +} + +static void nvme_inc_cq_tail(NvmeCQueue *cq) +{ + cq->tail++; + if (cq->tail >= cq->size) { + cq->tail = 0; + cq->phase = !cq->phase; + } +} + +static void nvme_inc_sq_head(NvmeSQueue *sq) +{ + sq->head = (sq->head + 1) % sq->size; +} + +static uint8_t nvme_cq_full(NvmeCQueue *cq) +{ + return (cq->tail + 1) % cq->size == cq->head; +} + +static uint8_t nvme_sq_empty(NvmeSQueue *sq) +{ + return sq->head == sq->tail; +} + +static void nvme_irq_check(NvmeCtrl *n) +{ + if (msix_enabled(&(n->parent_obj))) { + return; + } + if (~n->bar.intms & n->irq_status) { + pci_irq_assert(&n->parent_obj); + } else { + pci_irq_deassert(&n->parent_obj); + } +} + +static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq) +{ + if (cq->irq_enabled) { + if (msix_enabled(&(n->parent_obj))) { + trace_pci_nvme_irq_msix(cq->vector); + msix_notify(&(n->parent_obj), cq->vector); + } else { + trace_pci_nvme_irq_pin(); + assert(cq->vector < 32); + n->irq_status |= 1 << cq->vector; + nvme_irq_check(n); + } + } else { + trace_pci_nvme_irq_masked(); + } +} + +static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq) +{ + if (cq->irq_enabled) { + if (msix_enabled(&(n->parent_obj))) { + return; + } else { + assert(cq->vector < 32); + n->irq_status &= ~(1 << cq->vector); + nvme_irq_check(n); + } + } +} + +static void nvme_req_clear(NvmeRequest *req) +{ + req->ns = NULL; + req->opaque = NULL; + req->aiocb = NULL; + memset(&req->cqe, 0x0, sizeof(req->cqe)); + req->status = NVME_SUCCESS; +} + +static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma) +{ + if (dma) { + pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0); + sg->flags = NVME_SG_DMA; + } else { + qemu_iovec_init(&sg->iov, 0); + } + + sg->flags |= NVME_SG_ALLOC; +} + +static inline void nvme_sg_unmap(NvmeSg *sg) +{ + if (!(sg->flags & NVME_SG_ALLOC)) { + return; + } + + if (sg->flags & NVME_SG_DMA) { + qemu_sglist_destroy(&sg->qsg); + } else { + qemu_iovec_destroy(&sg->iov); + } + + memset(sg, 0x0, sizeof(*sg)); +} + +/* + * When metadata is transfered as extended LBAs, the DPTR mapped into `sg` + * holds both data and metadata. This function splits the data and metadata + * into two separate QSG/IOVs. + */ +static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data, + NvmeSg *mdata) +{ + NvmeSg *dst = data; + uint32_t trans_len, count = ns->lbasz; + uint64_t offset = 0; + bool dma = sg->flags & NVME_SG_DMA; + size_t sge_len; + size_t sg_len = dma ? sg->qsg.size : sg->iov.size; + int sg_idx = 0; + + assert(sg->flags & NVME_SG_ALLOC); + + while (sg_len) { + sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; + + trans_len = MIN(sg_len, count); + trans_len = MIN(trans_len, sge_len - offset); + + if (dst) { + if (dma) { + qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset, + trans_len); + } else { + qemu_iovec_add(&dst->iov, + sg->iov.iov[sg_idx].iov_base + offset, + trans_len); + } + } + + sg_len -= trans_len; + count -= trans_len; + offset += trans_len; + + if (count == 0) { + dst = (dst == data) ? mdata : data; + count = (dst == data) ? ns->lbasz : ns->lbaf.ms; + } + + if (sge_len == offset) { + offset = 0; + sg_idx++; + } + } +} + +static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, + size_t len) +{ + if (!len) { + return NVME_SUCCESS; + } + + trace_pci_nvme_map_addr_cmb(addr, len); + + if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) { + return NVME_DATA_TRAS_ERROR; + } + + qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len); + + return NVME_SUCCESS; +} + +static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr, + size_t len) +{ + if (!len) { + return NVME_SUCCESS; + } + + if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) { + return NVME_DATA_TRAS_ERROR; + } + + qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len); + + return NVME_SUCCESS; +} + +static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len) +{ + bool cmb = false, pmr = false; + + if (!len) { + return NVME_SUCCESS; + } + + trace_pci_nvme_map_addr(addr, len); + + if (nvme_addr_is_cmb(n, addr)) { + cmb = true; + } else if (nvme_addr_is_pmr(n, addr)) { + pmr = true; + } + + if (cmb || pmr) { + if (sg->flags & NVME_SG_DMA) { + return NVME_INVALID_USE_OF_CMB | NVME_DNR; + } + + if (cmb) { + return nvme_map_addr_cmb(n, &sg->iov, addr, len); + } else { + return nvme_map_addr_pmr(n, &sg->iov, addr, len); + } + } + + if (!(sg->flags & NVME_SG_DMA)) { + return NVME_INVALID_USE_OF_CMB | NVME_DNR; + } + + qemu_sglist_add(&sg->qsg, addr, len); + + return NVME_SUCCESS; +} + +static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr) +{ + return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr)); +} + +static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1, + uint64_t prp2, uint32_t len) +{ + hwaddr trans_len = n->page_size - (prp1 % n->page_size); + trans_len = MIN(len, trans_len); + int num_prps = (len >> n->page_bits) + 1; + uint16_t status; + int ret; + + trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps); + + nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1)); + + status = nvme_map_addr(n, sg, prp1, trans_len); + if (status) { + goto unmap; + } + + len -= trans_len; + if (len) { + if (len > n->page_size) { + uint64_t prp_list[n->max_prp_ents]; + uint32_t nents, prp_trans; + int i = 0; + + /* + * The first PRP list entry, pointed to by PRP2 may contain offset. + * Hence, we need to calculate the number of entries in based on + * that offset. + */ + nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3; + prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t); + ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans); + if (ret) { + trace_pci_nvme_err_addr_read(prp2); + status = NVME_DATA_TRAS_ERROR; + goto unmap; + } + while (len != 0) { + uint64_t prp_ent = le64_to_cpu(prp_list[i]); + + if (i == nents - 1 && len > n->page_size) { + if (unlikely(prp_ent & (n->page_size - 1))) { + trace_pci_nvme_err_invalid_prplist_ent(prp_ent); + status = NVME_INVALID_PRP_OFFSET | NVME_DNR; + goto unmap; + } + + i = 0; + nents = (len + n->page_size - 1) >> n->page_bits; + nents = MIN(nents, n->max_prp_ents); + prp_trans = nents * sizeof(uint64_t); + ret = nvme_addr_read(n, prp_ent, (void *)prp_list, + prp_trans); + if (ret) { + trace_pci_nvme_err_addr_read(prp_ent); + status = NVME_DATA_TRAS_ERROR; + goto unmap; + } + prp_ent = le64_to_cpu(prp_list[i]); + } + + if (unlikely(prp_ent & (n->page_size - 1))) { + trace_pci_nvme_err_invalid_prplist_ent(prp_ent); + status = NVME_INVALID_PRP_OFFSET | NVME_DNR; + goto unmap; + } + + trans_len = MIN(len, n->page_size); + status = nvme_map_addr(n, sg, prp_ent, trans_len); + if (status) { + goto unmap; + } + + len -= trans_len; + i++; + } + } else { + if (unlikely(prp2 & (n->page_size - 1))) { + trace_pci_nvme_err_invalid_prp2_align(prp2); + status = NVME_INVALID_PRP_OFFSET | NVME_DNR; + goto unmap; + } + status = nvme_map_addr(n, sg, prp2, len); + if (status) { + goto unmap; + } + } + } + + return NVME_SUCCESS; + +unmap: + nvme_sg_unmap(sg); + return status; +} + +/* + * Map 'nsgld' data descriptors from 'segment'. The function will subtract the + * number of bytes mapped in len. + */ +static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg, + NvmeSglDescriptor *segment, uint64_t nsgld, + size_t *len, NvmeCmd *cmd) +{ + dma_addr_t addr, trans_len; + uint32_t dlen; + uint16_t status; + + for (int i = 0; i < nsgld; i++) { + uint8_t type = NVME_SGL_TYPE(segment[i].type); + + switch (type) { + case NVME_SGL_DESCR_TYPE_BIT_BUCKET: + if (cmd->opcode == NVME_CMD_WRITE) { + continue; + } + case NVME_SGL_DESCR_TYPE_DATA_BLOCK: + break; + case NVME_SGL_DESCR_TYPE_SEGMENT: + case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: + return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR; + default: + return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR; + } + + dlen = le32_to_cpu(segment[i].len); + + if (!dlen) { + continue; + } + + if (*len == 0) { + /* + * All data has been mapped, but the SGL contains additional + * segments and/or descriptors. The controller might accept + * ignoring the rest of the SGL. + */ + uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls); + if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) { + break; + } + + trace_pci_nvme_err_invalid_sgl_excess_length(dlen); + return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; + } + + trans_len = MIN(*len, dlen); + + if (type == NVME_SGL_DESCR_TYPE_BIT_BUCKET) { + goto next; + } + + addr = le64_to_cpu(segment[i].addr); + + if (UINT64_MAX - addr < dlen) { + return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; + } + + status = nvme_map_addr(n, sg, addr, trans_len); + if (status) { + return status; + } + +next: + *len -= trans_len; + } + + return NVME_SUCCESS; +} + +static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl, + size_t len, NvmeCmd *cmd) +{ + /* + * Read the segment in chunks of 256 descriptors (one 4k page) to avoid + * dynamically allocating a potentially huge SGL. The spec allows the SGL + * to be larger (as in number of bytes required to describe the SGL + * descriptors and segment chain) than the command transfer size, so it is + * not bounded by MDTS. + */ + const int SEG_CHUNK_SIZE = 256; + + NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld; + uint64_t nsgld; + uint32_t seg_len; + uint16_t status; + hwaddr addr; + int ret; + + sgld = &sgl; + addr = le64_to_cpu(sgl.addr); + + trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len); + + nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr)); + + /* + * If the entire transfer can be described with a single data block it can + * be mapped directly. + */ + if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) { + status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd); + if (status) { + goto unmap; + } + + goto out; + } + + for (;;) { + switch (NVME_SGL_TYPE(sgld->type)) { + case NVME_SGL_DESCR_TYPE_SEGMENT: + case NVME_SGL_DESCR_TYPE_LAST_SEGMENT: + break; + default: + return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; + } + + seg_len = le32_to_cpu(sgld->len); + + /* check the length of the (Last) Segment descriptor */ + if ((!seg_len || seg_len & 0xf) && + (NVME_SGL_TYPE(sgld->type) != NVME_SGL_DESCR_TYPE_BIT_BUCKET)) { + return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; + } + + if (UINT64_MAX - addr < seg_len) { + return NVME_DATA_SGL_LEN_INVALID | NVME_DNR; + } + + nsgld = seg_len / sizeof(NvmeSglDescriptor); + + while (nsgld > SEG_CHUNK_SIZE) { + if (nvme_addr_read(n, addr, segment, sizeof(segment))) { + trace_pci_nvme_err_addr_read(addr); + status = NVME_DATA_TRAS_ERROR; + goto unmap; + } + + status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE, + &len, cmd); + if (status) { + goto unmap; + } + + nsgld -= SEG_CHUNK_SIZE; + addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor); + } + + ret = nvme_addr_read(n, addr, segment, nsgld * + sizeof(NvmeSglDescriptor)); + if (ret) { + trace_pci_nvme_err_addr_read(addr); + status = NVME_DATA_TRAS_ERROR; + goto unmap; + } + + last_sgld = &segment[nsgld - 1]; + + /* + * If the segment ends with a Data Block or Bit Bucket Descriptor Type, + * then we are done. + */ + switch (NVME_SGL_TYPE(last_sgld->type)) { + case NVME_SGL_DESCR_TYPE_DATA_BLOCK: + case NVME_SGL_DESCR_TYPE_BIT_BUCKET: + status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd); + if (status) { + goto unmap; + } + + goto out; + + default: + break; + } + + /* + * If the last descriptor was not a Data Block or Bit Bucket, then the + * current segment must not be a Last Segment. + */ + if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) { + status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR; + goto unmap; + } + + sgld = last_sgld; + addr = le64_to_cpu(sgld->addr); + + /* + * Do not map the last descriptor; it will be a Segment or Last Segment + * descriptor and is handled by the next iteration. + */ + status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd); + if (status) { + goto unmap; + } + } + +out: + /* if there is any residual left in len, the SGL was too short */ + if (len) { + status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR; + goto unmap; + } + + return NVME_SUCCESS; + +unmap: + nvme_sg_unmap(sg); + return status; +} + +uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len, + NvmeCmd *cmd) +{ + uint64_t prp1, prp2; + + switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) { + case NVME_PSDT_PRP: + prp1 = le64_to_cpu(cmd->dptr.prp1); + prp2 = le64_to_cpu(cmd->dptr.prp2); + + return nvme_map_prp(n, sg, prp1, prp2, len); + case NVME_PSDT_SGL_MPTR_CONTIGUOUS: + case NVME_PSDT_SGL_MPTR_SGL: + return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd); + default: + return NVME_INVALID_FIELD; + } +} + +static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len, + NvmeCmd *cmd) +{ + int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags); + hwaddr mptr = le64_to_cpu(cmd->mptr); + uint16_t status; + + if (psdt == NVME_PSDT_SGL_MPTR_SGL) { + NvmeSglDescriptor sgl; + + if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) { + return NVME_DATA_TRAS_ERROR; + } + + status = nvme_map_sgl(n, sg, sgl, len, cmd); + if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) { + status = NVME_MD_SGL_LEN_INVALID | NVME_DNR; + } + + return status; + } + + nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr)); + status = nvme_map_addr(n, sg, mptr, len); + if (status) { + nvme_sg_unmap(sg); + } + + return status; +} + +static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) +{ + NvmeNamespace *ns = req->ns; + NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; + uint16_t ctrl = le16_to_cpu(rw->control); + size_t len = nvme_l2b(ns, nlb); + uint16_t status; + + if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && + (ctrl & NVME_RW_PRINFO_PRACT && ns->lbaf.ms == 8)) { + goto out; + } + + if (nvme_ns_ext(ns)) { + NvmeSg sg; + + len += nvme_m2b(ns, nlb); + + status = nvme_map_dptr(n, &sg, len, &req->cmd); + if (status) { + return status; + } + + nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); + nvme_sg_split(&sg, ns, &req->sg, NULL); + nvme_sg_unmap(&sg); + + return NVME_SUCCESS; + } + +out: + return nvme_map_dptr(n, &req->sg, len, &req->cmd); +} + +static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req) +{ + NvmeNamespace *ns = req->ns; + size_t len = nvme_m2b(ns, nlb); + uint16_t status; + + if (nvme_ns_ext(ns)) { + NvmeSg sg; + + len += nvme_l2b(ns, nlb); + + status = nvme_map_dptr(n, &sg, len, &req->cmd); + if (status) { + return status; + } + + nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA); + nvme_sg_split(&sg, ns, NULL, &req->sg); + nvme_sg_unmap(&sg); + + return NVME_SUCCESS; + } + + return nvme_map_mptr(n, &req->sg, len, &req->cmd); +} + +static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, + uint32_t len, uint32_t bytes, + int32_t skip_bytes, int64_t offset, + NvmeTxDirection dir) +{ + hwaddr addr; + uint32_t trans_len, count = bytes; + bool dma = sg->flags & NVME_SG_DMA; + int64_t sge_len; + int sg_idx = 0; + int ret; + + assert(sg->flags & NVME_SG_ALLOC); + + while (len) { + sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len; + + if (sge_len - offset < 0) { + offset -= sge_len; + sg_idx++; + continue; + } + + if (sge_len == offset) { + offset = 0; + sg_idx++; + continue; + } + + trans_len = MIN(len, count); + trans_len = MIN(trans_len, sge_len - offset); + + if (dma) { + addr = sg->qsg.sg[sg_idx].base + offset; + } else { + addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset; + } + + if (dir == NVME_TX_DIRECTION_TO_DEVICE) { + ret = nvme_addr_read(n, addr, ptr, trans_len); + } else { + ret = nvme_addr_write(n, addr, ptr, trans_len); + } + + if (ret) { + return NVME_DATA_TRAS_ERROR; + } + + ptr += trans_len; + len -= trans_len; + count -= trans_len; + offset += trans_len; + + if (count == 0) { + count = bytes; + offset += skip_bytes; + } + } + + return NVME_SUCCESS; +} + +static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr, uint32_t len, + NvmeTxDirection dir) +{ + assert(sg->flags & NVME_SG_ALLOC); + + if (sg->flags & NVME_SG_DMA) { + uint64_t residual; + + if (dir == NVME_TX_DIRECTION_TO_DEVICE) { + residual = dma_buf_write(ptr, len, &sg->qsg); + } else { + residual = dma_buf_read(ptr, len, &sg->qsg); + } + + if (unlikely(residual)) { + trace_pci_nvme_err_invalid_dma(); + return NVME_INVALID_FIELD | NVME_DNR; + } + } else { + size_t bytes; + + if (dir == NVME_TX_DIRECTION_TO_DEVICE) { + bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len); + } else { + bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len); + } + + if (unlikely(bytes != len)) { + trace_pci_nvme_err_invalid_dma(); + return NVME_INVALID_FIELD | NVME_DNR; + } + } + + return NVME_SUCCESS; +} + +static inline uint16_t nvme_c2h(NvmeCtrl *n, uint8_t *ptr, uint32_t len, + NvmeRequest *req) +{ + uint16_t status; + + status = nvme_map_dptr(n, &req->sg, len, &req->cmd); + if (status) { + return status; + } + + return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE); +} + +static inline uint16_t nvme_h2c(NvmeCtrl *n, uint8_t *ptr, uint32_t len, + NvmeRequest *req) +{ + uint16_t status; + + status = nvme_map_dptr(n, &req->sg, len, &req->cmd); + if (status) { + return status; + } + + return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE); +} + +uint16_t nvme_bounce_data(NvmeCtrl *n, uint8_t *ptr, uint32_t len, + NvmeTxDirection dir, NvmeRequest *req) +{ + NvmeNamespace *ns = req->ns; + NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; + uint16_t ctrl = le16_to_cpu(rw->control); + + if (nvme_ns_ext(ns) && + !