aboutsummaryrefslogtreecommitdiff
path: root/fpu/softfloat-specialize.c.inc
diff options
context:
space:
mode:
Diffstat (limited to 'fpu/softfloat-specialize.c.inc')
-rw-r--r--fpu/softfloat-specialize.c.inc460
1 files changed, 27 insertions, 433 deletions
diff --git a/fpu/softfloat-specialize.c.inc b/fpu/softfloat-specialize.c.inc
index 8f3b97d..ba4fa08 100644
--- a/fpu/softfloat-specialize.c.inc
+++ b/fpu/softfloat-specialize.c.inc
@@ -85,11 +85,7 @@ this code that are retained.
*/
static inline bool no_signaling_nans(float_status *status)
{
-#if defined(TARGET_XTENSA)
return status->no_signaling_nans;
-#else
- return false;
-#endif
}
/* Define how the architecture discriminates signaling NaNs.
@@ -97,17 +93,10 @@ static inline bool no_signaling_nans(float_status *status)
* In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
* the msb must be zero. MIPS is (so far) unique in supporting both the
* 2008 revision and backward compatibility with their original choice.
- * Thus for MIPS we must make the choice at runtime.
*/
static inline bool snan_bit_is_one(float_status *status)
{
-#if defined(TARGET_MIPS)
return status->snan_bit_is_one;
-#elif defined(TARGET_HPPA) || defined(TARGET_SH4)
- return 1;
-#else
- return 0;
-#endif
}
/*----------------------------------------------------------------------------
@@ -133,35 +122,17 @@ static void parts64_default_nan(FloatParts64 *p, float_status *status)
{
bool sign = 0;
uint64_t frac;
+ uint8_t dnan_pattern = status->default_nan_pattern;
-#if defined(TARGET_SPARC) || defined(TARGET_M68K)
- /* !snan_bit_is_one, set all bits */
- frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
-#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
- || defined(TARGET_MICROBLAZE)
- /* !snan_bit_is_one, set sign and msb */
- frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
- sign = 1;
-#elif defined(TARGET_HPPA)
- /* snan_bit_is_one, set msb-1. */
- frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
-#elif defined(TARGET_HEXAGON)
- sign = 1;
- frac = ~0ULL;
-#else
+ assert(dnan_pattern != 0);
+
+ sign = dnan_pattern >> 7;
/*
- * This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
- * S390, SH4, TriCore, and Xtensa. Our other supported targets,
- * such CRIS, do not have floating-point.
+ * Place default_nan_pattern [6:0] into bits [62:56],
+ * and replecate bit [0] down into [55:0]
*/
- if (snan_bit_is_one(status)) {
- /* set all bits other than msb */
- frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
- } else {
- /* set msb */
- frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
- }
-#endif
+ frac = deposit64(0, DECOMPOSED_BINARY_POINT - 7, 7, dnan_pattern);
+ frac = deposit64(frac, 0, DECOMPOSED_BINARY_POINT - 7, -(dnan_pattern & 1));
*p = (FloatParts64) {
.cls = float_class_qnan,
@@ -227,17 +198,17 @@ static void parts128_silence_nan(FloatParts128 *p, float_status *status)
floatx80 floatx80_default_nan(float_status *status)
{
floatx80 r;
+ /*
+ * Extrapolate from the choices made by parts64_default_nan to fill
+ * in the floatx80 format. We assume that floatx80's explicit
+ * integer bit is always set (this is true for i386 and m68k,
+ * which are the only real users of this format).
+ */
+ FloatParts64 p64;
+ parts64_default_nan(&p64, status);
- /* None of the targets that have snan_bit_is_one use floatx80. */
- assert(!snan_bit_is_one(status));
-#if defined(TARGET_M68K)
- r.low = UINT64_C(0xFFFFFFFFFFFFFFFF);
- r.high = 0x7FFF;
-#else
- /* X86 */
- r.low = UINT64_C(0xC000000000000000);
- r.high = 0xFFFF;
-#endif
+ r.high = 0x7FFF | (p64.sign << 15);
+ r.low = (1ULL << DECOMPOSED_BINARY_POINT) | p64.frac;
return r;
}
@@ -245,15 +216,15 @@ floatx80 floatx80_default_nan(float_status *status)
| The pattern for a default generated extended double-precision inf.