(ctrl & NVME_RW_PRINFO_PRACT && ns->lbaf.ms == 8)) { + return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz, + ns->lbaf.ms, 0, dir); + } + + return nvme_tx(n, &req->sg, ptr, len, dir); +} + +uint16_t nvme_bounce_mdata(NvmeCtrl *n, uint8_t *ptr, uint32_t len, + NvmeTxDirection dir, NvmeRequest *req) +{ + NvmeNamespace *ns = req->ns; + uint16_t status; + + if (nvme_ns_ext(ns)) { + return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms, + ns->lbasz, ns->lbasz, dir); + } + + nvme_sg_unmap(&req->sg); + + status = nvme_map_mptr(n, &req->sg, len, &req->cmd); + if (status) { + return status; + } + + return nvme_tx(n, &req->sg, ptr, len, dir); +} + +static inline void nvme_blk_read(BlockBackend *blk, int64_t offset, + BlockCompletionFunc *cb, NvmeRequest *req) +{ + assert(req->sg.flags & NVME_SG_ALLOC); + + if (req->sg.flags & NVME_SG_DMA) { + req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE, + cb, req); + } else { + req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req); + } +} + +static inline void nvme_blk_write(BlockBackend *blk, int64_t offset, + BlockCompletionFunc *cb, NvmeRequest *req) +{ + assert(req->sg.flags & NVME_SG_ALLOC); + + if (req->sg.flags & NVME_SG_DMA) { + req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE, + cb, req); + } else { + req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req); + } +} + +static void nvme_post_cqes(void *opaque) +{ + NvmeCQueue *cq = opaque; + NvmeCtrl *n = cq->ctrl; + NvmeRequest *req, *next; + int ret; + + QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) { + NvmeSQueue *sq; + hwaddr addr; + + if (nvme_cq_full(cq)) { + break; + } + + sq = req->sq; + req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase); + req->cqe.sq_id = cpu_to_le16(sq->sqid); + req->cqe.sq_head = cpu_to_le16(sq->head); + addr = cq->dma_addr + cq->tail * n->cqe_size; + ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe, + sizeof(req->cqe)); + if (ret) { + trace_pci_nvme_err_addr_write(addr); + trace_pci_nvme_err_cfs(); + n->bar.csts = NVME_CSTS_FAILED; + break; + } + QTAILQ_REMOVE(&cq->req_list, req, entry); + nvme_inc_cq_tail(cq); + nvme_sg_unmap(&req->sg); + QTAILQ_INSERT_TAIL(&sq->req_list, req, entry); + } + if (cq->tail != cq->head) { + nvme_irq_assert(n, cq); + } +} + +static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req) +{ + assert(cq->cqid == req->sq->cqid); + trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid, + req->status); + + if (req->status) { + trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns), + req->status, req->cmd.opcode); + } + + QTAILQ_REMOVE(&req->sq->out_req_list, req, entry); + QTAILQ_INSERT_TAIL(&cq->req_list, req, entry); + timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); +} + +static void nvme_process_aers(void *opaque) +{ + NvmeCtrl *n = opaque; + NvmeAsyncEvent *event, *next; + + trace_pci_nvme_process_aers(n->aer_queued); + + QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) { + NvmeRequest *req; + NvmeAerResult *result; + + /* can't post cqe if there is nothing to complete */ + if (!n->outstanding_aers) { + trace_pci_nvme_no_outstanding_aers(); + break; + } + + /* ignore if masked (cqe posted, but event not cleared) */ + if (n->aer_mask & (1 << event->result.event_type)) { + trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask); + continue; + } + + QTAILQ_REMOVE(&n->aer_queue, event, entry); + n->aer_queued--; + + n->aer_mask |= 1 << event->result.event_type; + n->outstanding_aers--; + + req = n->aer_reqs[n->outstanding_aers]; + + result = (NvmeAerResult *) &req->cqe.result; + result->event_type = event->result.event_type; + result->event_info = event->result.event_info; + result->log_page = event->result.log_page; + g_free(event); + + trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info, + result->log_page); + + nvme_enqueue_req_completion(&n->admin_cq, req); + } +} + +static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type, + uint8_t event_info, uint8_t log_page) +{ + NvmeAsyncEvent *event; + + trace_pci_nvme_enqueue_event(event_type, event_info, log_page); + + if (n->aer_queued == n->params.aer_max_queued) { + trace_pci_nvme_enqueue_event_noqueue(n->aer_queued); + return; + } + + event = g_new(NvmeAsyncEvent, 1); + event->result = (NvmeAerResult) { + .event_type = event_type, + .event_info = event_info, + .log_page = log_page, + }; + + QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry); + n->aer_queued++; + + nvme_process_aers(n); +} + +static void nvme_smart_event(NvmeCtrl *n, uint8_t event) +{ + uint8_t aer_info; + + /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */ + if (!(NVME_AEC_SMART(n->features.async_config) & event)) { + return; + } + + switch (event) { + case NVME_SMART_SPARE: + aer_info = NVME_AER_INFO_SMART_SPARE_THRESH; + break; + case NVME_SMART_TEMPERATURE: + aer_info = NVME_AER_INFO_SMART_TEMP_THRESH; + break; + case NVME_SMART_RELIABILITY: + case NVME_SMART_MEDIA_READ_ONLY: + case NVME_SMART_FAILED_VOLATILE_MEDIA: + case NVME_SMART_PMR_UNRELIABLE: + aer_info = NVME_AER_INFO_SMART_RELIABILITY; + break; + default: + return; + } + + nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO); +} + +static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type) +{ + n->aer_mask &= ~(1 << event_type); + if (!QTAILQ_EMPTY(&n->aer_queue)) { + nvme_process_aers(n); + } +} + +static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len) +{ + uint8_t mdts = n->params.mdts; + + if (mdts && len > n->page_size << mdts) { + trace_pci_nvme_err_mdts(len); + return NVME_INVALID_FIELD | NVME_DNR; + } + + return NVME_SUCCESS; +} + +static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba, + uint32_t nlb) +{ + uint64_t nsze = le64_to_cpu(ns->id_ns.nsze); + + if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) { + trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze); + return NVME_LBA_RANGE | NVME_DNR; + } + + return NVME_SUCCESS; +} + +static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba, + uint32_t nlb) +{ + BlockDriverState *bs = blk_bs(ns->blkconf.blk); + + int64_t pnum = 0, bytes = nvme_l2b(ns, nlb); + int64_t offset = nvme_l2b(ns, slba); + bool zeroed; + int ret; + + Error *local_err = NULL; + + /* + * `pnum` holds the number of bytes after offset that shares the same + * allocation status as the byte at offset. If `pnum` is different from + * `bytes`, we should check the allocation status of the next range and + * continue this until all bytes have been checked. + */ + do { + bytes -= pnum; + + ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL); + if (ret < 0) { + error_setg_errno(&local_err, -ret, "unable to get block status"); + error_report_err(local_err); + + return NVME_INTERNAL_DEV_ERROR; + } + + zeroed = !!(ret & BDRV_BLOCK_ZERO); + + trace_pci_nvme_block_status(offset, bytes, pnum, ret, zeroed); + + if (zeroed) { + return NVME_DULB; + } + + offset += pnum; + } while (pnum != bytes); + + return NVME_SUCCESS; +} + +static void nvme_aio_err(NvmeRequest *req, int ret) +{ + uint16_t status = NVME_SUCCESS; + Error *local_err = NULL; + + switch (req->cmd.opcode) { + case NVME_CMD_READ: + status = NVME_UNRECOVERED_READ; + break; + case NVME_CMD_FLUSH: + case NVME_CMD_WRITE: + case NVME_CMD_WRITE_ZEROES: + case NVME_CMD_ZONE_APPEND: + status = NVME_WRITE_FAULT; + break; + default: + status = NVME_INTERNAL_DEV_ERROR; + break; + } + + trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status); + + error_setg_errno(&local_err, -ret, "aio failed"); + error_report_err(local_err); + + /* + * Set the command status code to the first encountered error but allow a + * subsequent Internal Device Error to trump it. + */ + if (req->status && status != NVME_INTERNAL_DEV_ERROR) { + return; + } + + req->status = status; +} + +static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba) +{ + return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 : + slba / ns->zone_size; +} + +static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba) +{ + uint32_t zone_idx = nvme_zone_idx(ns, slba); + + assert(zone_idx < ns->num_zones); + return &ns->zone_array[zone_idx]; +} + +static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone) +{ + uint64_t zslba = zone->d.zslba; + + switch (nvme_get_zone_state(zone)) { + case NVME_ZONE_STATE_EMPTY: + case NVME_ZONE_STATE_IMPLICITLY_OPEN: + case NVME_ZONE_STATE_EXPLICITLY_OPEN: + case NVME_ZONE_STATE_CLOSED: + return NVME_SUCCESS; + case NVME_ZONE_STATE_FULL: + trace_pci_nvme_err_zone_is_full(zslba); + return NVME_ZONE_FULL; + case NVME_ZONE_STATE_OFFLINE: + trace_pci_nvme_err_zone_is_offline(zslba); + return NVME_ZONE_OFFLINE; + case NVME_ZONE_STATE_READ_ONLY: + trace_pci_nvme_err_zone_is_read_only(zslba); + return NVME_ZONE_READ_ONLY; + default: + assert(false); + } + + return NVME_INTERNAL_DEV_ERROR; +} + +static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone, + uint64_t slba, uint32_t nlb) +{ + uint64_t zcap = nvme_zone_wr_boundary(zone); + uint16_t status; + + status = nvme_check_zone_state_for_write(zone); + if (status) { + return status; + } + + if (unlikely(slba != zone->w_ptr)) { + trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba, zone->w_ptr); + return NVME_ZONE_INVALID_WRITE; + } + + if (unlikely((slba + nlb) > zcap)) { + trace_pci_nvme_err_zone_boundary(slba, nlb, zcap); + return NVME_ZONE_BOUNDARY_ERROR; + } + + return NVME_SUCCESS; +} + +static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone) +{ + switch (nvme_get_zone_state(zone)) { + case NVME_ZONE_STATE_EMPTY: + case NVME_ZONE_STATE_IMPLICITLY_OPEN: + case NVME_ZONE_STATE_EXPLICITLY_OPEN: + case NVME_ZONE_STATE_FULL: + case NVME_ZONE_STATE_CLOSED: + case NVME_ZONE_STATE_READ_ONLY: + return NVME_SUCCESS; + case NVME_ZONE_STATE_OFFLINE: + trace_pci_nvme_err_zone_is_offline(zone->d.zslba); + return NVME_ZONE_OFFLINE; + default: + assert(false); + } + + return NVME_INTERNAL_DEV_ERROR; +} + +static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba, + uint32_t nlb) +{ + NvmeZone *zone = nvme_get_zone_by_slba(ns, slba); + uint64_t bndry = nvme_zone_rd_boundary(ns, zone); + uint64_t end = slba + nlb; + uint16_t status; + + status = nvme_check_zone_state_for_read(zone); + if (status) { + ; + } else if (unlikely(end > bndry)) { + if (!ns->params.cross_zone_read) { + status = NVME_ZONE_BOUNDARY_ERROR; + } else { + /* + * Read across zone boundary - check that all subsequent + * zones that are being read have an appropriate state. + */ + do { + zone++; + status = nvme_check_zone_state_for_read(zone); + if (status) { + break; + } + } while (end > nvme_zone_rd_boundary(ns, zone)); + } + } + + return status; +} + +static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone) +{ + switch (nvme_get_zone_state(zone)) { + case NVME_ZONE_STATE_FULL: + return NVME_SUCCESS; + + case NVME_ZONE_STATE_IMPLICITLY_OPEN: + case NVME_ZONE_STATE_EXPLICITLY_OPEN: + nvme_aor_dec_open(ns); + /* fallthrough */ + case NVME_ZONE_STATE_CLOSED: + nvme_aor_dec_active(ns); + /* fallthrough */ + case NVME_ZONE_STATE_EMPTY: + nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL); + return NVME_SUCCESS; + + default: + return NVME_ZONE_INVAL_TRANSITION; + } +} + +static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone) +{ + switch (nvme_get_zone_state(zone)) { + case NVME_ZONE_STATE_EXPLICITLY_OPEN: + case NVME_ZONE_STATE_IMPLICITLY_OPEN: + nvme_aor_dec_open(ns); + nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); + /* fall through */ + case NVME_ZONE_STATE_CLOSED: + return NVME_SUCCESS; + + default: + return NVME_ZONE_INVAL_TRANSITION; + } +} + +static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns) +{ + NvmeZone *zone; + + if (ns->params.max_open_zones && + ns->nr_open_zones == ns->params.max_open_zones) { + zone = QTAILQ_FIRST(&ns->imp_open_zones); + if (zone) { + /* + * Automatically close this implicitly open zone. + */ + QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry); + nvme_zrm_close(ns, zone); + } + } +} + +enum { + NVME_ZRM_AUTO = 1 << 0, +}; + +static uint16_t nvme_zrm_open_flags(NvmeNamespace *ns, NvmeZone *zone, + int flags) +{ + int act = 0; + uint16_t status; + + switch (nvme_get_zone_state(zone)) { + case NVME_ZONE_STATE_EMPTY: + act = 1; + + /* fallthrough */ + + case NVME_ZONE_STATE_CLOSED: + nvme_zrm_auto_transition_zone(ns); + status = nvme_aor_check(ns, act, 1); + if (status) { + return status; + } + + if (act) { + nvme_aor_inc_active(ns); + } + + nvme_aor_inc_open(ns); + + if (flags & NVME_ZRM_AUTO) { + nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN); + return NVME_SUCCESS; + } + + /* fallthrough */ + + case NVME_ZONE_STATE_IMPLICITLY_OPEN: + if (flags & NVME_ZRM_AUTO) { + return NVME_SUCCESS; + } + + nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN); + + /* fallthrough */ + + case NVME_ZONE_STATE_EXPLICITLY_OPEN: + return NVME_SUCCESS; + + default: + return NVME_ZONE_INVAL_TRANSITION; + } +} + +static inline uint16_t nvme_zrm_auto(NvmeNamespace *ns, NvmeZone *zone) +{ + return nvme_zrm_open_flags(ns, zone, NVME_ZRM_AUTO); +} + +static inline uint16_t nvme_zrm_open(NvmeNamespace *ns, NvmeZone *zone) +{ + return nvme_zrm_open_flags(ns, zone, 0); +} + +static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone, + uint32_t nlb) +{ + zone->d.wp += nlb; + + if (zone->d.wp == nvme_zone_wr_boundary(zone)) { + nvme_zrm_finish(ns, zone); + } +} + +static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req) +{ + NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; + NvmeZone *zone; + uint64_t slba; + uint32_t nlb; + + slba = le64_to_cpu(rw->slba); + nlb = le16_to_cpu(rw->nlb) + 1; + zone = nvme_get_zone_by_slba(ns, slba); + + nvme_advance_zone_wp(ns, zone, nlb); +} + +static inline bool nvme_is_write(NvmeRequest *req) +{ + NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; + + return rw->opcode == NVME_CMD_WRITE || + rw->opcode == NVME_CMD_ZONE_APPEND || + rw->opcode == NVME_CMD_WRITE_ZEROES; +} + +static void nvme_misc_cb(void *opaque, int ret) +{ + NvmeRequest *req = opaque; + NvmeNamespace *ns = req->ns; + + BlockBackend *blk = ns->blkconf.blk; + BlockAcctCookie *acct = &req->acct; + BlockAcctStats *stats = blk_get_stats(blk); + + trace_pci_nvme_misc_cb(nvme_cid(req), blk_name(blk)); + + if (ret) { + block_acct_failed(stats, acct); + nvme_aio_err(req, ret); + } else { + block_acct_done(stats, acct); + } + + nvme_enqueue_req_completion(nvme_cq(req), req); +} + +void nvme_rw_complete_cb(void *opaque, int ret) +{ + NvmeRequest *req = opaque; + NvmeNamespace *ns = req->ns; + BlockBackend *blk = ns->blkconf.blk; + BlockAcctCookie *acct = &req->acct; + BlockAcctStats *stats = blk_get_stats(blk); + + trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk)); + + if (ret) { + block_acct_failed(stats, acct); + nvme_aio_err(req, ret); + } else { + block_acct_done(stats, acct); + } + + if (ns->params.zoned && nvme_is_write(req)) { + nvme_finalize_zoned_write(ns, req); + } + + nvme_enqueue_req_completion(nvme_cq(req), req); +} + +static void nvme_rw_cb(void *opaque, int ret) +{ + NvmeRequest *req = opaque; + NvmeNamespace *ns = req->ns; + + BlockBackend *blk = ns->blkconf.blk; + + trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk)); + + if (ret) { + goto out; + } + + if (ns->lbaf.ms) { + NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; + uint64_t slba = le64_to_cpu(rw->slba); + uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; + uint64_t offset = nvme_moff(ns, slba); + + if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) { + size_t mlen = nvme_m2b(ns, nlb); + + req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen, + BDRV_REQ_MAY_UNMAP, + nvme_rw_complete_cb, req); + return; + } + + if (nvme_ns_ext(ns) || req->cmd.mptr) { + uint16_t status; + + nvme_sg_unmap(&req->sg); + status = nvme_map_mdata(nvme_ctrl(req), nlb, req); + if (status) { + ret = -EFAULT; + goto out; + } + + if (req->cmd.opcode == NVME_CMD_READ) { + return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req); + } + + return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req); + } + } + +out: + nvme_rw_complete_cb(req, ret); +} + +struct nvme_aio_format_ctx { + NvmeRequest *req; + NvmeNamespace *ns; + + /* number of outstanding write zeroes for this namespace */ + int *count; +}; + +static void nvme_aio_format_cb(void *opaque, int ret) +{ + struct nvme_aio_format_ctx *ctx = opaque; + NvmeRequest *req = ctx->req; + NvmeNamespace *ns = ctx->ns; + uintptr_t *num_formats = (uintptr_t *)&req->opaque; + int *count = ctx->count; + + g_free(ctx); + + if (ret) { + nvme_aio_err(req, ret); + } + + if (--(*count)) { + return; + } + + g_free(count); + ns->status = 0x0; + + if (--(*num_formats)) { + return; + } + + nvme_enqueue_req_completion(nvme_cq(req), req); +} + +struct nvme_aio_flush_ctx { + NvmeRequest *req; + NvmeNamespace *ns; + BlockAcctCookie acct; +}; + +static void nvme_aio_flush_cb(void *opaque, int ret) +{ + struct nvme_aio_flush_ctx *ctx = opaque; + NvmeRequest *req = ctx->req; + uintptr_t *num_flushes = (uintptr_t *)&req->opaque; + + BlockBackend *blk = ctx->ns->blkconf.blk; + BlockAcctCookie *acct = &ctx->acct; + BlockAcctStats *stats = blk_get_stats(blk); + + trace_pci_nvme_aio_flush_cb(nvme_cid(req), blk_name(blk)); + + if (!ret) { + block_acct_done(stats, acct); + } else { + block_acct_failed(stats, acct); + nvme_aio_err(req, ret); + } + + (*num_flushes)--; + g_free(ctx); + + if (*num_flushes) { + return; + } + + nvme_enqueue_req_completion(nvme_cq(req), req); +} + +static void nvme_verify_cb(void *opaque, int ret) +{ + NvmeBounceContext *ctx = opaque; + NvmeRequest *req = ctx->req; + NvmeNamespace *ns = req->ns; + BlockBackend *blk = ns->blkconf.blk; + BlockAcctCookie *acct = &req->acct; + BlockAcctStats *stats = blk_get_stats(blk); + NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; + uint64_t slba = le64_to_cpu(rw->slba); + uint16_t ctrl = le16_to_cpu(rw->control); + uint16_t apptag = le16_to_cpu(rw->apptag); + uint16_t appmask = le16_to_cpu(rw->appmask); + uint32_t reftag = le32_to_cpu(rw->reftag); + uint16_t status; + + trace_pci_nvme_verify_cb(nvme_cid(req), NVME_RW_PRINFO(ctrl), apptag, + appmask, reftag); + + if (ret) { + block_acct_failed(stats, acct); + nvme_aio_err(req, ret); + goto out; + } + + block_acct_done(stats, acct); + + if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { + status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce, + ctx->mdata.iov.size, slba); + if (status) { + req->status = status; + goto out; + } + + req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, + ctx->mdata.bounce, ctx->mdata.iov.size, + ctrl, slba, apptag, appmask, reftag); + } + +out: + qemu_iovec_destroy(&ctx->data.iov); + g_free(ctx->data.bounce); + + qemu_iovec_destroy(&ctx->mdata.iov); + g_free(ctx->mdata.bounce); + + g_free(ctx); + + nvme_enqueue_req_completion(nvme_cq(req), req); +} + + +static void nvme_verify_mdata_in_cb(void *opaque, int ret) +{ + NvmeBounceContext *ctx = opaque; + NvmeRequest *req = ctx->req; + NvmeNamespace *ns = req->ns; + NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; + uint64_t slba = le64_to_cpu(rw->slba); + uint32_t nlb = le16_to_cpu(rw->nlb) + 1; + size_t mlen = nvme_m2b(ns, nlb); + uint64_t offset = nvme_moff(ns, slba); + BlockBackend *blk = ns->blkconf.blk; + + trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk)); + + if (ret) { + goto out; + } + + ctx->mdata.bounce = g_malloc(mlen); + + qemu_iovec_reset(&ctx->mdata.iov); + qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); + + req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, + nvme_verify_cb, ctx); + return; + +out: + nvme_verify_cb(ctx, ret); +} + +static void nvme_aio_discard_cb(void *opaque, int ret) +{ + NvmeRequest *req = opaque; + uintptr_t *discards = (uintptr_t *)&req->opaque; + + trace_pci_nvme_aio_discard_cb(nvme_cid(req)); + + if (ret) { + nvme_aio_err(req, ret); + } + + (*discards)--; + + if (*discards) { + return; + } + + nvme_enqueue_req_completion(nvme_cq(req), req); +} + +struct nvme_zone_reset_ctx { + NvmeRequest *req; + NvmeZone *zone; +}; + +static void nvme_aio_zone_reset_complete_cb(void *opaque, int ret) +{ + struct nvme_zone_reset_ctx *ctx = opaque; + NvmeRequest *req = ctx->req; + NvmeNamespace *ns = req->ns; + NvmeZone *zone = ctx->zone; + uintptr_t *resets = (uintptr_t *)&req->opaque; + + if (ret) { + nvme_aio_err(req, ret); + goto out; + } + + switch (nvme_get_zone_state(zone)) { + case NVME_ZONE_STATE_EXPLICITLY_OPEN: + case NVME_ZONE_STATE_IMPLICITLY_OPEN: + nvme_aor_dec_open(ns); + /* fall through */ + case NVME_ZONE_STATE_CLOSED: + nvme_aor_dec_active(ns); + /* fall through */ + case NVME_ZONE_STATE_FULL: + zone->w_ptr = zone->d.zslba; + zone->d.wp = zone->w_ptr; + nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY); + /* fall through */ + default: + break; + } + +out: + g_free(ctx); + + (*resets)--; + + if (*resets) { + return; + } + + nvme_enqueue_req_completion(nvme_cq(req), req); +} + +static void nvme_aio_zone_reset_cb(void *opaque, int ret) +{ + struct nvme_zone_reset_ctx *ctx = opaque; + NvmeRequest *req = ctx->req; + NvmeNamespace *ns = req->ns; + NvmeZone *zone = ctx->zone; + + trace_pci_nvme_aio_zone_reset_cb(nvme_cid(req), zone->d.zslba); + + if (ret) { + goto out; + } + + if (ns->lbaf.ms) { + int64_t offset = nvme_moff(ns, zone->d.zslba); + + blk_aio_pwrite_zeroes(ns->blkconf.blk, offset, + nvme_m2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP, + nvme_aio_zone_reset_complete_cb, ctx); + return; + } + +out: + nvme_aio_zone_reset_complete_cb(opaque, ret); +} + +struct nvme_copy_ctx { + int copies; + uint8_t *bounce; + uint8_t *mbounce; + uint32_t nlb; + NvmeCopySourceRange *ranges; +}; + +struct nvme_copy_in_ctx { + NvmeRequest *req; + QEMUIOVector iov; + NvmeCopySourceRange *range; +}; + +static void nvme_copy_complete_cb(void *opaque, int ret) +{ + NvmeRequest *req = opaque; + NvmeNamespace *ns = req->ns; + struct nvme_copy_ctx *ctx = req->opaque; + + if (ret) { + block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct); + nvme_aio_err(req, ret); + goto out; + } + + block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct); + +out: + if (ns->params.zoned) { + NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; + uint64_t sdlba = le64_to_cpu(copy->sdlba); + NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba); + + nvme_advance_zone_wp(ns, zone, ctx->nlb); + } + + g_free(ctx->bounce); + g_free(ctx->mbounce); + g_free(ctx); + + nvme_enqueue_req_completion(nvme_cq(req), req); +} + +static void nvme_copy_cb(void *opaque, int ret) +{ + NvmeRequest *req = opaque; + NvmeNamespace *ns = req->ns; + struct nvme_copy_ctx *ctx = req->opaque; + + trace_pci_nvme_copy_cb(nvme_cid(req)); + + if (ret) { + goto out; + } + + if (ns->lbaf.ms) { + NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; + uint64_t sdlba = le64_to_cpu(copy->sdlba); + int64_t offset = nvme_moff(ns, sdlba); + + qemu_iovec_reset(&req->sg.iov); + qemu_iovec_add(&req->sg.iov, ctx->mbounce, nvme_m2b(ns, ctx->nlb)); + + req->aiocb = blk_aio_pwritev(ns->blkconf.blk, offset, &req->sg.iov, 0, + nvme_copy_complete_cb, req); + return; + } + +out: + nvme_copy_complete_cb(opaque, ret); +} + +static void nvme_copy_in_complete(NvmeRequest *req) +{ + NvmeNamespace *ns = req->ns; + NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; + struct nvme_copy_ctx *ctx = req->opaque; + uint64_t sdlba = le64_to_cpu(copy->sdlba); + uint16_t status; + + trace_pci_nvme_copy_in_complete(nvme_cid(req)); + + block_acct_done(blk_get_stats(ns->blkconf.blk), &req->acct); + + if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { + uint16_t prinfor = (copy->control[0] >> 4) & 0xf; + uint16_t prinfow = (copy->control[2] >> 2) & 0xf; + uint16_t nr = copy->nr + 1; + NvmeCopySourceRange *range; + uint64_t slba; + uint32_t nlb; + uint16_t apptag, appmask; + uint32_t reftag; + uint8_t *buf = ctx->bounce, *mbuf = ctx->mbounce; + size_t len, mlen; + int i; + + /* + * The dif helpers expects prinfo to be similar to the control field of + * the NvmeRwCmd, so shift by 10 to fake it. + */ + prinfor = prinfor << 10; + prinfow = prinfow << 10; + + for (i = 0; i < nr; i++) { + range = &ctx->ranges[i]; + slba = le64_to_cpu(range->slba); + nlb = le16_to_cpu(range->nlb) + 1; + len = nvme_l2b(ns, nlb); + mlen = nvme_m2b(ns, nlb); + apptag = le16_to_cpu(range->apptag); + appmask = le16_to_cpu(range->appmask); + reftag = le32_to_cpu(range->reftag); + + status = nvme_dif_check(ns, buf, len, mbuf, mlen, prinfor, slba, + apptag, appmask, reftag); + if (status) { + goto invalid; + } + + buf += len; + mbuf += mlen; + } + + apptag = le16_to_cpu(copy->apptag); + appmask = le16_to_cpu(copy->appmask); + reftag = le32_to_cpu(copy->reftag); + + if (prinfow & NVME_RW_PRINFO_PRACT) { + size_t len = nvme_l2b(ns, ctx->nlb); + size_t mlen = nvme_m2b(ns, ctx->nlb); + + status = nvme_check_prinfo(ns, prinfow, sdlba, reftag); + if (status) { + goto invalid; + } + + nvme_dif_pract_generate_dif(ns, ctx->bounce, len, ctx->mbounce, + mlen, apptag, reftag); + } else { + status = nvme_dif_check(ns, ctx->bounce, len, ctx->mbounce, mlen, + prinfow, sdlba, apptag, appmask, reftag); + if (status) { + goto invalid; + } + } + } + + status = nvme_check_bounds(ns, sdlba, ctx->nlb); + if (status) { + goto invalid; + } + + if (ns->params.zoned) { + NvmeZone *zone = nvme_get_zone_by_slba(ns, sdlba); + + status = nvme_check_zone_write(ns, zone, sdlba, ctx->nlb); + if (status) { + goto invalid; + } + + status = nvme_zrm_auto(ns, zone); + if (status) { + goto invalid; + } + + zone->w_ptr += ctx->nlb; + } + + qemu_iovec_init(&req->sg.iov, 1); + qemu_iovec_add(&req->sg.iov, ctx->bounce, nvme_l2b(ns, ctx->nlb)); + + block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0, + BLOCK_ACCT_WRITE); + + req->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, sdlba), + &req->sg.iov, 0, nvme_copy_cb, req); + + return; + +invalid: + req->status = status; + + g_free(ctx->bounce); + g_free(ctx); + + nvme_enqueue_req_completion(nvme_cq(req), req); +} + +static void nvme_aio_copy_in_cb(void *opaque, int ret) +{ + struct nvme_copy_in_ctx *in_ctx = opaque; + NvmeRequest *req = in_ctx->req; + NvmeNamespace *ns = req->ns; + struct nvme_copy_ctx *ctx = req->opaque; + + qemu_iovec_destroy(&in_ctx->iov); + g_free(in_ctx); + + trace_pci_nvme_aio_copy_in_cb(nvme_cid(req)); + + if (ret) { + nvme_aio_err(req, ret); + } + + ctx->copies--; + + if (ctx->copies) { + return; + } + + if (req->status) { + block_acct_failed(blk_get_stats(ns->blkconf.blk), &req->acct); + + g_free(ctx->bounce); + g_free(ctx->mbounce); + g_free(ctx); + + nvme_enqueue_req_completion(nvme_cq(req), req); + + return; + } + + nvme_copy_in_complete(req); +} + +struct nvme_compare_ctx { + struct { + QEMUIOVector iov; + uint8_t *bounce; + } data; + + struct { + QEMUIOVector iov; + uint8_t *bounce; + } mdata; +}; + +static void nvme_compare_mdata_cb(void *opaque, int ret) +{ + NvmeRequest *req = opaque; + NvmeNamespace *ns = req->ns; + NvmeCtrl *n = nvme_ctrl(req); + NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; + uint16_t ctrl = le16_to_cpu(rw->control); + uint16_t apptag = le16_to_cpu(rw->apptag); + uint16_t appmask = le16_to_cpu(rw->appmask); + uint32_t reftag = le32_to_cpu(rw->reftag); + struct nvme_compare_ctx *ctx = req->opaque; + g_autofree uint8_t *buf = NULL; + BlockBackend *blk = ns->blkconf.blk; + BlockAcctCookie *acct = &req->acct; + BlockAcctStats *stats = blk_get_stats(blk); + uint16_t status = NVME_SUCCESS; + + trace_pci_nvme_compare_mdata_cb(nvme_cid(req)); + + if (ret) { + block_acct_failed(stats, acct); + nvme_aio_err(req, ret); + goto out; + } + + buf = g_malloc(ctx->mdata.iov.size); + + status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size, + NVME_TX_DIRECTION_TO_DEVICE, req); + if (status) { + req->status = status; + goto out; + } + + if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { + uint64_t slba = le64_to_cpu(rw->slba); + uint8_t *bufp; + uint8_t *mbufp = ctx->mdata.bounce; + uint8_t *end = mbufp + ctx->mdata.iov.size; + int16_t pil = 0; + + status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size, + ctx->mdata.bounce, ctx->mdata.iov.size, ctrl, + slba, apptag, appmask, reftag); + if (status) { + req->status = status; + goto out; + } + + /* + * When formatted with protection information, do not compare the DIF + * tuple. + */ + if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) { + pil = ns->lbaf.ms - sizeof(NvmeDifTuple); + } + + for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) { + if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) { + req->status = NVME_CMP_FAILURE; + goto out; + } + } + + goto out; + } + + if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) { + req->status = NVME_CMP_FAILURE; + goto out; + } + + block_acct_done(stats, acct); + +out: + qemu_iovec_destroy(&ctx->data.iov); + g_free(ctx->data.bounce); + + qemu_iovec_destroy(&ctx->mdata.iov); + g_free(ctx->mdata.bounce); + + g_free(ctx); + + nvme_enqueue_req_completion(nvme_cq(req), req); +} + +static void nvme_compare_data_cb(void *opaque, int ret) +{ + NvmeRequest *req = opaque; + NvmeCtrl *n = nvme_ctrl(req); + NvmeNamespace *ns = req->ns; + BlockBackend *blk = ns->blkconf.blk; + BlockAcctCookie *acct = &req->acct; + BlockAcctStats *stats = blk_get_stats(blk); + + struct nvme_compare_ctx *ctx = req->opaque; + g_autofree uint8_t *buf = NULL; + uint16_t status; + + trace_pci_nvme_compare_data_cb(nvme_cid(req)); + + if (ret) { + block_acct_failed(stats, acct); + nvme_aio_err(req, ret); + goto out; + } + + buf = g_malloc(ctx->data.iov.size); + + status = nvme_bounce_data(n, buf, ctx->data.iov.size, + NVME_TX_DIRECTION_TO_DEVICE, req); + if (status) { + req->status = status; + goto out; + } + + if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) { + req->status = NVME_CMP_FAILURE; + goto out; + } + + if (ns->lbaf.ms) { + NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; + uint64_t slba = le64_to_cpu(rw->slba); + uint32_t nlb = le16_to_cpu(rw->nlb) + 1; + size_t mlen = nvme_m2b(ns, nlb); + uint64_t offset = nvme_moff(ns, slba); + + ctx->mdata.bounce = g_malloc(mlen); + + qemu_iovec_init(&ctx->mdata.iov, 1); + qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen); + + req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0, + nvme_compare_mdata_cb, req); + return; + } + + block_acct_done(stats, acct); + +out: + qemu_iovec_destroy(&ctx->data.iov); + g_free(ctx->data.bounce); + g_free(ctx); + + nvme_enqueue_req_completion(nvme_cq(req), req); +} + +static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeNamespace *ns = req->ns; + NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd; + + uint32_t attr = le32_to_cpu(dsm->attributes); + uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1; + + uint16_t status = NVME_SUCCESS; + + trace_pci_nvme_dsm(nvme_cid(req), nvme_nsid(ns), nr, attr); + + if (attr & NVME_DSMGMT_AD) { + int64_t offset; + size_t len; + NvmeDsmRange range[nr]; + uintptr_t *discards = (uintptr_t *)&req->opaque; + + status = nvme_h2c(n, (uint8_t *)range, sizeof(range), req); + if (status) { + return status; + } + + /* + * AIO callbacks may be called immediately, so initialize discards to 1 + * to make sure the the callback does not complete the request before + * all discards have been issued. + */ + *discards = 1; + + for (int i = 0; i < nr; i++) { + uint64_t slba = le64_to_cpu(range[i].slba); + uint32_t nlb = le32_to_cpu(range[i].nlb); + + if (nvme_check_bounds(ns, slba, nlb)) { + continue; + } + + trace_pci_nvme_dsm_deallocate(nvme_cid(req), nvme_nsid(ns), slba, + nlb); + + if (nlb > n->dmrsl) { + trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl); + } + + offset = nvme_l2b(ns, slba); + len = nvme_l2b(ns, nlb); + + while (len) { + size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len); + + (*discards)++; + + blk_aio_pdiscard(ns->blkconf.blk, offset, bytes, + nvme_aio_discard_cb, req); + + offset += bytes; + len -= bytes; + } + } + + /* account for the 1-initialization */ + (*discards)--; + + if (*discards) { + status = NVME_NO_COMPLETE; + } else { + status = req->status; + } + } + + return status; +} + +static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; + NvmeNamespace *ns = req->ns; + BlockBackend *blk = ns->blkconf.blk; + uint64_t slba = le64_to_cpu(rw->slba); + uint32_t nlb = le16_to_cpu(rw->nlb) + 1; + size_t len = nvme_l2b(ns, nlb); + int64_t offset = nvme_l2b(ns, slba); + uint16_t ctrl = le16_to_cpu(rw->control); + uint32_t reftag = le32_to_cpu(rw->reftag); + NvmeBounceContext *ctx = NULL; + uint16_t status; + + trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb); + + if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { + status = nvme_check_prinfo(ns, ctrl, slba, reftag); + if (status) { + return status; + } + + if (ctrl & NVME_RW_PRINFO_PRACT) { + return NVME_INVALID_PROT_INFO | NVME_DNR; + } + } + + if (len > n->page_size << n->params.vsl) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + status = nvme_check_bounds(ns, slba, nlb); + if (status) { + return status; + } + + if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { + status = nvme_check_dulbe(ns, slba, nlb); + if (status) { + return status; + } + } + + ctx = g_new0(NvmeBounceContext, 1); + ctx->req = req; + + ctx->data.bounce = g_malloc(len); + + qemu_iovec_init(&ctx->data.iov, 1); + qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len); + + block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size, + BLOCK_ACCT_READ); + + req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0, + nvme_verify_mdata_in_cb, ctx); + return NVME_NO_COMPLETE; +} + +static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeNamespace *ns = req->ns; + NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd; + + uint16_t nr = copy->nr + 1; + uint8_t format = copy->control[0] & 0xf; + + /* + * Shift the PRINFOR/PRINFOW values by 10 to allow reusing the + * NVME_RW_PRINFO constants. + */ + uint16_t prinfor = ((copy->control[0] >> 4) & 0xf) << 10; + uint16_t prinfow = ((copy->control[2] >> 2) & 0xf) << 10; + + uint32_t nlb = 0; + uint8_t *bounce = NULL, *bouncep = NULL; + uint8_t *mbounce = NULL, *mbouncep = NULL; + struct nvme_copy_ctx *ctx; + uint16_t status; + int i; + + trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format); + + if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && + ((prinfor & NVME_RW_PRINFO_PRACT) != (prinfow & NVME_RW_PRINFO_PRACT))) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + if (!(n->id_ctrl.ocfs & (1 << format))) { + trace_pci_nvme_err_copy_invalid_format(format); + return NVME_INVALID_FIELD | NVME_DNR; + } + + if (nr > ns->id_ns.msrc + 1) { + return NVME_CMD_SIZE_LIMIT | NVME_DNR; + } + + ctx = g_new(struct nvme_copy_ctx, 1); + ctx->ranges = g_new(NvmeCopySourceRange, nr); + + status = nvme_h2c(n, (uint8_t *)ctx->ranges, + nr * sizeof(NvmeCopySourceRange), req); + if (status) { + goto out; + } + + for (i = 0; i < nr; i++) { + uint64_t slba = le64_to_cpu(ctx->ranges[i].slba); + uint32_t _nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1; + + if (_nlb > le16_to_cpu(ns->id_ns.mssrl)) { + status = NVME_CMD_SIZE_LIMIT | NVME_DNR; + goto out; + } + + status = nvme_check_bounds(ns, slba, _nlb); + if (status) { + goto out; + } + + if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { + status = nvme_check_dulbe(ns, slba, _nlb); + if (status) { + goto out; + } + } + + if (ns->params.zoned) { + status = nvme_check_zone_read(ns, slba, _nlb); + if (status) { + goto out; + } + } + + nlb += _nlb; + } + + if (nlb > le32_to_cpu(ns->id_ns.mcl)) { + status = NVME_CMD_SIZE_LIMIT | NVME_DNR; + goto out; + } + + bounce = bouncep = g_malloc(nvme_l2b(ns, nlb)); + if (ns->lbaf.ms) { + mbounce = mbouncep = g_malloc(nvme_m2b(ns, nlb)); + } + + block_acct_start(blk_get_stats(ns->blkconf.blk), &req->acct, 0, + BLOCK_ACCT_READ); + + ctx->bounce = bounce; + ctx->mbounce = mbounce; + ctx->nlb = nlb; + ctx->copies = 1; + + req->opaque = ctx; + + for (i = 0; i < nr; i++) { + uint64_t slba = le64_to_cpu(ctx->ranges[i].slba); + uint32_t nlb = le16_to_cpu(ctx->ranges[i].nlb) + 1; + + size_t len = nvme_l2b(ns, nlb); + int64_t offset = nvme_l2b(ns, slba); + + trace_pci_nvme_copy_source_range(slba, nlb); + + struct nvme_copy_in_ctx *in_ctx = g_new(struct nvme_copy_in_ctx, 1); + in_ctx->req = req; + + qemu_iovec_init(&in_ctx->iov, 1); + qemu_iovec_add(&in_ctx->iov, bouncep, len); + + ctx->copies++; + + blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0, + nvme_aio_copy_in_cb, in_ctx); + + bouncep += len; + + if (ns->lbaf.ms) { + len = nvme_m2b(ns, nlb); + offset = nvme_moff(ns, slba); + + in_ctx = g_new(struct nvme_copy_in_ctx, 1); + in_ctx->req = req; + + qemu_iovec_init(&in_ctx->iov, 1); + qemu_iovec_add(&in_ctx->iov, mbouncep, len); + + ctx->copies++; + + blk_aio_preadv(ns->blkconf.blk, offset, &in_ctx->iov, 0, + nvme_aio_copy_in_cb, in_ctx); + + mbouncep += len; + } + } + + /* account for the 1-initialization */ + ctx->copies--; + + if (!ctx->copies) { + nvme_copy_in_complete(req); + } + + return NVME_NO_COMPLETE; + +out: + g_free(ctx->ranges); + g_free(ctx); + + return status; +} + +static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; + NvmeNamespace *ns = req->ns; + BlockBackend *blk = ns->blkconf.blk; + uint64_t slba = le64_to_cpu(rw->slba); + uint32_t nlb = le16_to_cpu(rw->nlb) + 1; + uint16_t ctrl = le16_to_cpu(rw->control); + size_t data_len = nvme_l2b(ns, nlb); + size_t len = data_len; + int64_t offset = nvme_l2b(ns, slba); + struct nvme_compare_ctx *ctx = NULL; + uint16_t status; + + trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb); + + if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (ctrl & NVME_RW_PRINFO_PRACT)) { + return NVME_INVALID_PROT_INFO | NVME_DNR; + } + + if (nvme_ns_ext(ns)) { + len += nvme_m2b(ns, nlb); + } + + status = nvme_check_mdts(n, len); + if (status) { + return status; + } + + status = nvme_check_bounds(ns, slba, nlb); + if (status) { + return status; + } + + if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { + status = nvme_check_dulbe(ns, slba, nlb); + if (status) { + return status; + } + } + + status = nvme_map_dptr(n, &req->sg, len, &req->cmd); + if (status) { + return status; + } + + ctx = g_new(struct nvme_compare_ctx, 1); + ctx->data.bounce = g_malloc(data_len); + + req->opaque = ctx; + + qemu_iovec_init(&ctx->data.iov, 1); + qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len); + + block_acct_start(blk_get_stats(blk), &req->acct, data_len, + BLOCK_ACCT_READ); + req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0, + nvme_compare_data_cb, req); + + return NVME_NO_COMPLETE; +} + +static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req) +{ + uint32_t nsid = le32_to_cpu(req->cmd.nsid); + uintptr_t *num_flushes = (uintptr_t *)&req->opaque; + uint16_t status; + struct nvme_aio_flush_ctx *ctx; + NvmeNamespace *ns; + + trace_pci_nvme_flush(nvme_cid(req), nsid); + + if (nsid != NVME_NSID_BROADCAST) { + req->ns = nvme_ns(n, nsid); + if (unlikely(!req->ns)) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + block_acct_start(blk_get_stats(req->ns->blkconf.blk), &req->acct, 0, + BLOCK_ACCT_FLUSH); + req->aiocb = blk_aio_flush(req->ns->blkconf.blk, nvme_misc_cb, req); + return NVME_NO_COMPLETE; + } + + /* 1-initialize; see comment in nvme_dsm */ + *num_flushes = 1; + + for (int i = 1; i <= NVME_MAX_NAMESPACES; i++) { + ns = nvme_ns(n, i); + if (!ns) { + continue; + } + + ctx = g_new(struct nvme_aio_flush_ctx, 1); + ctx->req = req; + ctx->ns = ns; + + (*num_flushes)++; + + block_acct_start(blk_get_stats(ns->blkconf.blk), &ctx->acct, 0, + BLOCK_ACCT_FLUSH); + blk_aio_flush(ns->blkconf.blk, nvme_aio_flush_cb, ctx); + } + + /* account for the 1-initialization */ + (*num_flushes)--; + + if (*num_flushes) { + status = NVME_NO_COMPLETE; + } else { + status = req->status; + } + + return status; +} + +static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; + NvmeNamespace *ns = req->ns; + uint64_t slba = le64_to_cpu(rw->slba); + uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; + uint16_t ctrl = le16_to_cpu(rw->control); + uint64_t data_size = nvme_l2b(ns, nlb); + uint64_t mapped_size = data_size; + uint64_t data_offset; + BlockBackend *blk = ns->blkconf.blk; + uint16_t status; + + if (nvme_ns_ext(ns)) { + mapped_size += nvme_m2b(ns, nlb); + + if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { + bool pract = ctrl & NVME_RW_PRINFO_PRACT; + + if (pract && ns->lbaf.ms == 8) { + mapped_size = data_size; + } + } + } + + trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba); + + status = nvme_check_mdts(n, mapped_size); + if (status) { + goto invalid; + } + + status = nvme_check_bounds(ns, slba, nlb); + if (status) { + goto invalid; + } + + if (ns->params.zoned) { + status = nvme_check_zone_read(ns, slba, nlb); + if (status) { + trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status); + goto invalid; + } + } + + if (NVME_ERR_REC_DULBE(ns->features.err_rec)) { + status = nvme_check_dulbe(ns, slba, nlb); + if (status) { + goto invalid; + } + } + + if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { + return nvme_dif_rw(n, req); + } + + status = nvme_map_data(n, nlb, req); + if (status) { + goto invalid; + } + + data_offset = nvme_l2b(ns, slba); + + block_acct_start(blk_get_stats(blk), &req->acct, data_size, + BLOCK_ACCT_READ); + nvme_blk_read(blk, data_offset, nvme_rw_cb, req); + return NVME_NO_COMPLETE; + +invalid: + block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ); + return status | NVME_DNR; +} + +static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append, + bool wrz) +{ + NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd; + NvmeNamespace *ns = req->ns; + uint64_t slba = le64_to_cpu(rw->slba); + uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1; + uint16_t ctrl = le16_to_cpu(rw->control); + uint64_t data_size = nvme_l2b(ns, nlb); + uint64_t mapped_size = data_size; + uint64_t data_offset; + NvmeZone *zone; + NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe; + BlockBackend *blk = ns->blkconf.blk; + uint16_t status; + + if (nvme_ns_ext(ns)) { + mapped_size += nvme_m2b(ns, nlb); + + if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { + bool pract = ctrl & NVME_RW_PRINFO_PRACT; + + if (pract && ns->lbaf.ms == 8) { + mapped_size -= nvme_m2b(ns, nlb); + } + } + } + + trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode), + nvme_nsid(ns), nlb, mapped_size, slba); + + if (!wrz) { + status = nvme_check_mdts(n, mapped_size); + if (status) { + goto invalid; + } + } + + status = nvme_check_bounds(ns, slba, nlb); + if (status) { + goto invalid; + } + + if (ns->params.zoned) { + zone = nvme_get_zone_by_slba(ns, slba); + + if (append) { + bool piremap = !!(ctrl & NVME_RW_PIREMAP); + + if (unlikely(slba != zone->d.zslba)) { + trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba); + status = NVME_INVALID_FIELD; + goto invalid; + } + + if (n->params.zasl && + data_size > (uint64_t)n->page_size << n->params.zasl) { + trace_pci_nvme_err_zasl(data_size); + return NVME_INVALID_FIELD | NVME_DNR; + } + + slba = zone->w_ptr; + rw->slba = cpu_to_le64(slba); + res->slba = cpu_to_le64(slba); + + switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { + case NVME_ID_NS_DPS_TYPE_1: + if (!piremap) { + return NVME_INVALID_PROT_INFO | NVME_DNR; + } + + /* fallthrough */ + + case NVME_ID_NS_DPS_TYPE_2: + if (piremap) { + uint32_t reftag = le32_to_cpu(rw->reftag); + rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba)); + } + + break; + + case NVME_ID_NS_DPS_TYPE_3: + if (piremap) { + return NVME_INVALID_PROT_INFO | NVME_DNR; + } + + break; + } + } + + status = nvme_check_zone_write(ns, zone, slba, nlb); + if (status) { + goto invalid; + } + + status = nvme_zrm_auto(ns, zone); + if (status) { + goto invalid; + } + + zone->w_ptr += nlb; + } + + data_offset = nvme_l2b(ns, slba); + + if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) { + return nvme_dif_rw(n, req); + } + + if (!wrz) { + status = nvme_map_data(n, nlb, req); + if (status) { + goto invalid; + } + + block_acct_start(blk_get_stats(blk), &req->acct, data_size, + BLOCK_ACCT_WRITE); + nvme_blk_write(blk, data_offset, nvme_rw_cb, req); + } else { + req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size, + BDRV_REQ_MAY_UNMAP, nvme_rw_cb, + req); + } + + return NVME_NO_COMPLETE; + +invalid: + block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE); + return status | NVME_DNR; +} + +static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req) +{ + return nvme_do_write(n, req, false, false); +} + +static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req) +{ + return nvme_do_write(n, req, false, true); +} + +static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req) +{ + return nvme_do_write(n, req, true, false); +} + +static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c, + uint64_t *slba, uint32_t *zone_idx) +{ + uint32_t dw10 = le32_to_cpu(c->cdw10); + uint32_t dw11 = le32_to_cpu(c->cdw11); + + if (!ns->params.zoned) { + trace_pci_nvme_err_invalid_opc(c->opcode); + return NVME_INVALID_OPCODE | NVME_DNR; + } + + *slba = ((uint64_t)dw11) << 32 | dw10; + if (unlikely(*slba >= ns->id_ns.nsze)) { + trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze); + *slba = 0; + return NVME_LBA_RANGE | NVME_DNR; + } + + *zone_idx = nvme_zone_idx(ns, *slba); + assert(*zone_idx < ns->num_zones); + + return NVME_SUCCESS; +} + +typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState, + NvmeRequest *); + +enum NvmeZoneProcessingMask { + NVME_PROC_CURRENT_ZONE = 0, + NVME_PROC_OPENED_ZONES = 1 << 0, + NVME_PROC_CLOSED_ZONES = 1 << 1, + NVME_PROC_READ_ONLY_ZONES = 1 << 2, + NVME_PROC_FULL_ZONES = 1 << 3, +}; + +static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone, + NvmeZoneState state, NvmeRequest *req) +{ + return nvme_zrm_open(ns, zone); +} + +static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone, + NvmeZoneState state, NvmeRequest *req) +{ + return nvme_zrm_close(ns, zone); +} + +static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone, + NvmeZoneState state, NvmeRequest *req) +{ + return nvme_zrm_finish(ns, zone); +} + +static uint16_t nvme_reset_zone(NvmeNamespace *ns, NvmeZone *zone, + NvmeZoneState state, NvmeRequest *req) +{ + uintptr_t *resets = (uintptr_t *)&req->opaque; + struct nvme_zone_reset_ctx *ctx; + + switch (state) { + case NVME_ZONE_STATE_EMPTY: + return NVME_SUCCESS; + case NVME_ZONE_STATE_EXPLICITLY_OPEN: + case NVME_ZONE_STATE_IMPLICITLY_OPEN: + case NVME_ZONE_STATE_CLOSED: + case NVME_ZONE_STATE_FULL: + break; + default: + return NVME_ZONE_INVAL_TRANSITION; + } + + /* + * The zone reset aio callback needs to know the zone that is being reset + * in order to transition the zone on completion. + */ + ctx = g_new(struct nvme_zone_reset_ctx, 1); + ctx->req = req; + ctx->zone = zone; + + (*resets)++; + + blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_l2b(ns, zone->d.zslba), + nvme_l2b(ns, ns->zone_size), BDRV_REQ_MAY_UNMAP, + nvme_aio_zone_reset_cb, ctx); + + return NVME_NO_COMPLETE; +} + +static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone, + NvmeZoneState state, NvmeRequest *req) +{ + switch (state) { + case NVME_ZONE_STATE_READ_ONLY: + nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE); + /* fall through */ + case NVME_ZONE_STATE_OFFLINE: + return NVME_SUCCESS; + default: + return NVME_ZONE_INVAL_TRANSITION; + } +} + +static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone) +{ + uint16_t status; + uint8_t state = nvme_get_zone_state(zone); + + if (state == NVME_ZONE_STATE_EMPTY) { + status = nvme_aor_check(ns, 1, 0); + if (status) { + return status; + } + nvme_aor_inc_active(ns); + zone->d.za |= NVME_ZA_ZD_EXT_VALID; + nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED); + return NVME_SUCCESS; + } + + return NVME_ZONE_INVAL_TRANSITION; +} + +static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone, + enum NvmeZoneProcessingMask proc_mask, + op_handler_t op_hndlr, NvmeRequest *req) +{ + uint16_t status = NVME_SUCCESS; + NvmeZoneState zs = nvme_get_zone_state(zone); + bool proc_zone; + + switch (zs) { + case NVME_ZONE_STATE_IMPLICITLY_OPEN: + case NVME_ZONE_STATE_EXPLICITLY_OPEN: + proc_zone = proc_mask & NVME_PROC_OPENED_ZONES; + break; + case NVME_ZONE_STATE_CLOSED: + proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES; + break; + case NVME_ZONE_STATE_READ_ONLY: + proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES; + break; + case NVME_ZONE_STATE_FULL: + proc_zone = proc_mask & NVME_PROC_FULL_ZONES; + break; + default: + proc_zone = false; + } + + if (proc_zone) { + status = op_hndlr(ns, zone, zs, req); + } + + return status; +} + +static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone, + enum NvmeZoneProcessingMask proc_mask, + op_handler_t op_hndlr, NvmeRequest *req) +{ + NvmeZone *next; + uint16_t status = NVME_SUCCESS; + int i; + + if (!proc_mask) { + status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req); + } else { + if (proc_mask & NVME_PROC_CLOSED_ZONES) { + QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) { + status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, + req); + if (status && status != NVME_NO_COMPLETE) { + goto out; + } + } + } + if (proc_mask & NVME_PROC_OPENED_ZONES) { + QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) { + status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, + req); + if (status && status != NVME_NO_COMPLETE) { + goto out; + } + } + + QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) { + status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, + req); + if (status && status != NVME_NO_COMPLETE) { + goto out; + } + } + } + if (proc_mask & NVME_PROC_FULL_ZONES) { + QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) { + status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, + req); + if (status && status != NVME_NO_COMPLETE) { + goto out; + } + } + } + + if (proc_mask & NVME_PROC_READ_ONLY_ZONES) { + for (i = 0; i < ns->num_zones; i++, zone++) { + status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr, + req); + if (status && status != NVME_NO_COMPLETE) { + goto out; + } + } + } + } + +out: + return status; +} + +static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeCmd *cmd = (NvmeCmd *)&req->cmd; + NvmeNamespace *ns = req->ns; + NvmeZone *zone; + uintptr_t *resets; + uint8_t *zd_ext; + uint32_t dw13 = le32_to_cpu(cmd->cdw13); + uint64_t slba = 0; + uint32_t zone_idx = 0; + uint16_t status; + uint8_t action; + bool all; + enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE; + + action = dw13 & 0xff; + all = dw13 & 0x100; + + req->status = NVME_SUCCESS; + + if (!all) { + status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx); + if (status) { + return status; + } + } + + zone = &ns->zone_array[zone_idx]; + if (slba != zone->d.zslba) { + trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba); + return NVME_INVALID_FIELD | NVME_DNR; + } + + switch (action) { + + case NVME_ZONE_ACTION_OPEN: + if (all) { + proc_mask = NVME_PROC_CLOSED_ZONES; + } + trace_pci_nvme_open_zone(slba, zone_idx, all); + status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req); + break; + + case NVME_ZONE_ACTION_CLOSE: + if (all) { + proc_mask = NVME_PROC_OPENED_ZONES; + } + trace_pci_nvme_close_zone(slba, zone_idx, all); + status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req); + break; + + case NVME_ZONE_ACTION_FINISH: + if (all) { + proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES; + } + trace_pci_nvme_finish_zone(slba, zone_idx, all); + status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req); + break; + + case NVME_ZONE_ACTION_RESET: + resets = (uintptr_t *)&req->opaque; + + if (all) { + proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES | + NVME_PROC_FULL_ZONES; + } + trace_pci_nvme_reset_zone(slba, zone_idx, all); + + *resets = 1; + + status = nvme_do_zone_op(ns, zone, proc_mask, nvme_reset_zone, req); + + (*resets)--; + + return *resets ? NVME_NO_COMPLETE : req->status; + + case NVME_ZONE_ACTION_OFFLINE: + if (all) { + proc_mask = NVME_PROC_READ_ONLY_ZONES; + } + trace_pci_nvme_offline_zone(slba, zone_idx, all); + status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req); + break; + + case NVME_ZONE_ACTION_SET_ZD_EXT: + trace_pci_nvme_set_descriptor_extension(slba, zone_idx); + if (all || !ns->params.zd_extension_size) { + return NVME_INVALID_FIELD | NVME_DNR; + } + zd_ext = nvme_get_zd_extension(ns, zone_idx); + status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req); + if (status) { + trace_pci_nvme_err_zd_extension_map_error(zone_idx); + return status; + } + + status = nvme_set_zd_ext(ns, zone); + if (status == NVME_SUCCESS) { + trace_pci_nvme_zd_extension_set(zone_idx); + return status; + } + break; + + default: + trace_pci_nvme_err_invalid_mgmt_action(action); + status = NVME_INVALID_FIELD; + } + + if (status == NVME_ZONE_INVAL_TRANSITION) { + trace_pci_nvme_err_invalid_zone_state_transition(action, slba, + zone->d.za); + } + if (status) { + status |= NVME_DNR; + } + + return status; +} + +static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl) +{ + NvmeZoneState zs = nvme_get_zone_state(zl); + + switch (zafs) { + case NVME_ZONE_REPORT_ALL: + return true; + case NVME_ZONE_REPORT_EMPTY: + return zs == NVME_ZONE_STATE_EMPTY; + case NVME_ZONE_REPORT_IMPLICITLY_OPEN: + return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN; + case NVME_ZONE_REPORT_EXPLICITLY_OPEN: + return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN; + case NVME_ZONE_REPORT_CLOSED: + return zs == NVME_ZONE_STATE_CLOSED; + case NVME_ZONE_REPORT_FULL: + return zs == NVME_ZONE_STATE_FULL; + case NVME_ZONE_REPORT_READ_ONLY: + return zs == NVME_ZONE_STATE_READ_ONLY; + case NVME_ZONE_REPORT_OFFLINE: + return zs == NVME_ZONE_STATE_OFFLINE; + default: + return false; + } +} + +static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeCmd *cmd = (NvmeCmd *)&req->cmd; + NvmeNamespace *ns = req->ns; + /* cdw12 is zero-based number of dwords to return. Convert to bytes */ + uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2; + uint32_t dw13 = le32_to_cpu(cmd->cdw13); + uint32_t zone_idx, zra, zrasf, partial; + uint64_t max_zones, nr_zones = 0; + uint16_t status; + uint64_t slba; + NvmeZoneDescr *z; + NvmeZone *zone; + NvmeZoneReportHeader *header; + void *buf, *buf_p; + size_t zone_entry_sz; + int i; + + req->status = NVME_SUCCESS; + + status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx); + if (status) { + return status; + } + + zra = dw13 & 0xff; + if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) { + return NVME_INVALID_FIELD | NVME_DNR; + } + if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + zrasf = (dw13 >> 8) & 0xff; + if (zrasf > NVME_ZONE_REPORT_OFFLINE) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + if (data_size < sizeof(NvmeZoneReportHeader)) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + status = nvme_check_mdts(n, data_size); + if (status) { + return status; + } + + partial = (dw13 >> 16) & 0x01; + + zone_entry_sz = sizeof(NvmeZoneDescr); + if (zra == NVME_ZONE_REPORT_EXTENDED) { + zone_entry_sz += ns->params.zd_extension_size; + } + + max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz; + buf = g_malloc0(data_size); + + zone = &ns->zone_array[zone_idx]; + for (i = zone_idx; i < ns->num_zones; i++) { + if (partial && nr_zones >= max_zones) { + break; + } + if (nvme_zone_matches_filter(zrasf, zone++)) { + nr_zones++; + } + } + header = (NvmeZoneReportHeader *)buf; + header->nr_zones = cpu_to_le64(nr_zones); + + buf_p = buf + sizeof(NvmeZoneReportHeader); + for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) { + zone = &ns->zone_array[zone_idx]; + if (nvme_zone_matches_filter(zrasf, zone)) { + z = (NvmeZoneDescr *)buf_p; + buf_p += sizeof(NvmeZoneDescr); + + z->zt = zone->d.zt; + z->zs = zone->d.zs; + z->zcap = cpu_to_le64(zone->d.zcap); + z->zslba = cpu_to_le64(zone->d.zslba); + z->za = zone->d.za; + + if (nvme_wp_is_valid(zone)) { + z->wp = cpu_to_le64(zone->d.wp); + } else { + z->wp = cpu_to_le64(~0ULL); + } + + if (zra == NVME_ZONE_REPORT_EXTENDED) { + if (zone->d.za & NVME_ZA_ZD_EXT_VALID) { + memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx), + ns->params.zd_extension_size); + } + buf_p += ns->params.zd_extension_size; + } + + max_zones--; + } + } + + status = nvme_c2h(n, (uint8_t *)buf, data_size, req); + + g_free(buf); + + return status; +} + +static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeNamespace *ns; + uint32_t nsid = le32_to_cpu(req->cmd.nsid); + + trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req), + req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode)); + + if (!nvme_nsid_valid(n, nsid)) { + return NVME_INVALID_NSID | NVME_DNR; + } + + /* + * In the base NVM command set, Flush may apply to all namespaces + * (indicated by NSID being set to FFFFFFFFh). But if that feature is used + * along with TP 4056 (Namespace Types), it may be pretty screwed up. + * + * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the + * opcode with a specific command since we cannot determine a unique I/O + * command set. Opcode 0h could have any other meaning than something + * equivalent to flushing and say it DOES have completely different + * semantics in some other command set - does an NSID of FFFFFFFFh then + * mean "for all namespaces, apply whatever command set specific command + * that uses the 0h opcode?" Or does it mean "for all namespaces, apply + * whatever command that uses the 0h opcode if, and only if, it allows NSID + * to be FFFFFFFFh"? + * + * Anyway (and luckily), for now, we do not care about this since the + * device only supports namespace types that includes the NVM Flush command + * (NVM and Zoned), so always do an NVM Flush. + */ + if (req->cmd.opcode == NVME_CMD_FLUSH) { + return nvme_flush(n, req); + } + + ns = nvme_ns(n, nsid); + if (unlikely(!ns)) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { + trace_pci_nvme_err_invalid_opc(req->cmd.opcode); + return NVME_INVALID_OPCODE | NVME_DNR; + } + + if (ns->status) { + return ns->status; + } + + req->ns = ns; + + switch (req->cmd.opcode) { + case NVME_CMD_WRITE_ZEROES: + return nvme_write_zeroes(n, req); + case NVME_CMD_ZONE_APPEND: + return nvme_zone_append(n, req); + case NVME_CMD_WRITE: + return nvme_write(n, req); + case NVME_CMD_READ: + return nvme_read(n, req); + case NVME_CMD_COMPARE: + return nvme_compare(n, req); + case NVME_CMD_DSM: + return nvme_dsm(n, req); + case NVME_CMD_VERIFY: + return nvme_verify(n, req); + case NVME_CMD_COPY: + return nvme_copy(n, req); + case NVME_CMD_ZONE_MGMT_SEND: + return nvme_zone_mgmt_send(n, req); + case NVME_CMD_ZONE_MGMT_RECV: + return nvme_zone_mgmt_recv(n, req); + default: + assert(false); + } + + return NVME_INVALID_OPCODE | NVME_DNR; +} + +static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n) +{ + n->sq[sq->sqid] = NULL; + timer_free(sq->timer); + g_free(sq->io_req); + if (sq->sqid) { + g_free(sq); + } +} + +static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; + NvmeRequest *r, *next; + NvmeSQueue *sq; + NvmeCQueue *cq; + uint16_t qid = le16_to_cpu(c->qid); + uint32_t nsid; + + if (unlikely(!qid || nvme_check_sqid(n, qid))) { + trace_pci_nvme_err_invalid_del_sq(qid); + return NVME_INVALID_QID | NVME_DNR; + } + + trace_pci_nvme_del_sq(qid); + + sq = n->sq[qid]; + while (!QTAILQ_EMPTY(&sq->out_req_list)) { + r = QTAILQ_FIRST(&sq->out_req_list); + if (r->aiocb) { + blk_aio_cancel(r->aiocb); + } + } + + /* + * Drain all namespaces if there are still outstanding requests that we + * could not cancel explicitly. + */ + if (!QTAILQ_EMPTY(&sq->out_req_list)) { + for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) { + NvmeNamespace *ns = nvme_ns(n, nsid); + if (ns) { + nvme_ns_drain(ns); + } + } + } + + assert(QTAILQ_EMPTY(&sq->out_req_list)); + + if (!nvme_check_cqid(n, sq->cqid)) { + cq = n->cq[sq->cqid]; + QTAILQ_REMOVE(&cq->sq_list, sq, entry); + + nvme_post_cqes(cq); + QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) { + if (r->sq == sq) { + QTAILQ_REMOVE(&cq->req_list, r, entry); + QTAILQ_INSERT_TAIL(&sq->req_list, r, entry); + } + } + } + + nvme_free_sq(sq, n); + return NVME_SUCCESS; +} + +static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr, + uint16_t sqid, uint16_t cqid, uint16_t size) +{ + int i; + NvmeCQueue *cq; + + sq->ctrl = n; + sq->dma_addr = dma_addr; + sq->sqid = sqid; + sq->size = size; + sq->cqid = cqid; + sq->head = sq->tail = 0; + sq->io_req = g_new0(NvmeRequest, sq->size); + + QTAILQ_INIT(&sq->req_list); + QTAILQ_INIT(&sq->out_req_list); + for (i = 0; i < sq->size; i++) { + sq->io_req[i].sq = sq; + QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry); + } + sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq); + + assert(n->cq[cqid]); + cq = n->cq[cqid]; + QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry); + n->sq[sqid] = sq; +} + +static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeSQueue *sq; + NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd; + + uint16_t cqid = le16_to_cpu(c->cqid); + uint16_t sqid = le16_to_cpu(c->sqid); + uint16_t qsize = le16_to_cpu(c->qsize); + uint16_t qflags = le16_to_cpu(c->sq_flags); + uint64_t prp1 = le64_to_cpu(c->prp1); + + trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags); + + if (unlikely(!cqid || nvme_check_cqid(n, cqid))) { + trace_pci_nvme_err_invalid_create_sq_cqid(cqid); + return NVME_INVALID_CQID | NVME_DNR; + } + if (unlikely(!sqid || sqid > n->params.max_ioqpairs || + n->sq[sqid] != NULL)) { + trace_pci_nvme_err_invalid_create_sq_sqid(sqid); + return NVME_INVALID_QID | NVME_DNR; + } + if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) { + trace_pci_nvme_err_invalid_create_sq_size(qsize); + return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; + } + if (unlikely(prp1 & (n->page_size - 1))) { + trace_pci_nvme_err_invalid_create_sq_addr(prp1); + return NVME_INVALID_PRP_OFFSET | NVME_DNR; + } + if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) { + trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags)); + return NVME_INVALID_FIELD | NVME_DNR; + } + sq = g_malloc0(sizeof(*sq)); + nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1); + return NVME_SUCCESS; +} + +struct nvme_stats { + uint64_t units_read; + uint64_t units_written; + uint64_t read_commands; + uint64_t write_commands; +}; + +static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats) +{ + BlockAcctStats *s = blk_get_stats(ns->blkconf.blk); + + stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS; + stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS; + stats->read_commands += s->nr_ops[BLOCK_ACCT_READ]; + stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE]; +} + +static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, + uint64_t off, NvmeRequest *req) +{ + uint32_t nsid = le32_to_cpu(req->cmd.nsid); + struct nvme_stats stats = { 0 }; + NvmeSmartLog smart = { 0 }; + uint32_t trans_len; + NvmeNamespace *ns; + time_t current_ms; + + if (off >= sizeof(smart)) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + if (nsid != 0xffffffff) { + ns = nvme_ns(n, nsid); + if (!ns) { + return NVME_INVALID_NSID | NVME_DNR; + } + nvme_set_blk_stats(ns, &stats); + } else { + int i; + + for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { + ns = nvme_ns(n, i); + if (!ns) { + continue; + } + nvme_set_blk_stats(ns, &stats); + } + } + + trans_len = MIN(sizeof(smart) - off, buf_len); + smart.critical_warning = n->smart_critical_warning; + + smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read, + 1000)); + smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written, + 1000)); + smart.host_read_commands[0] = cpu_to_le64(stats.read_commands); + smart.host_write_commands[0] = cpu_to_le64(stats.write_commands); + + smart.temperature = cpu_to_le16(n->temperature); + + if ((n->temperature >= n->features.temp_thresh_hi) || + (n->temperature <= n->features.temp_thresh_low)) { + smart.critical_warning |= NVME_SMART_TEMPERATURE; + } + + current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); + smart.power_on_hours[0] = + cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60); + + if (!rae) { + nvme_clear_events(n, NVME_AER_TYPE_SMART); + } + + return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req); +} + +static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off, + NvmeRequest *req) +{ + uint32_t trans_len; + NvmeFwSlotInfoLog fw_log = { + .afi = 0x1, + }; + + if (off >= sizeof(fw_log)) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' '); + trans_len = MIN(sizeof(fw_log) - off, buf_len); + + return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req); +} + +static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, + uint64_t off, NvmeRequest *req) +{ + uint32_t trans_len; + NvmeErrorLog errlog; + + if (off >= sizeof(errlog)) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + if (!rae) { + nvme_clear_events(n, NVME_AER_TYPE_ERROR); + } + + memset(&errlog, 0x0, sizeof(errlog)); + trans_len = MIN(sizeof(errlog) - off, buf_len); + + return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req); +} + +static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len, + uint64_t off, NvmeRequest *req) +{ + uint32_t nslist[1024]; + uint32_t trans_len; + int i = 0; + uint32_t nsid; + + memset(nslist, 0x0, sizeof(nslist)); + trans_len = MIN(sizeof(nslist) - off, buf_len); + + while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) != + NVME_CHANGED_NSID_SIZE) { + /* + * If more than 1024 namespaces, the first entry in the log page should + * be set to FFFFFFFFh and the others to 0 as spec. + */ + if (i == ARRAY_SIZE(nslist)) { + memset(nslist, 0x0, sizeof(nslist)); + nslist[0] = 0xffffffff; + break; + } + + nslist[i++] = nsid; + clear_bit(nsid, n->changed_nsids); + } + + /* + * Remove all the remaining list entries in case returns directly due to + * more than 1024 namespaces. + */ + if (nslist[0] == 0xffffffff) { + bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE); + } + + if (!rae) { + nvme_clear_events(n, NVME_AER_TYPE_NOTICE); + } + + return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req); +} + +static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len, + uint64_t off, NvmeRequest *req) +{ + NvmeEffectsLog log = {}; + const uint32_t *src_iocs = NULL; + uint32_t trans_len; + + if (off >= sizeof(log)) { + trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log)); + return NVME_INVALID_FIELD | NVME_DNR; + } + + switch (NVME_CC_CSS(n->bar.cc)) { + case NVME_CC_CSS_NVM: + src_iocs = nvme_cse_iocs_nvm; + /* fall through */ + case NVME_CC_CSS_ADMIN_ONLY: + break; + case NVME_CC_CSS_CSI: + switch (csi) { + case NVME_CSI_NVM: + src_iocs = nvme_cse_iocs_nvm; + break; + case NVME_CSI_ZONED: + src_iocs = nvme_cse_iocs_zoned; + break; + } + } + + memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs)); + + if (src_iocs) { + memcpy(log.iocs, src_iocs, sizeof(log.iocs)); + } + + trans_len = MIN(sizeof(log) - off, buf_len); + + return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req); +} + +static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeCmd *cmd = &req->cmd; + + uint32_t dw10 = le32_to_cpu(cmd->cdw10); + uint32_t dw11 = le32_to_cpu(cmd->cdw11); + uint32_t dw12 = le32_to_cpu(cmd->cdw12); + uint32_t dw13 = le32_to_cpu(cmd->cdw13); + uint8_t lid = dw10 & 0xff; + uint8_t lsp = (dw10 >> 8) & 0xf; + uint8_t rae = (dw10 >> 15) & 0x1; + uint8_t csi = le32_to_cpu(cmd->cdw14) >> 24; + uint32_t numdl, numdu; + uint64_t off, lpol, lpou; + size_t len; + uint16_t status; + + numdl = (dw10 >> 16); + numdu = (dw11 & 0xffff); + lpol = dw12; + lpou = dw13; + + len = (((numdu << 16) | numdl) + 1) << 2; + off = (lpou << 32ULL) | lpol; + + if (off & 0x3) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off); + + status = nvme_check_mdts(n, len); + if (status) { + return status; + } + + switch (lid) { + case NVME_LOG_ERROR_INFO: + return nvme_error_info(n, rae, len, off, req); + case NVME_LOG_SMART_INFO: + return nvme_smart_info(n, rae, len, off, req); + case NVME_LOG_FW_SLOT_INFO: + return nvme_fw_log_info(n, len, off, req); + case NVME_LOG_CHANGED_NSLIST: + return nvme_changed_nslist(n, rae, len, off, req); + case NVME_LOG_CMD_EFFECTS: + return nvme_cmd_effects(n, csi, len, off, req); + default: + trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid); + return NVME_INVALID_FIELD | NVME_DNR; + } +} + +static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n) +{ + n->cq[cq->cqid] = NULL; + timer_free(cq->timer); + if (msix_enabled(&n->parent_obj)) { + msix_vector_unuse(&n->parent_obj, cq->vector); + } + if (cq->cqid) { + g_free(cq); + } +} + +static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd; + NvmeCQueue *cq; + uint16_t qid = le16_to_cpu(c->qid); + + if (unlikely(!qid || nvme_check_cqid(n, qid))) { + trace_pci_nvme_err_invalid_del_cq_cqid(qid); + return NVME_INVALID_CQID | NVME_DNR; + } + + cq = n->cq[qid]; + if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) { + trace_pci_nvme_err_invalid_del_cq_notempty(qid); + return NVME_INVALID_QUEUE_DEL; + } + nvme_irq_deassert(n, cq); + trace_pci_nvme_del_cq(qid); + nvme_free_cq(cq, n); + return NVME_SUCCESS; +} + +static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr, + uint16_t cqid, uint16_t vector, uint16_t size, + uint16_t irq_enabled) +{ + int ret; + + if (msix_enabled(&n->parent_obj)) { + ret = msix_vector_use(&n->parent_obj, vector); + assert(ret == 0); + } + cq->ctrl = n; + cq->cqid = cqid; + cq->size = size; + cq->dma_addr = dma_addr; + cq->phase = 1; + cq->irq_enabled = irq_enabled; + cq->vector = vector; + cq->head = cq->tail = 0; + QTAILQ_INIT(&cq->req_list); + QTAILQ_INIT(&cq->sq_list); + n->cq[cqid] = cq; + cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq); +} + +static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeCQueue *cq; + NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd; + uint16_t cqid = le16_to_cpu(c->cqid); + uint16_t vector = le16_to_cpu(c->irq_vector); + uint16_t qsize = le16_to_cpu(c->qsize); + uint16_t qflags = le16_to_cpu(c->cq_flags); + uint64_t prp1 = le64_to_cpu(c->prp1); + + trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags, + NVME_CQ_FLAGS_IEN(qflags) != 0); + + if (unlikely(!cqid || cqid > n->params.max_ioqpairs || + n->cq[cqid] != NULL)) { + trace_pci_nvme_err_invalid_create_cq_cqid(cqid); + return NVME_INVALID_QID | NVME_DNR; + } + if (unlikely(!qsize || qsize > NVME_CAP_MQES(n->bar.cap))) { + trace_pci_nvme_err_invalid_create_cq_size(qsize); + return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR; + } + if (unlikely(prp1 & (n->page_size - 1))) { + trace_pci_nvme_err_invalid_create_cq_addr(prp1); + return NVME_INVALID_PRP_OFFSET | NVME_DNR; + } + if (unlikely(!msix_enabled(&n->parent_obj) && vector)) { + trace_pci_nvme_err_invalid_create_cq_vector(vector); + return NVME_INVALID_IRQ_VECTOR | NVME_DNR; + } + if (unlikely(vector >= n->params.msix_qsize)) { + trace_pci_nvme_err_invalid_create_cq_vector(vector); + return NVME_INVALID_IRQ_VECTOR | NVME_DNR; + } + if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) { + trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags)); + return NVME_INVALID_FIELD | NVME_DNR; + } + + cq = g_malloc0(sizeof(*cq)); + nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1, + NVME_CQ_FLAGS_IEN(qflags)); + + /* + * It is only required to set qs_created when creating a completion queue; + * creating a submission queue without a matching completion queue will + * fail. + */ + n->qs_created = true; + return NVME_SUCCESS; +} + +static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req) +{ + uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; + + return nvme_c2h(n, id, sizeof(id), req); +} + +static inline bool nvme_csi_has_nvm_support(NvmeNamespace *ns) +{ + switch (ns->csi) { + case NVME_CSI_NVM: + case NVME_CSI_ZONED: + return true; + } + return false; +} + +static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req) +{ + trace_pci_nvme_identify_ctrl(); + + return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req); +} + +static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeIdentify *c = (NvmeIdentify *)&req->cmd; + uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {}; + NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id; + + trace_pci_nvme_identify_ctrl_csi(c->csi); + + switch (c->csi) { + case NVME_CSI_NVM: + id_nvm->vsl = n->params.vsl; + id_nvm->dmrsl = cpu_to_le32(n->dmrsl); + break; + + case NVME_CSI_ZONED: + ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl; + break; + + default: + return NVME_INVALID_FIELD | NVME_DNR; + } + + return nvme_c2h(n, id, sizeof(id), req); +} + +static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active) +{ + NvmeNamespace *ns; + NvmeIdentify *c = (NvmeIdentify *)&req->cmd; + uint32_t nsid = le32_to_cpu(c->nsid); + + trace_pci_nvme_identify_ns(nsid); + + if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { + return NVME_INVALID_NSID | NVME_DNR; + } + + ns = nvme_ns(n, nsid); + if (unlikely(!ns)) { + if (!active) { + ns = nvme_subsys_ns(n->subsys, nsid); + if (!ns) { + return nvme_rpt_empty_id_struct(n, req); + } + } else { + return nvme_rpt_empty_id_struct(n, req); + } + } + + if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) { + return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req); + } + + return NVME_INVALID_CMD_SET | NVME_DNR; +} + +static uint16_t nvme_identify_ns_attached_list(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeIdentify *c = (NvmeIdentify *)&req->cmd; + uint16_t min_id = le16_to_cpu(c->ctrlid); + uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; + uint16_t *ids = &list[1]; + NvmeNamespace *ns; + NvmeCtrl *ctrl; + int cntlid, nr_ids = 0; + + trace_pci_nvme_identify_ns_attached_list(min_id); + + if (c->nsid == NVME_NSID_BROADCAST) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + ns = nvme_subsys_ns(n->subsys, c->nsid); + if (!ns) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) { + ctrl = nvme_subsys_ctrl(n->subsys, cntlid); + if (!ctrl) { + continue; + } + + if (!nvme_ns(ctrl, c->nsid)) { + continue; + } + + ids[nr_ids++] = cntlid; + } + + list[0] = nr_ids; + + return nvme_c2h(n, (uint8_t *)list, sizeof(list), req); +} + +static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req, + bool active) +{ + NvmeNamespace *ns; + NvmeIdentify *c = (NvmeIdentify *)&req->cmd; + uint32_t nsid = le32_to_cpu(c->nsid); + + trace_pci_nvme_identify_ns_csi(nsid, c->csi); + + if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { + return NVME_INVALID_NSID | NVME_DNR; + } + + ns = nvme_ns(n, nsid); + if (unlikely(!ns)) { + if (!active) { + ns = nvme_subsys_ns(n->subsys, nsid); + if (!ns) { + return nvme_rpt_empty_id_struct(n, req); + } + } else { + return nvme_rpt_empty_id_struct(n, req); + } + } + + if (c->csi == NVME_CSI_NVM && nvme_csi_has_nvm_support(ns)) { + return nvme_rpt_empty_id_struct(n, req); + } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) { + return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned), + req); + } + + return NVME_INVALID_FIELD | NVME_DNR; +} + +static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req, + bool active) +{ + NvmeNamespace *ns; + NvmeIdentify *c = (NvmeIdentify *)&req->cmd; + uint32_t min_nsid = le32_to_cpu(c->nsid); + uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; + static const int data_len = sizeof(list); + uint32_t *list_ptr = (uint32_t *)list; + int i, j = 0; + + trace_pci_nvme_identify_nslist(min_nsid); + + /* + * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values + * since the Active Namespace ID List should return namespaces with ids + * *higher* than the NSID specified in the command. This is also specified + * in the spec (NVM Express v1.3d, Section 5.15.4). + */ + if (min_nsid >= NVME_NSID_BROADCAST - 1) { + return NVME_INVALID_NSID | NVME_DNR; + } + + for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { + ns = nvme_ns(n, i); + if (!ns) { + if (!active) { + ns = nvme_subsys_ns(n->subsys, i); + if (!ns) { + continue; + } + } else { + continue; + } + } + if (ns->params.nsid <= min_nsid) { + continue; + } + list_ptr[j++] = cpu_to_le32(ns->params.nsid); + if (j == data_len / sizeof(uint32_t)) { + break; + } + } + + return nvme_c2h(n, list, data_len, req); +} + +static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req, + bool active) +{ + NvmeNamespace *ns; + NvmeIdentify *c = (NvmeIdentify *)&req->cmd; + uint32_t min_nsid = le32_to_cpu(c->nsid); + uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; + static const int data_len = sizeof(list); + uint32_t *list_ptr = (uint32_t *)list; + int i, j = 0; + + trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi); + + /* + * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid. + */ + if (min_nsid >= NVME_NSID_BROADCAST - 1) { + return NVME_INVALID_NSID | NVME_DNR; + } + + if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { + ns = nvme_ns(n, i); + if (!ns) { + if (!active) { + ns = nvme_subsys_ns(n->subsys, i); + if (!ns) { + continue; + } + } else { + continue; + } + } + if (ns->params.nsid <= min_nsid || c->csi != ns->csi) { + continue; + } + list_ptr[j++] = cpu_to_le32(ns->params.nsid); + if (j == data_len / sizeof(uint32_t)) { + break; + } + } + + return nvme_c2h(n, list, data_len, req); +} + +static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeNamespace *ns; + NvmeIdentify *c = (NvmeIdentify *)&req->cmd; + uint32_t nsid = le32_to_cpu(c->nsid); + uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; + + struct data { + struct { + NvmeIdNsDescr hdr; + uint8_t v[NVME_NIDL_UUID]; + } uuid; + struct { + NvmeIdNsDescr hdr; + uint8_t v; + } csi; + }; + + struct data *ns_descrs = (struct data *)list; + + trace_pci_nvme_identify_ns_descr_list(nsid); + + if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { + return NVME_INVALID_NSID | NVME_DNR; + } + + ns = nvme_ns(n, nsid); + if (unlikely(!ns)) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + /* + * Because the NGUID and EUI64 fields are 0 in the Identify Namespace data + * structure, a Namespace UUID (nidt = 3h) must be reported in the + * Namespace Identification Descriptor. Add the namespace UUID here. + */ + ns_descrs->uuid.hdr.nidt = NVME_NIDT_UUID; + ns_descrs->uuid.hdr.nidl = NVME_NIDL_UUID; + memcpy(&ns_descrs->uuid.v, ns->params.uuid.data, NVME_NIDL_UUID); + + ns_descrs->csi.hdr.nidt = NVME_NIDT_CSI; + ns_descrs->csi.hdr.nidl = NVME_NIDL_CSI; + ns_descrs->csi.v = ns->csi; + + return nvme_c2h(n, list, sizeof(list), req); +} + +static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req) +{ + uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {}; + static const int data_len = sizeof(list); + + trace_pci_nvme_identify_cmd_set(); + + NVME_SET_CSI(*list, NVME_CSI_NVM); + NVME_SET_CSI(*list, NVME_CSI_ZONED); + + return nvme_c2h(n, list, data_len, req); +} + +static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeIdentify *c = (NvmeIdentify *)&req->cmd; + + trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid), + c->csi); + + switch (c->cns) { + case NVME_ID_CNS_NS: + return nvme_identify_ns(n, req, true); + case NVME_ID_CNS_NS_PRESENT: + return nvme_identify_ns(n, req, false); + case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST: + return nvme_identify_ns_attached_list(n, req); + case NVME_ID_CNS_CS_NS: + return nvme_identify_ns_csi(n, req, true); + case NVME_ID_CNS_CS_NS_PRESENT: + return nvme_identify_ns_csi(n, req, false); + case NVME_ID_CNS_CTRL: + return nvme_identify_ctrl(n, req); + case NVME_ID_CNS_CS_CTRL: + return nvme_identify_ctrl_csi(n, req); + case NVME_ID_CNS_NS_ACTIVE_LIST: + return nvme_identify_nslist(n, req, true); + case NVME_ID_CNS_NS_PRESENT_LIST: + return nvme_identify_nslist(n, req, false); + case NVME_ID_CNS_CS_NS_ACTIVE_LIST: + return nvme_identify_nslist_csi(n, req, true); + case NVME_ID_CNS_CS_NS_PRESENT_LIST: + return nvme_identify_nslist_csi(n, req, false); + case NVME_ID_CNS_NS_DESCR_LIST: + return nvme_identify_ns_descr_list(n, req); + case NVME_ID_CNS_IO_COMMAND_SET: + return nvme_identify_cmd_set(n, req); + default: + trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns)); + return NVME_INVALID_FIELD | NVME_DNR; + } +} + +static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req) +{ + uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff; + + req->cqe.result = 1; + if (nvme_check_sqid(n, sqid)) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + return NVME_SUCCESS; +} + +static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts) +{ + trace_pci_nvme_setfeat_timestamp(ts); + + n->host_timestamp = le64_to_cpu(ts); + n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); +} + +static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n) +{ + uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); + uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms; + + union nvme_timestamp { + struct { + uint64_t timestamp:48; + uint64_t sync:1; + uint64_t origin:3; + uint64_t rsvd1:12; + }; + uint64_t all; + }; + + union nvme_timestamp ts; + ts.all = 0; + ts.timestamp = n->host_timestamp + elapsed_time; + + /* If the host timestamp is non-zero, set the timestamp origin */ + ts.origin = n->host_timestamp ? 0x01 : 0x00; + + trace_pci_nvme_getfeat_timestamp(ts.all); + + return cpu_to_le64(ts.all); +} + +static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) +{ + uint64_t timestamp = nvme_get_timestamp(n); + + return nvme_c2h(n, (uint8_t *)×tamp, sizeof(timestamp), req); +} + +static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeCmd *cmd = &req->cmd; + uint32_t dw10 = le32_to_cpu(cmd->cdw10); + uint32_t dw11 = le32_to_cpu(cmd->cdw11); + uint32_t nsid = le32_to_cpu(cmd->nsid); + uint32_t result; + uint8_t fid = NVME_GETSETFEAT_FID(dw10); + NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10); + uint16_t iv; + NvmeNamespace *ns; + int i; + + static const uint32_t nvme_feature_default[NVME_FID_MAX] = { + [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT, + }; + + trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11); + + if (!nvme_feature_support[fid]) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { + if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) { + /* + * The Reservation Notification Mask and Reservation Persistence + * features require a status code of Invalid Field in Command when + * NSID is FFFFFFFFh. Since the device does not support those + * features we can always return Invalid Namespace or Format as we + * should do for all other features. + */ + return NVME_INVALID_NSID | NVME_DNR; + } + + if (!nvme_ns(n, nsid)) { + return NVME_INVALID_FIELD | NVME_DNR; + } + } + + switch (sel) { + case NVME_GETFEAT_SELECT_CURRENT: + break; + case NVME_GETFEAT_SELECT_SAVED: + /* no features are saveable by the controller; fallthrough */ + case NVME_GETFEAT_SELECT_DEFAULT: + goto defaults; + case NVME_GETFEAT_SELECT_CAP: + result = nvme_feature_cap[fid]; + goto out; + } + + switch (fid) { + case NVME_TEMPERATURE_THRESHOLD: + result = 0; + + /* + * The controller only implements the Composite Temperature sensor, so + * return 0 for all other sensors. + */ + if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { + goto out; + } + + switch (NVME_TEMP_THSEL(dw11)) { + case NVME_TEMP_THSEL_OVER: + result = n->features.temp_thresh_hi; + goto out; + case NVME_TEMP_THSEL_UNDER: + result = n->features.temp_thresh_low; + goto out; + } + + return NVME_INVALID_FIELD | NVME_DNR; + case NVME_ERROR_RECOVERY: + if (!nvme_nsid_valid(n, nsid)) { + return NVME_INVALID_NSID | NVME_DNR; + } + + ns = nvme_ns(n, nsid); + if (unlikely(!ns)) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + result = ns->features.err_rec; + goto out; + case NVME_VOLATILE_WRITE_CACHE: + result = 0; + for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { + ns = nvme_ns(n, i); + if (!ns) { + continue; + } + + result = blk_enable_write_cache(ns->blkconf.blk); + if (result) { + break; + } + } + trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled"); + goto out; + case NVME_ASYNCHRONOUS_EVENT_CONF: + result = n->features.async_config; + goto out; + case NVME_TIMESTAMP: + return nvme_get_feature_timestamp(n, req); + default: + break; + } + +defaults: + switch (fid) { + case NVME_TEMPERATURE_THRESHOLD: + result = 0; + + if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { + break; + } + + if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) { + result = NVME_TEMPERATURE_WARNING; + } + + break; + case NVME_NUMBER_OF_QUEUES: + result = (n->params.max_ioqpairs - 1) | + ((n->params.max_ioqpairs - 1) << 16); + trace_pci_nvme_getfeat_numq(result); + break; + case NVME_INTERRUPT_VECTOR_CONF: + iv = dw11 & 0xffff; + if (iv >= n->params.max_ioqpairs + 1) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + result = iv; + if (iv == n->admin_cq.vector) { + result |= NVME_INTVC_NOCOALESCING; + } + break; + default: + result = nvme_feature_default[fid]; + break; + } + +out: + req->cqe.result = cpu_to_le32(result); + return NVME_SUCCESS; +} + +static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req) +{ + uint16_t ret; + uint64_t timestamp; + + ret = nvme_h2c(n, (uint8_t *)×tamp, sizeof(timestamp), req); + if (ret) { + return ret; + } + + nvme_set_timestamp(n, timestamp); + + return NVME_SUCCESS; +} + +static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeNamespace *ns = NULL; + + NvmeCmd *cmd = &req->cmd; + uint32_t dw10 = le32_to_cpu(cmd->cdw10); + uint32_t dw11 = le32_to_cpu(cmd->cdw11); + uint32_t nsid = le32_to_cpu(cmd->nsid); + uint8_t fid = NVME_GETSETFEAT_FID(dw10); + uint8_t save = NVME_SETFEAT_SAVE(dw10); + int i; + + trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11); + + if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) { + return NVME_FID_NOT_SAVEABLE | NVME_DNR; + } + + if (!nvme_feature_support[fid]) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) { + if (nsid != NVME_NSID_BROADCAST) { + if (!nvme_nsid_valid(n, nsid)) { + return NVME_INVALID_NSID | NVME_DNR; + } + + ns = nvme_ns(n, nsid); + if (unlikely(!ns)) { + return NVME_INVALID_FIELD | NVME_DNR; + } + } + } else if (nsid && nsid != NVME_NSID_BROADCAST) { + if (!nvme_nsid_valid(n, nsid)) { + return NVME_INVALID_NSID | NVME_DNR; + } + + return NVME_FEAT_NOT_NS_SPEC | NVME_DNR; + } + + if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) { + return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; + } + + switch (fid) { + case NVME_TEMPERATURE_THRESHOLD: + if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) { + break; + } + + switch (NVME_TEMP_THSEL(dw11)) { + case NVME_TEMP_THSEL_OVER: + n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11); + break; + case NVME_TEMP_THSEL_UNDER: + n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11); + break; + default: + return NVME_INVALID_FIELD | NVME_DNR; + } + + if ((n->temperature >= n->features.temp_thresh_hi) || + (n->temperature <= n->features.temp_thresh_low)) { + nvme_smart_event(n, NVME_AER_INFO_SMART_TEMP_THRESH); + } + + break; + case NVME_ERROR_RECOVERY: + if (nsid == NVME_NSID_BROADCAST) { + for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { + ns = nvme_ns(n, i); + + if (!ns) { + continue; + } + + if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { + ns->features.err_rec = dw11; + } + } + + break; + } + + assert(ns); + if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) { + ns->features.err_rec = dw11; + } + break; + case NVME_VOLATILE_WRITE_CACHE: + for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { + ns = nvme_ns(n, i); + if (!ns) { + continue; + } + + if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) { + blk_flush(ns->blkconf.blk); + } + + blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1); + } + + break; + + case NVME_NUMBER_OF_QUEUES: + if (n->qs_created) { + return NVME_CMD_SEQ_ERROR | NVME_DNR; + } + + /* + * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR + * and NSQR. + */ + if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1, + ((dw11 >> 16) & 0xffff) + 1, + n->params.max_ioqpairs, + n->params.max_ioqpairs); + req->cqe.result = cpu_to_le32((n->params.max_ioqpairs - 1) | + ((n->params.max_ioqpairs - 1) << 16)); + break; + case NVME_ASYNCHRONOUS_EVENT_CONF: + n->features.async_config = dw11; + break; + case NVME_TIMESTAMP: + return nvme_set_feature_timestamp(n, req); + case NVME_COMMAND_SET_PROFILE: + if (dw11 & 0x1ff) { + trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff); + return NVME_CMD_SET_CMB_REJECTED | NVME_DNR; + } + break; + default: + return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR; + } + return NVME_SUCCESS; +} + +static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req) +{ + trace_pci_nvme_aer(nvme_cid(req)); + + if (n->outstanding_aers > n->params.aerl) { + trace_pci_nvme_aer_aerl_exceeded(); + return NVME_AER_LIMIT_EXCEEDED; + } + + n->aer_reqs[n->outstanding_aers] = req; + n->outstanding_aers++; + + if (!QTAILQ_EMPTY(&n->aer_queue)) { + nvme_process_aers(n); + } + + return NVME_NO_COMPLETE; +} + +static void nvme_update_dmrsl(NvmeCtrl *n) +{ + int nsid; + + for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) { + NvmeNamespace *ns = nvme_ns(n, nsid); + if (!ns) { + continue; + } + + n->dmrsl = MIN_NON_ZERO(n->dmrsl, + BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); + } +} + +static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns) +{ + ns->iocs = nvme_cse_iocs_none; + switch (ns->csi) { + case NVME_CSI_NVM: + if (NVME_CC_CSS(n->bar.cc) != NVME_CC_CSS_ADMIN_ONLY) { + ns->iocs = nvme_cse_iocs_nvm; + } + break; + case NVME_CSI_ZONED: + if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_CSI) { + ns->iocs = nvme_cse_iocs_zoned; + } else if (NVME_CC_CSS(n->bar.cc) == NVME_CC_CSS_NVM) { + ns->iocs = nvme_cse_iocs_nvm; + } + break; + } +} + +static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeNamespace *ns; + NvmeCtrl *ctrl; + uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {}; + uint32_t nsid = le32_to_cpu(req->cmd.nsid); + uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); + bool attach = !(dw10 & 0xf); + uint16_t *nr_ids = &list[0]; + uint16_t *ids = &list[1]; + uint16_t ret; + int i; + + trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf); + + if (!nvme_nsid_valid(n, nsid)) { + return NVME_INVALID_NSID | NVME_DNR; + } + + ns = nvme_subsys_ns(n->subsys, nsid); + if (!ns) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + ret = nvme_h2c(n, (uint8_t *)list, 4096, req); + if (ret) { + return ret; + } + + if (!