*----------------------------------------------------------------------------*/
-#define floatx80_infinity_high 0x7FFF
-#if defined(TARGET_M68K)
-#define floatx80_infinity_low UINT64_C(0x0000000000000000)
-#else
-#define floatx80_infinity_low UINT64_C(0x8000000000000000)
-#endif
-
-const floatx80 floatx80_infinity
- = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
+floatx80 floatx80_default_inf(bool zSign, float_status *status)
+{
+ /*
+ * Whether the Integer bit is set in the default Infinity is
+ * target dependent.
+ */
+ bool z = status->floatx80_behaviour & floatx80_default_inf_int_bit_is_zero;
+ return packFloatx80(zSign, 0x7fff, z ? 0 : (1ULL << 63));
+}
/*----------------------------------------------------------------------------
| Returns 1 if the half-precision floating-point value `a' is a quiet
@@ -371,331 +342,6 @@ bool float32_is_signaling_nan(float32 a_, float_status *status)
}
/*----------------------------------------------------------------------------
-| Select which NaN to propagate for a two-input operation.
-| IEEE754 doesn't specify all the details of this, so the
-| algorithm is target-specific.
-| The routine is passed various bits of information about the
-| two NaNs and should return 0 to select NaN a and 1 for NaN b.
-| Note that signalling NaNs are always squashed to quiet NaNs
-| by the caller, by calling floatXX_silence_nan() before
-| returning them.
-|
-| aIsLargerSignificand is only valid if both a and b are NaNs
-| of some kind, and is true if a has the larger significand,
-| or if both a and b have the same significand but a is
-| positive but b is negative. It is only needed for the x87
-| tie-break rule.
-*----------------------------------------------------------------------------*/
-
-static int pickNaN(FloatClass a_cls, FloatClass b_cls,
- bool aIsLargerSignificand, float_status *status)
-{
-#if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA) || \
- defined(TARGET_LOONGARCH64) || defined(TARGET_S390X)
- /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
- * the first of:
- * 1. A if it is signaling
- * 2. B if it is signaling
- * 3. A (quiet)
- * 4. B (quiet)
- * A signaling NaN is always quietened before returning it.
- */
- /* According to MIPS specifications, if one of the two operands is
- * a sNaN, a new qNaN has to be generated. This is done in
- * floatXX_silence_nan(). For qNaN inputs the specifications
- * says: "When possible, this QNaN result is one of the operand QNaN
- * values." In practice it seems that most implementations choose
- * the first operand if both operands are qNaN. In short this gives
- * the following rules:
- * 1. A if it is signaling
- * 2. B if it is signaling
- * 3. A (quiet)
- * 4. B (quiet)
- * A signaling NaN is always silenced before returning it.
- */
- if (is_snan(a_cls)) {
- return 0;
- } else if (is_snan(b_cls)) {
- return 1;
- } else if (is_qnan(a_cls)) {
- return 0;
- } else {
- return 1;
- }
-#elif defined(TARGET_PPC) || defined(TARGET_M68K)
- /* PowerPC propagation rules:
- * 1. A if it sNaN or qNaN
- * 2. B if it sNaN or qNaN
- * A signaling NaN is always silenced before returning it.
- */
- /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
- * 3.4 FLOATING-POINT INSTRUCTION DETAILS
- * If either operand, but not both operands, of an operation is a
- * nonsignaling NaN, then that NaN is returned as the result. If both
- * operands are nonsignaling NaNs, then the destination operand
- * nonsignaling NaN is returned as the result.
- * If either operand to an operation is a signaling NaN (SNaN), then the
- * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
- * is set in the FPCR ENABLE byte, then the exception is taken and the
- * destination is not modified. If the SNaN exception enable bit is not
- * set, setting the SNaN bit in the operand to a one converts the SNaN to
- * a nonsignaling NaN. The operation then continues as described in the
- * preceding paragraph for nonsignaling NaNs.
- */
- if (is_nan(a_cls)) {
- return 0;
- } else {
- return 1;
- }
-#elif defined(TARGET_SPARC)
- /* Prefer SNaN over QNaN, order B then A. */
- if (is_snan(b_cls)) {
- return 1;
- } else if (is_snan(a_cls)) {
- return 0;
- } else if (is_qnan(b_cls)) {
- return 1;
- } else {
- return 0;
- }
-#elif defined(TARGET_XTENSA)
- /*
- * Xtensa has two NaN propagation modes.