*nr_ids) { + return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; + } + + *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1); + for (i = 0; i < *nr_ids; i++) { + ctrl = nvme_subsys_ctrl(n->subsys, ids[i]); + if (!ctrl) { + return NVME_NS_CTRL_LIST_INVALID | NVME_DNR; + } + + if (attach) { + if (nvme_ns(ctrl, nsid)) { + return NVME_NS_ALREADY_ATTACHED | NVME_DNR; + } + + if (ns->attached && !ns->params.shared) { + return NVME_NS_PRIVATE | NVME_DNR; + } + + nvme_attach_ns(ctrl, ns); + nvme_select_iocs_ns(ctrl, ns); + } else { + if (!nvme_ns(ctrl, nsid)) { + return NVME_NS_NOT_ATTACHED | NVME_DNR; + } + + ctrl->namespaces[nsid] = NULL; + ns->attached--; + + nvme_update_dmrsl(ctrl); + } + + /* + * Add namespace id to the changed namespace id list for event clearing + * via Get Log Page command. + */ + if (!test_and_set_bit(nsid, ctrl->changed_nsids)) { + nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE, + NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED, + NVME_LOG_CHANGED_NSLIST); + } + } + + return NVME_SUCCESS; +} + +static uint16_t nvme_format_ns(NvmeCtrl *n, NvmeNamespace *ns, uint8_t lbaf, + uint8_t mset, uint8_t pi, uint8_t pil, + NvmeRequest *req) +{ + int64_t len, offset; + struct nvme_aio_format_ctx *ctx; + BlockBackend *blk = ns->blkconf.blk; + uint16_t ms; + uintptr_t *num_formats = (uintptr_t *)&req->opaque; + int *count; + + if (ns->params.zoned) { + return NVME_INVALID_FORMAT | NVME_DNR; + } + + trace_pci_nvme_format_ns(nvme_cid(req), nvme_nsid(ns), lbaf, mset, pi, pil); + + if (lbaf > ns->id_ns.nlbaf) { + return NVME_INVALID_FORMAT | NVME_DNR; + } + + ms = ns->id_ns.lbaf[lbaf].ms; + + if (pi && (ms < sizeof(NvmeDifTuple))) { + return NVME_INVALID_FORMAT | NVME_DNR; + } + + if (pi && pi > NVME_ID_NS_DPS_TYPE_3) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + nvme_ns_drain(ns); + nvme_ns_shutdown(ns); + nvme_ns_cleanup(ns); + + ns->id_ns.dps = (pil << 3) | pi; + ns->id_ns.flbas = lbaf | (mset << 4); + + nvme_ns_init_format(ns); + + ns->status = NVME_FORMAT_IN_PROGRESS; + + len = ns->size; + offset = 0; + + count = g_new(int, 1); + *count = 1; + + (*num_formats)++; + + while (len) { + ctx = g_new(struct nvme_aio_format_ctx, 1); + ctx->req = req; + ctx->ns = ns; + ctx->count = count; + + size_t bytes = MIN(BDRV_REQUEST_MAX_BYTES, len); + + (*count)++; + + blk_aio_pwrite_zeroes(blk, offset, bytes, BDRV_REQ_MAY_UNMAP, + nvme_aio_format_cb, ctx); + + offset += bytes; + len -= bytes; + + } + + if (--(*count)) { + return NVME_NO_COMPLETE; + } + + g_free(count); + ns->status = 0x0; + (*num_formats)--; + + return NVME_SUCCESS; +} + +static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req) +{ + NvmeNamespace *ns; + uint32_t dw10 = le32_to_cpu(req->cmd.cdw10); + uint32_t nsid = le32_to_cpu(req->cmd.nsid); + uint8_t lbaf = dw10 & 0xf; + uint8_t mset = (dw10 >> 4) & 0x1; + uint8_t pi = (dw10 >> 5) & 0x7; + uint8_t pil = (dw10 >> 8) & 0x1; + uintptr_t *num_formats = (uintptr_t *)&req->opaque; + uint16_t status; + int i; + + trace_pci_nvme_format(nvme_cid(req), nsid, lbaf, mset, pi, pil); + + /* 1-initialize; see the comment in nvme_dsm */ + *num_formats = 1; + + if (nsid != NVME_NSID_BROADCAST) { + if (!nvme_nsid_valid(n, nsid)) { + return NVME_INVALID_NSID | NVME_DNR; + } + + ns = nvme_ns(n, nsid); + if (!ns) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + status = nvme_format_ns(n, ns, lbaf, mset, pi, pil, req); + if (status && status != NVME_NO_COMPLETE) { + req->status = status; + } + } else { + for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { + ns = nvme_ns(n, i); + if (!ns) { + continue; + } + + status = nvme_format_ns(n, ns, lbaf, mset, pi, pil, req); + if (status && status != NVME_NO_COMPLETE) { + req->status = status; + break; + } + } + } + + /* account for the 1-initialization */ + if (--(*num_formats)) { + return NVME_NO_COMPLETE; + } + + return req->status; +} + +static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req) +{ + trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode, + nvme_adm_opc_str(req->cmd.opcode)); + + if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) { + trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode); + return NVME_INVALID_OPCODE | NVME_DNR; + } + + /* SGLs shall not be used for Admin commands in NVMe over PCIe */ + if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) { + return NVME_INVALID_FIELD | NVME_DNR; + } + + switch (req->cmd.opcode) { + case NVME_ADM_CMD_DELETE_SQ: + return nvme_del_sq(n, req); + case NVME_ADM_CMD_CREATE_SQ: + return nvme_create_sq(n, req); + case NVME_ADM_CMD_GET_LOG_PAGE: + return nvme_get_log(n, req); + case NVME_ADM_CMD_DELETE_CQ: + return nvme_del_cq(n, req); + case NVME_ADM_CMD_CREATE_CQ: + return nvme_create_cq(n, req); + case NVME_ADM_CMD_IDENTIFY: + return nvme_identify(n, req); + case NVME_ADM_CMD_ABORT: + return nvme_abort(n, req); + case NVME_ADM_CMD_SET_FEATURES: + return nvme_set_feature(n, req); + case NVME_ADM_CMD_GET_FEATURES: + return nvme_get_feature(n, req); + case NVME_ADM_CMD_ASYNC_EV_REQ: + return nvme_aer(n, req); + case NVME_ADM_CMD_NS_ATTACHMENT: + return nvme_ns_attachment(n, req); + case NVME_ADM_CMD_FORMAT_NVM: + return nvme_format(n, req); + default: + assert(false); + } + + return NVME_INVALID_OPCODE | NVME_DNR; +} + +static void nvme_process_sq(void *opaque) +{ + NvmeSQueue *sq = opaque; + NvmeCtrl *n = sq->ctrl; + NvmeCQueue *cq = n->cq[sq->cqid]; + + uint16_t status; + hwaddr addr; + NvmeCmd cmd; + NvmeRequest *req; + + while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) { + addr = sq->dma_addr + sq->head * n->sqe_size; + if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) { + trace_pci_nvme_err_addr_read(addr); + trace_pci_nvme_err_cfs(); + n->bar.csts = NVME_CSTS_FAILED; + break; + } + nvme_inc_sq_head(sq); + + req = QTAILQ_FIRST(&sq->req_list); + QTAILQ_REMOVE(&sq->req_list, req, entry); + QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry); + nvme_req_clear(req); + req->cqe.cid = cmd.cid; + memcpy(&req->cmd, &cmd, sizeof(NvmeCmd)); + + status = sq->sqid ? nvme_io_cmd(n, req) : + nvme_admin_cmd(n, req); + if (status != NVME_NO_COMPLETE) { + req->status = status; + nvme_enqueue_req_completion(cq, req); + } + } +} + +static void nvme_ctrl_reset(NvmeCtrl *n) +{ + NvmeNamespace *ns; + int i; + + for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { + ns = nvme_ns(n, i); + if (!ns) { + continue; + } + + nvme_ns_drain(ns); + } + + for (i = 0; i < n->params.max_ioqpairs + 1; i++) { + if (n->sq[i] != NULL) { + nvme_free_sq(n->sq[i], n); + } + } + for (i = 0; i < n->params.max_ioqpairs + 1; i++) { + if (n->cq[i] != NULL) { + nvme_free_cq(n->cq[i], n); + } + } + + while (!QTAILQ_EMPTY(&n->aer_queue)) { + NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue); + QTAILQ_REMOVE(&n->aer_queue, event, entry); + g_free(event); + } + + n->aer_queued = 0; + n->outstanding_aers = 0; + n->qs_created = false; + + n->bar.cc = 0; +} + +static void nvme_ctrl_shutdown(NvmeCtrl *n) +{ + NvmeNamespace *ns; + int i; + + if (n->pmr.dev) { + memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); + } + + for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { + ns = nvme_ns(n, i); + if (!ns) { + continue; + } + + nvme_ns_shutdown(ns); + } +} + +static void nvme_select_iocs(NvmeCtrl *n) +{ + NvmeNamespace *ns; + int i; + + for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { + ns = nvme_ns(n, i); + if (!ns) { + continue; + } + + nvme_select_iocs_ns(n, ns); + } +} + +static int nvme_start_ctrl(NvmeCtrl *n) +{ + uint32_t page_bits = NVME_CC_MPS(n->bar.cc) + 12; + uint32_t page_size = 1 << page_bits; + + if (unlikely(n->cq[0])) { + trace_pci_nvme_err_startfail_cq(); + return -1; + } + if (unlikely(n->sq[0])) { + trace_pci_nvme_err_startfail_sq(); + return -1; + } + if (unlikely(!n->bar.asq)) { + trace_pci_nvme_err_startfail_nbarasq(); + return -1; + } + if (unlikely(!n->bar.acq)) { + trace_pci_nvme_err_startfail_nbaracq(); + return -1; + } + if (unlikely(n->bar.asq & (page_size - 1))) { + trace_pci_nvme_err_startfail_asq_misaligned(n->bar.asq); + return -1; + } + if (unlikely(n->bar.acq & (page_size - 1))) { + trace_pci_nvme_err_startfail_acq_misaligned(n->bar.acq); + return -1; + } + if (unlikely(!(NVME_CAP_CSS(n->bar.cap) & (1 << NVME_CC_CSS(n->bar.cc))))) { + trace_pci_nvme_err_startfail_css(NVME_CC_CSS(n->bar.cc)); + return -1; + } + if (unlikely(NVME_CC_MPS(n->bar.cc) < + NVME_CAP_MPSMIN(n->bar.cap))) { + trace_pci_nvme_err_startfail_page_too_small( + NVME_CC_MPS(n->bar.cc), + NVME_CAP_MPSMIN(n->bar.cap)); + return -1; + } + if (unlikely(NVME_CC_MPS(n->bar.cc) > + NVME_CAP_MPSMAX(n->bar.cap))) { + trace_pci_nvme_err_startfail_page_too_large( + NVME_CC_MPS(n->bar.cc), + NVME_CAP_MPSMAX(n->bar.cap)); + return -1; + } + if (unlikely(NVME_CC_IOCQES(n->bar.cc) < + NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) { + trace_pci_nvme_err_startfail_cqent_too_small( + NVME_CC_IOCQES(n->bar.cc), + NVME_CTRL_CQES_MIN(n->bar.cap)); + return -1; + } + if (unlikely(NVME_CC_IOCQES(n->bar.cc) > + NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) { + trace_pci_nvme_err_startfail_cqent_too_large( + NVME_CC_IOCQES(n->bar.cc), + NVME_CTRL_CQES_MAX(n->bar.cap)); + return -1; + } + if (unlikely(NVME_CC_IOSQES(n->bar.cc) < + NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) { + trace_pci_nvme_err_startfail_sqent_too_small( + NVME_CC_IOSQES(n->bar.cc), + NVME_CTRL_SQES_MIN(n->bar.cap)); + return -1; + } + if (unlikely(NVME_CC_IOSQES(n->bar.cc) > + NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) { + trace_pci_nvme_err_startfail_sqent_too_large( + NVME_CC_IOSQES(n->bar.cc), + NVME_CTRL_SQES_MAX(n->bar.cap)); + return -1; + } + if (unlikely(!NVME_AQA_ASQS(n->bar.aqa))) { + trace_pci_nvme_err_startfail_asqent_sz_zero(); + return -1; + } + if (unlikely(!NVME_AQA_ACQS(n->bar.aqa))) { + trace_pci_nvme_err_startfail_acqent_sz_zero(); + return -1; + } + + n->page_bits = page_bits; + n->page_size = page_size; + n->max_prp_ents = n->page_size / sizeof(uint64_t); + n->cqe_size = 1 << NVME_CC_IOCQES(n->bar.cc); + n->sqe_size = 1 << NVME_CC_IOSQES(n->bar.cc); + nvme_init_cq(&n->admin_cq, n, n->bar.acq, 0, 0, + NVME_AQA_ACQS(n->bar.aqa) + 1, 1); + nvme_init_sq(&n->admin_sq, n, n->bar.asq, 0, 0, + NVME_AQA_ASQS(n->bar.aqa) + 1); + + nvme_set_timestamp(n, 0ULL); + + QTAILQ_INIT(&n->aer_queue); + + nvme_select_iocs(n); + + return 0; +} + +static void nvme_cmb_enable_regs(NvmeCtrl *n) +{ + NVME_CMBLOC_SET_CDPCILS(n->bar.cmbloc, 1); + NVME_CMBLOC_SET_CDPMLS(n->bar.cmbloc, 1); + NVME_CMBLOC_SET_BIR(n->bar.cmbloc, NVME_CMB_BIR); + + NVME_CMBSZ_SET_SQS(n->bar.cmbsz, 1); + NVME_CMBSZ_SET_CQS(n->bar.cmbsz, 0); + NVME_CMBSZ_SET_LISTS(n->bar.cmbsz, 1); + NVME_CMBSZ_SET_RDS(n->bar.cmbsz, 1); + NVME_CMBSZ_SET_WDS(n->bar.cmbsz, 1); + NVME_CMBSZ_SET_SZU(n->bar.cmbsz, 2); /* MBs */ + NVME_CMBSZ_SET_SZ(n->bar.cmbsz, n->params.cmb_size_mb); +} + +static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data, + unsigned size) +{ + if (unlikely(offset & (sizeof(uint32_t) - 1))) { + NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32, + "MMIO write not 32-bit aligned," + " offset=0x%"PRIx64"", offset); + /* should be ignored, fall through for now */ + } + + if (unlikely(size < sizeof(uint32_t))) { + NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall, + "MMIO write smaller than 32-bits," + " offset=0x%"PRIx64", size=%u", + offset, size); + /* should be ignored, fall through for now */ + } + + switch (offset) { + case 0xc: /* INTMS */ + if (unlikely(msix_enabled(&(n->parent_obj)))) { + NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, + "undefined access to interrupt mask set" + " when MSI-X is enabled"); + /* should be ignored, fall through for now */ + } + n->bar.intms |= data & 0xffffffff; + n->bar.intmc = n->bar.intms; + trace_pci_nvme_mmio_intm_set(data & 0xffffffff, n->bar.intmc); + nvme_irq_check(n); + break; + case 0x10: /* INTMC */ + if (unlikely(msix_enabled(&(n->parent_obj)))) { + NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix, + "undefined access to interrupt mask clr" + " when MSI-X is enabled"); + /* should be ignored, fall through for now */ + } + n->bar.intms &= ~(data & 0xffffffff); + n->bar.intmc = n->bar.intms; + trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, n->bar.intmc); + nvme_irq_check(n); + break; + case 0x14: /* CC */ + trace_pci_nvme_mmio_cfg(data & 0xffffffff); + /* Windows first sends data, then sends enable bit */ + if (!NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc) && + !NVME_CC_SHN(data) && !NVME_CC_SHN(n->bar.cc)) + { + n->bar.cc = data; + } + + if (NVME_CC_EN(data) && !NVME_CC_EN(n->bar.cc)) { + n->bar.cc = data; + if (unlikely(nvme_start_ctrl(n))) { + trace_pci_nvme_err_startfail(); + n->bar.csts = NVME_CSTS_FAILED; + } else { + trace_pci_nvme_mmio_start_success(); + n->bar.csts = NVME_CSTS_READY; + } + } else if (!NVME_CC_EN(data) && NVME_CC_EN(n->bar.cc)) { + trace_pci_nvme_mmio_stopped(); + nvme_ctrl_reset(n); + n->bar.csts &= ~NVME_CSTS_READY; + } + if (NVME_CC_SHN(data) && !(NVME_CC_SHN(n->bar.cc))) { + trace_pci_nvme_mmio_shutdown_set(); + nvme_ctrl_shutdown(n); + n->bar.cc = data; + n->bar.csts |= NVME_CSTS_SHST_COMPLETE; + } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(n->bar.cc)) { + trace_pci_nvme_mmio_shutdown_cleared(); + n->bar.csts &= ~NVME_CSTS_SHST_COMPLETE; + n->bar.cc = data; + } + break; + case 0x1c: /* CSTS */ + if (data & (1 << 4)) { + NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported, + "attempted to W1C CSTS.NSSRO" + " but CAP.NSSRS is zero (not supported)"); + } else if (data != 0) { + NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts, + "attempted to set a read only bit" + " of controller status"); + } + break; + case 0x20: /* NSSR */ + if (data == 0x4e564d65) { + trace_pci_nvme_ub_mmiowr_ssreset_unsupported(); + } else { + /* The spec says that writes of other values have no effect */ + return; + } + break; + case 0x24: /* AQA */ + n->bar.aqa = data & 0xffffffff; + trace_pci_nvme_mmio_aqattr(data & 0xffffffff); + break; + case 0x28: /* ASQ */ + n->bar.asq = size == 8 ? data : + (n->bar.asq & ~0xffffffffULL) | (data & 0xffffffff); + trace_pci_nvme_mmio_asqaddr(data); + break; + case 0x2c: /* ASQ hi */ + n->bar.asq = (n->bar.asq & 0xffffffff) | (data << 32); + trace_pci_nvme_mmio_asqaddr_hi(data, n->bar.asq); + break; + case 0x30: /* ACQ */ + trace_pci_nvme_mmio_acqaddr(data); + n->bar.acq = size == 8 ? data : + (n->bar.acq & ~0xffffffffULL) | (data & 0xffffffff); + break; + case 0x34: /* ACQ hi */ + n->bar.acq = (n->bar.acq & 0xffffffff) | (data << 32); + trace_pci_nvme_mmio_acqaddr_hi(data, n->bar.acq); + break; + case 0x38: /* CMBLOC */ + NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved, + "invalid write to reserved CMBLOC" + " when CMBSZ is zero, ignored"); + return; + case 0x3C: /* CMBSZ */ + NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly, + "invalid write to read only CMBSZ, ignored"); + return; + case 0x50: /* CMBMSC */ + if (!NVME_CAP_CMBS(n->bar.cap)) { + return; + } + + n->bar.cmbmsc = size == 8 ? data : + (n->bar.cmbmsc & ~0xffffffff) | (data & 0xffffffff); + n->cmb.cmse = false; + + if (NVME_CMBMSC_CRE(data)) { + nvme_cmb_enable_regs(n); + + if (NVME_CMBMSC_CMSE(data)) { + hwaddr cba = NVME_CMBMSC_CBA(data) << CMBMSC_CBA_SHIFT; + if (cba + int128_get64(n->cmb.mem.size) < cba) { + NVME_CMBSTS_SET_CBAI(n->bar.cmbsts, 1); + return; + } + + n->cmb.cba = cba; + n->cmb.cmse = true; + } + } else { + n->bar.cmbsz = 0; + n->bar.cmbloc = 0; + } + + return; + case 0x54: /* CMBMSC hi */ + n->bar.cmbmsc = (n->bar.cmbmsc & 0xffffffff) | (data << 32); + return; + + case 0xe00: /* PMRCAP */ + NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly, + "invalid write to PMRCAP register, ignored"); + return; + case 0xe04: /* PMRCTL */ + n->bar.pmrctl = data; + if (NVME_PMRCTL_EN(data)) { + memory_region_set_enabled(&n->pmr.dev->mr, true); + n->bar.pmrsts = 0; + } else { + memory_region_set_enabled(&n->pmr.dev->mr, false); + NVME_PMRSTS_SET_NRDY(n->bar.pmrsts, 1); + n->pmr.cmse = false; + } + return; + case 0xe08: /* PMRSTS */ + NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly, + "invalid write to PMRSTS register, ignored"); + return; + case 0xe0C: /* PMREBS */ + NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly, + "invalid write to PMREBS register, ignored"); + return; + case 0xe10: /* PMRSWTP */ + NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly, + "invalid write to PMRSWTP register, ignored"); + return; + case 0xe14: /* PMRMSCL */ + if (!NVME_CAP_PMRS(n->bar.cap)) { + return; + } + + n->bar.pmrmsc = (n->bar.pmrmsc & ~0xffffffff) | (data & 0xffffffff); + n->pmr.cmse = false; + + if (NVME_PMRMSC_CMSE(n->bar.pmrmsc)) { + hwaddr cba = NVME_PMRMSC_CBA(n->bar.pmrmsc) << PMRMSC_CBA_SHIFT; + if (cba + int128_get64(n->pmr.dev->mr.size) < cba) { + NVME_PMRSTS_SET_CBAI(n->bar.pmrsts, 1); + return; + } + + n->pmr.cmse = true; + n->pmr.cba = cba; + } + + return; + case 0xe18: /* PMRMSCU */ + if (!NVME_CAP_PMRS(n->bar.cap)) { + return; + } + + n->bar.pmrmsc = (n->bar.pmrmsc & 0xffffffff) | (data << 32); + return; + default: + NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid, + "invalid MMIO write," + " offset=0x%"PRIx64", data=%"PRIx64"", + offset, data); + break; + } +} + +static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size) +{ + NvmeCtrl *n = (NvmeCtrl *)opaque; + uint8_t *ptr = (uint8_t *)&n->bar; + uint64_t val = 0; + + trace_pci_nvme_mmio_read(addr, size); + + if (unlikely(addr & (sizeof(uint32_t) - 1))) { + NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32, + "MMIO read not 32-bit aligned," + " offset=0x%"PRIx64"", addr); + /* should RAZ, fall through for now */ + } else if (unlikely(size < sizeof(uint32_t))) { + NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall, + "MMIO read smaller than 32-bits," + " offset=0x%"PRIx64"", addr); + /* should RAZ, fall through for now */ + } + + if (addr < sizeof(n->bar)) { + /* + * When PMRWBM bit 1 is set then read from + * from PMRSTS should ensure prior writes + * made it to persistent media + */ + if (addr == 0xe08 && + (NVME_PMRCAP_PMRWBM(n->bar.pmrcap) & 0x02)) { + memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size); + } + memcpy(&val, ptr + addr, size); + } else { + NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs, + "MMIO read beyond last register," + " offset=0x%"PRIx64", returning 0", addr); + } + + return val; +} + +static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val) +{ + uint32_t qid; + + if (unlikely(addr & ((1 << 2) - 1))) { + NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned, + "doorbell write not 32-bit aligned," + " offset=0x%"PRIx64", ignoring", addr); + return; + } + + if (((addr - 0x1000) >> 2) & 1) { + /* Completion queue doorbell write */ + + uint16_t new_head = val & 0xffff; + int start_sqs; + NvmeCQueue *cq; + + qid = (addr - (0x1000 + (1 << 2))) >> 3; + if (unlikely(nvme_check_cqid(n, qid))) { + NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq, + "completion queue doorbell write" + " for nonexistent queue," + " sqid=%"PRIu32", ignoring", qid); + + /* + * NVM Express v1.3d, Section 4.1 state: "If host software writes + * an invalid value to the Submission Queue Tail Doorbell or + * Completion Queue Head Doorbell regiter and an Asynchronous Event + * Request command is outstanding, then an asynchronous event is + * posted to the Admin Completion Queue with a status code of + * Invalid Doorbell Write Value." + * + * Also note that the spec includes the "Invalid Doorbell Register" + * status code, but nowhere does it specify when to use it. + * However, it seems reasonable to use it here in a similar + * fashion. + */ + if (n->outstanding_aers) { + nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, + NVME_AER_INFO_ERR_INVALID_DB_REGISTER, + NVME_LOG_ERROR_INFO); + } + + return; + } + + cq = n->cq[qid]; + if (unlikely(new_head >= cq->size)) { + NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead, + "completion queue doorbell write value" + " beyond queue size, sqid=%"PRIu32"," + " new_head=%"PRIu16", ignoring", + qid, new_head); + + if (n->outstanding_aers) { + nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, + NVME_AER_INFO_ERR_INVALID_DB_VALUE, + NVME_LOG_ERROR_INFO); + } + + return; + } + + trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head); + + start_sqs = nvme_cq_full(cq) ? 