- * Which one is active is controlled by float_status::use_first_nan.
- */
- if (status->use_first_nan) {
- if (is_nan(a_cls)) {
- return 0;
- } else {
- return 1;
- }
- } else {
- if (is_nan(b_cls)) {
- return 1;
- } else {
- return 0;
- }
- }
-#else
- /* This implements x87 NaN propagation rules:
- * SNaN + QNaN => return the QNaN
- * two SNaNs => return the one with the larger significand, silenced
- * two QNaNs => return the one with the larger significand
- * SNaN and a non-NaN => return the SNaN, silenced
- * QNaN and a non-NaN => return the QNaN
- *
- * If we get down to comparing significands and they are the same,
- * return the NaN with the positive sign bit (if any).
- */
- if (is_snan(a_cls)) {
- if (is_snan(b_cls)) {
- return aIsLargerSignificand ? 0 : 1;
- }
- return is_qnan(b_cls) ? 1 : 0;
- } else if (is_qnan(a_cls)) {
- if (is_snan(b_cls) || !is_qnan(b_cls)) {
- return 0;
- } else {
- return aIsLargerSignificand ? 0 : 1;
- }
- } else {
- return 1;
- }
-#endif
-}
-
-/*----------------------------------------------------------------------------
-| Select which NaN to propagate for a three-input operation.
-| For the moment we assume that no CPU needs the 'larger significand'
-| information.
-| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
-*----------------------------------------------------------------------------*/
-static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
- bool infzero, float_status *status)
-{
-#if defined(TARGET_ARM)
- /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
- * the default NaN
- */
- if (infzero && is_qnan(c_cls)) {
- float_raise(float_flag_invalid | float_flag_invalid_imz, status);
- return 3;
- }
-
- /* This looks different from the ARM ARM pseudocode, because the ARM ARM
- * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
- */
- if (is_snan(c_cls)) {
- return 2;
- } else if (is_snan(a_cls)) {
- return 0;
- } else if (is_snan(b_cls)) {
- return 1;
- } else if (is_qnan(c_cls)) {
- return 2;
- } else if (is_qnan(a_cls)) {
- return 0;
- } else {
- return 1;
- }
-#elif defined(TARGET_MIPS)
- if (snan_bit_is_one(status)) {
- /*
- * For MIPS systems that conform to IEEE754-1985, the (inf,zero,nan)
- * case sets InvalidOp and returns the default NaN
- */
- if (infzero) {
- float_raise(float_flag_invalid | float_flag_invalid_imz, status);
- return 3;
- }
- /* Prefer sNaN over qNaN, in the a, b, c order. */
- if (is_snan(a_cls)) {
- return 0;
- } else if (is_snan(b_cls)) {
- return 1;
- } else if (is_snan(c_cls)) {
- return 2;
- } else if (is_qnan(a_cls)) {
- return 0;
- } else if (is_qnan(b_cls)) {
- return 1;
- } else {
- return 2;
- }
- } else {
- /*
- * For MIPS systems that conform to IEEE754-2008, the (inf,zero,nan)
- * case sets InvalidOp and returns the input value 'c'
- */
- if (infzero) {
- float_raise(float_flag_invalid | float_flag_invalid_imz, status);
- return 2;
- }
- /* Prefer sNaN over qNaN, in the c, a, b order. */
- if (is_snan(c_cls)) {
- return 2;
- } else if (is_snan(a_cls)) {
- return 0;
- } else if (is_snan(b_cls)) {
- return 1;
- } else if (is_qnan(c_cls)) {
- return 2;
- } else if (is_qnan(a_cls)) {
- return 0;
- } else {
- return 1;
- }
- }
-#elif defined(TARGET_LOONGARCH64)
- /*
- * For LoongArch systems that conform to IEEE754-2008, the (inf,zero,nan)
- * case sets InvalidOp and returns the input value 'c'
- */
- if (infzero) {
- float_raise(float_flag_invalid | float_flag_invalid_imz, status);
- return 2;
- }
- /* Prefer sNaN over qNaN, in the c, a, b order. */
- if (is_snan(c_cls)) {
- return 2;
- } else if (is_snan(a_cls)) {
- return 0;
- } else if (is_snan(b_cls)) {
- return 1;
- } else if (is_qnan(c_cls)) {
- return 2;
- } else if (is_qnan(a_cls)) {
- return 0;
- } else {
- return 1;
- }
-#elif defined(TARGET_PPC)
- /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
- * to return an input NaN if we have one (ie c) rather than generating
- * a default NaN
- */
- if (infzero) {
- float_raise(float_flag_invalid | float_flag_invalid_imz, status);
- return 2;
- }
-
- /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
- * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
- */
- if (is_nan(a_cls)) {
- return 0;
- } else if (is_nan(c_cls)) {
- return 2;
- } else {
- return 1;
- }
-#elif defined(TARGET_RISCV)
- /* For RISC-V, InvalidOp is set when multiplicands are Inf and zero */
- if (infzero) {
- float_raise(float_flag_invalid | float_flag_invalid_imz, status);
- }
- return 3; /* default NaN */
-#elif defined(TARGET_SPARC)
- /* For (inf,0,nan) return c. */
- if (infzero) {
- float_raise(float_flag_invalid | float_flag_invalid_imz, status);
- return 2;
- }
- /* Prefer SNaN over QNaN, order C, B, A. */
- if (is_snan(c_cls)) {
- return 2;
- } else if (is_snan(b_cls)) {
- return 1;
- } else if (is_snan(a_cls)) {
- return 0;
- } else if (is_qnan(c_cls)) {
- return 2;
- } else if (is_qnan(b_cls)) {
- return 1;
- } else {
- return 0;
- }
-#elif defined(TARGET_XTENSA)
- /*
- * For Xtensa, the (inf,zero,nan) case sets InvalidOp and returns
- * an input NaN if we have one (ie c).
- */
- if (infzero) {
- float_raise(float_flag_invalid | float_flag_invalid_imz, status);
- return 2;
- }
- if (status->use_first_nan) {
- if (is_nan(a_cls)) {
- return 0;
- } else if (is_nan(b_cls)) {
- return 1;
- } else {
- return 2;
- }
- } else {
- if (is_nan(c_cls)) {
- return 2;
- } else if (is_nan(b_cls)) {
- return 1;
- } else {
- return 0;
- }
- }
-#else
- /* A default implementation: prefer a to b to c.
- * This is unlikely to actually match any real implementation.
- */
- if (is_nan(a_cls)) {
- return 0;
- } else if (is_nan(b_cls)) {
- return 1;
- } else {
- return 2;
- }
-#endif
-}
-
-/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
@@ -799,58 +445,6 @@ floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
}
/*----------------------------------------------------------------------------
-| Takes two extended double-precision floating-point values `a' and `b', one
-| of which is a NaN, and returns the appropriate NaN result. If either `a' or
-| `b' is a signaling NaN, the invalid exception is raised.
-*----------------------------------------------------------------------------*/
-
-floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
-{
- bool aIsLargerSignificand;
- FloatClass a_cls, b_cls;
-
- /* This is not complete, but is good enough for pickNaN. */
- a_cls = (!floatx80_is_any_nan(a)
- ? float_class_normal
- : floatx80_is_signaling_nan(a, status)
- ? float_class_snan
- : float_class_qnan);
- b_cls = (!floatx80_is_any_nan(b)
- ? float_class_normal
- : floatx80_is_signaling_nan(b, status)
- ? float_class_snan
- : float_class_qnan);
-
- if (is_snan(a_cls) || is_snan(b_cls)) {
- float_raise(float_flag_invalid, status);
- }
-
- if (status->default_nan_mode) {
- return floatx80_default_nan(status);
- }
-
- if (a.low < b.low) {
- aIsLargerSignificand = 0;
- } else if (b.low < a.low) {
- aIsLargerSignificand = 1;
- } else {
- aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
- }
-
- if (pickNaN(a_cls, b_cls, aIsLargerSignificand, status)) {
- if (is_snan(b_cls)) {
- return floatx80_silence_nan(b, status);
- }
- return b;
- } else {
- if (is_snan(a_cls)) {
- return floatx80_silence_nan(a, status);
- }
- return a;
- }
-}
-
-/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/