1 : 0; + cq->head = new_head; + if (start_sqs) { + NvmeSQueue *sq; + QTAILQ_FOREACH(sq, &cq->sq_list, entry) { + timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); + } + timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); + } + + if (cq->tail == cq->head) { + nvme_irq_deassert(n, cq); + } + } else { + /* Submission queue doorbell write */ + + uint16_t new_tail = val & 0xffff; + NvmeSQueue *sq; + + qid = (addr - 0x1000) >> 3; + if (unlikely(nvme_check_sqid(n, qid))) { + NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq, + "submission queue doorbell write" + " for nonexistent queue," + " sqid=%"PRIu32", ignoring", qid); + + if (n->outstanding_aers) { + nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, + NVME_AER_INFO_ERR_INVALID_DB_REGISTER, + NVME_LOG_ERROR_INFO); + } + + return; + } + + sq = n->sq[qid]; + if (unlikely(new_tail >= sq->size)) { + NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail, + "submission queue doorbell write value" + " beyond queue size, sqid=%"PRIu32"," + " new_tail=%"PRIu16", ignoring", + qid, new_tail); + + if (n->outstanding_aers) { + nvme_enqueue_event(n, NVME_AER_TYPE_ERROR, + NVME_AER_INFO_ERR_INVALID_DB_VALUE, + NVME_LOG_ERROR_INFO); + } + + return; + } + + trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail); + + sq->tail = new_tail; + timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500); + } +} + +static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data, + unsigned size) +{ + NvmeCtrl *n = (NvmeCtrl *)opaque; + + trace_pci_nvme_mmio_write(addr, data, size); + + if (addr < sizeof(n->bar)) { + nvme_write_bar(n, addr, data, size); + } else { + nvme_process_db(n, addr, data); + } +} + +static const MemoryRegionOps nvme_mmio_ops = { + .read = nvme_mmio_read, + .write = nvme_mmio_write, + .endianness = DEVICE_LITTLE_ENDIAN, + .impl = { + .min_access_size = 2, + .max_access_size = 8, + }, +}; + +static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data, + unsigned size) +{ + NvmeCtrl *n = (NvmeCtrl *)opaque; + stn_le_p(&n->cmb.buf[addr], size, data); +} + +static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size) +{ + NvmeCtrl *n = (NvmeCtrl *)opaque; + return ldn_le_p(&n->cmb.buf[addr], size); +} + +static const MemoryRegionOps nvme_cmb_ops = { + .read = nvme_cmb_read, + .write = nvme_cmb_write, + .endianness = DEVICE_LITTLE_ENDIAN, + .impl = { + .min_access_size = 1, + .max_access_size = 8, + }, +}; + +static void nvme_check_constraints(NvmeCtrl *n, Error **errp) +{ + NvmeParams *params = &n->params; + + if (params->num_queues) { + warn_report("num_queues is deprecated; please use max_ioqpairs " + "instead"); + + params->max_ioqpairs = params->num_queues - 1; + } + + if (n->namespace.blkconf.blk && n->subsys) { + error_setg(errp, "subsystem support is unavailable with legacy " + "namespace ('drive' property)"); + return; + } + + if (params->max_ioqpairs < 1 || + params->max_ioqpairs > NVME_MAX_IOQPAIRS) { + error_setg(errp, "max_ioqpairs must be between 1 and %d", + NVME_MAX_IOQPAIRS); + return; + } + + if (params->msix_qsize < 1 || + params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) { + error_setg(errp, "msix_qsize must be between 1 and %d", + PCI_MSIX_FLAGS_QSIZE + 1); + return; + } + + if (!params->serial) { + error_setg(errp, "serial property not set"); + return; + } + + if (n->pmr.dev) { + if (host_memory_backend_is_mapped(n->pmr.dev)) { + error_setg(errp, "can't use already busy memdev: %s", + object_get_canonical_path_component(OBJECT(n->pmr.dev))); + return; + } + + if (!is_power_of_2(n->pmr.dev->size)) { + error_setg(errp, "pmr backend size needs to be power of 2 in size"); + return; + } + + host_memory_backend_set_mapped(n->pmr.dev, true); + } + + if (n->params.zasl > n->params.mdts) { + error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less " + "than or equal to mdts (Maximum Data Transfer Size)"); + return; + } + + if (!n->params.vsl) { + error_setg(errp, "vsl must be non-zero"); + return; + } +} + +static void nvme_init_state(NvmeCtrl *n) +{ + /* add one to max_ioqpairs to account for the admin queue pair */ + n->reg_size = pow2ceil(sizeof(NvmeBar) + + 2 * (n->params.max_ioqpairs + 1) * NVME_DB_SIZE); + n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1); + n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1); + n->temperature = NVME_TEMPERATURE; + n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING; + n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL); + n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1); +} + +static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev) +{ + uint64_t cmb_size = n->params.cmb_size_mb * MiB; + + n->cmb.buf = g_malloc0(cmb_size); + memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n, + "nvme-cmb", cmb_size); + pci_register_bar(pci_dev, NVME_CMB_BIR, + PCI_BASE_ADDRESS_SPACE_MEMORY | + PCI_BASE_ADDRESS_MEM_TYPE_64 | + PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem); + + NVME_CAP_SET_CMBS(n->bar.cap, 1); + + if (n->params.legacy_cmb) { + nvme_cmb_enable_regs(n); + n->cmb.cmse = true; + } +} + +static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev) +{ + NVME_PMRCAP_SET_RDS(n->bar.pmrcap, 1); + NVME_PMRCAP_SET_WDS(n->bar.pmrcap, 1); + NVME_PMRCAP_SET_BIR(n->bar.pmrcap, NVME_PMR_BIR); + /* Turn on bit 1 support */ + NVME_PMRCAP_SET_PMRWBM(n->bar.pmrcap, 0x02); + NVME_PMRCAP_SET_CMSS(n->bar.pmrcap, 1); + + pci_register_bar(pci_dev, NVME_PMRCAP_BIR(n->bar.pmrcap), + PCI_BASE_ADDRESS_SPACE_MEMORY | + PCI_BASE_ADDRESS_MEM_TYPE_64 | + PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr); + + memory_region_set_enabled(&n->pmr.dev->mr, false); +} + +static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp) +{ + uint8_t *pci_conf = pci_dev->config; + uint64_t bar_size, msix_table_size, msix_pba_size; + unsigned msix_table_offset, msix_pba_offset; + int ret; + + Error *err = NULL; + + pci_conf[PCI_INTERRUPT_PIN] = 1; + pci_config_set_prog_interface(pci_conf, 0x2); + + if (n->params.use_intel_id) { + pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL); + pci_config_set_device_id(pci_conf, 0x5845); + } else { + pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT); + pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME); + } + + pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS); + pcie_endpoint_cap_init(pci_dev, 0x80); + + bar_size = QEMU_ALIGN_UP(n->reg_size, 4 * KiB); + msix_table_offset = bar_size; + msix_table_size = PCI_MSIX_ENTRY_SIZE * n->params.msix_qsize; + + bar_size += msix_table_size; + bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB); + msix_pba_offset = bar_size; + msix_pba_size = QEMU_ALIGN_UP(n->params.msix_qsize, 64) / 8; + + bar_size += msix_pba_size; + bar_size = pow2ceil(bar_size); + + memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size); + memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme", + n->reg_size); + memory_region_add_subregion(&n->bar0, 0, &n->iomem); + + pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY | + PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0); + ret = msix_init(pci_dev, n->params.msix_qsize, + &n->bar0, 0, msix_table_offset, + &n->bar0, 0, msix_pba_offset, 0, &err); + if (ret < 0) { + if (ret == -ENOTSUP) { + warn_report_err(err); + } else { + error_propagate(errp, err); + return ret; + } + } + + if (n->params.cmb_size_mb) { + nvme_init_cmb(n, pci_dev); + } + + if (n->pmr.dev) { + nvme_init_pmr(n, pci_dev); + } + + return 0; +} + +static void nvme_init_subnqn(NvmeCtrl *n) +{ + NvmeSubsystem *subsys = n->subsys; + NvmeIdCtrl *id = &n->id_ctrl; + + if (!subsys) { + snprintf((char *)id->subnqn, sizeof(id->subnqn), + "nqn.2019-08.org.qemu:%s", n->params.serial); + } else { + pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn); + } +} + +static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev) +{ + NvmeIdCtrl *id = &n->id_ctrl; + uint8_t *pci_conf = pci_dev->config; + + id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID)); + id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID)); + strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' '); + strpadcpy((char *)id->fr, sizeof(id->fr), "1.0", ' '); + strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' '); + + id->cntlid = cpu_to_le16(n->cntlid); + + id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR); + + id->rab = 6; + + if (n->params.use_intel_id) { + id->ieee[0] = 0xb3; + id->ieee[1] = 0x02; + id->ieee[2] = 0x00; + } else { + id->ieee[0] = 0x00; + id->ieee[1] = 0x54; + id->ieee[2] = 0x52; + } + + id->mdts = n->params.mdts; + id->ver = cpu_to_le32(NVME_SPEC_VER); + id->oacs = cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT); + id->cntrltype = 0x1; + + /* + * Because the controller always completes the Abort command immediately, + * there can never be more than one concurrently executing Abort command, + * so this value is never used for anything. Note that there can easily be + * many Abort commands in the queues, but they are not considered + * "executing" until processed by nvme_abort. + * + * The specification recommends a value of 3 for Abort Command Limit (four + * concurrently outstanding Abort commands), so lets use that though it is + * inconsequential. + */ + id->acl = 3; + id->aerl = n->params.aerl; + id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO; + id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED; + + /* recommended default value (~70 C) */ + id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING); + id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL); + + id->sqes = (0x6 << 4) | 0x6; + id->cqes = (0x4 << 4) | 0x4; + id->nn = cpu_to_le32(NVME_MAX_NAMESPACES); + id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP | + NVME_ONCS_FEATURES | NVME_ONCS_DSM | + NVME_ONCS_COMPARE | NVME_ONCS_COPY); + + /* + * NOTE: If this device ever supports a command set that does NOT use 0x0 + * as a Flush-equivalent operation, support for the broadcast NSID in Flush + * should probably be removed. + * + * See comment in nvme_io_cmd. + */ + id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT; + + id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0); + id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN | + NVME_CTRL_SGLS_BITBUCKET); + + nvme_init_subnqn(n); + + id->psd[0].mp = cpu_to_le16(0x9c4); + id->psd[0].enlat = cpu_to_le32(0x10); + id->psd[0].exlat = cpu_to_le32(0x4); + + if (n->subsys) { + id->cmic |= NVME_CMIC_MULTI_CTRL; + } + + NVME_CAP_SET_MQES(n->bar.cap, 0x7ff); + NVME_CAP_SET_CQR(n->bar.cap, 1); + NVME_CAP_SET_TO(n->bar.cap, 0xf); + NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_NVM); + NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_CSI_SUPP); + NVME_CAP_SET_CSS(n->bar.cap, NVME_CAP_CSS_ADMIN_ONLY); + NVME_CAP_SET_MPSMAX(n->bar.cap, 4); + NVME_CAP_SET_CMBS(n->bar.cap, n->params.cmb_size_mb ? 1 : 0); + NVME_CAP_SET_PMRS(n->bar.cap, n->pmr.dev ? 1 : 0); + + n->bar.vs = NVME_SPEC_VER; + n->bar.intmc = n->bar.intms = 0; +} + +static int nvme_init_subsys(NvmeCtrl *n, Error **errp) +{ + int cntlid; + + if (!n->subsys) { + return 0; + } + + cntlid = nvme_subsys_register_ctrl(n, errp); + if (cntlid < 0) { + return -1; + } + + n->cntlid = cntlid; + + return 0; +} + +void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns) +{ + uint32_t nsid = ns->params.nsid; + assert(nsid && nsid <= NVME_MAX_NAMESPACES); + + n->namespaces[nsid] = ns; + ns->attached++; + + n->dmrsl = MIN_NON_ZERO(n->dmrsl, + BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1)); +} + +static void nvme_realize(PCIDevice *pci_dev, Error **errp) +{ + NvmeCtrl *n = NVME(pci_dev); + NvmeNamespace *ns; + Error *local_err = NULL; + + nvme_check_constraints(n, &local_err); + if (local_err) { + error_propagate(errp, local_err); + return; + } + + qbus_create_inplace(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS, + &pci_dev->qdev, n->parent_obj.qdev.id); + + nvme_init_state(n); + if (nvme_init_pci(n, pci_dev, errp)) { + return; + } + + if (nvme_init_subsys(n, errp)) { + error_propagate(errp, local_err); + return; + } + nvme_init_ctrl(n, pci_dev); + + /* setup a namespace if the controller drive property was given */ + if (n->namespace.blkconf.blk) { + ns = &n->namespace; + ns->params.nsid = 1; + + if (nvme_ns_setup(n, ns, errp)) { + return; + } + + nvme_attach_ns(n, ns); + } +} + +static void nvme_exit(PCIDevice *pci_dev) +{ + NvmeCtrl *n = NVME(pci_dev); + NvmeNamespace *ns; + int i; + + nvme_ctrl_reset(n); + + for (i = 1; i <= NVME_MAX_NAMESPACES; i++) { + ns = nvme_ns(n, i); + if (!ns) { + continue; + } + + nvme_ns_cleanup(ns); + } + + g_free(n->cq); + g_free(n->sq); + g_free(n->aer_reqs); + + if (n->params.cmb_size_mb) { + g_free(n->cmb.buf); + } + + if (n->pmr.dev) { + host_memory_backend_set_mapped(n->pmr.dev, false); + } + msix_uninit(pci_dev, &n->bar0, &n->bar0); + memory_region_del_subregion(&n->bar0, &n->iomem); +} + +static Property nvme_props[] = { + DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf), + DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND, + HostMemoryBackend *), + DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS, + NvmeSubsystem *), + DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial), + DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0), + DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0), + DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64), + DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65), + DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3), + DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64), + DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7), + DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7), + DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false), + DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false), + DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0), + DEFINE_PROP_END_OF_LIST(), +}; + +static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name, + void *opaque, Error **errp) +{ + NvmeCtrl *n = NVME(obj); + uint8_t value = n->smart_critical_warning; + + visit_type_uint8(v, name, &value, errp); +} + +static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name, + void *opaque, Error **errp) +{ + NvmeCtrl *n = NVME(obj); + uint8_t value, old_value, cap = 0, index, event; + + if (!visit_type_uint8(v, name, &value, errp)) { + return; + } + + cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY + | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA; + if (NVME_CAP_PMRS(n->bar.cap)) { + cap |= NVME_SMART_PMR_UNRELIABLE; + } + + if ((value & cap) != value) { + error_setg(errp, "unsupported smart critical warning bits: 0x%x", + value & ~cap); + return; + } + + old_value = n->smart_critical_warning; + n->smart_critical_warning = value; + + /* only inject new bits of smart critical warning */ + for (index = 0; index < NVME_SMART_WARN_MAX; index++) { + event = 1 << index; + if (value & ~old_value & event) + nvme_smart_event(n, event); + } +} + +static const VMStateDescription nvme_vmstate = { + .name = "nvme", + .unmigratable = 1, +}; + +static void nvme_class_init(ObjectClass *oc, void *data) +{ + DeviceClass *dc = DEVICE_CLASS(oc); + PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc); + + pc->realize = nvme_realize; + pc->exit = nvme_exit; + pc->class_id = PCI_CLASS_STORAGE_EXPRESS; + pc->revision = 2; + + set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); + dc->desc = "Non-Volatile Memory Express"; + device_class_set_props(dc, nvme_props); + dc->vmsd = &nvme_vmstate; +} + +static void nvme_instance_init(Object *obj) +{ + NvmeCtrl *n = NVME(obj); + + device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex, + "bootindex", "/namespace@1,0", + DEVICE(obj)); + + object_property_add(obj, "smart_critical_warning", "uint8", + nvme_get_smart_warning, + nvme_set_smart_warning, NULL, NULL); +} + +static const TypeInfo nvme_info = { + .name = TYPE_NVME, + .parent = TYPE_PCI_DEVICE, + .instance_size = sizeof(NvmeCtrl), + .instance_init = nvme_instance_init, + .class_init = nvme_class_init, + .interfaces = (InterfaceInfo[]) { + { INTERFACE_PCIE_DEVICE }, + { } + }, +}; + +static const TypeInfo nvme_bus_info = { + .name = TYPE_NVME_BUS, + .parent = TYPE_BUS, + .instance_size = sizeof(NvmeBus), +}; + +static void nvme_register_types(void) +{ + type_register_static(&nvme_info); + type_register_static(&nvme_bus_info); +} + +type_init(nvme_register_types) |