diff options
-rw-r--r-- | docs/system/device-emulation.rst | 1 | ||||
-rw-r--r-- | docs/system/devices/cxl.rst | 302 |
2 files changed, 303 insertions, 0 deletions
diff --git a/docs/system/device-emulation.rst b/docs/system/device-emulation.rst index ae8dd23..3b729b9 100644 --- a/docs/system/device-emulation.rst +++ b/docs/system/device-emulation.rst @@ -84,6 +84,7 @@ Emulated Devices devices/can.rst devices/ccid.rst + devices/cxl.rst devices/ivshmem.rst devices/net.rst devices/nvme.rst diff --git a/docs/system/devices/cxl.rst b/docs/system/devices/cxl.rst new file mode 100644 index 0000000..9293cbf --- /dev/null +++ b/docs/system/devices/cxl.rst @@ -0,0 +1,302 @@ +Compute Express Link (CXL) +========================== +From the view of a single host, CXL is an interconnect standard that +targets accelerators and memory devices attached to a CXL host. +This description will focus on those aspects visible either to +software running on a QEMU emulated host or to the internals of +functional emulation. As such, it will skip over many of the +electrical and protocol elements that would be more of interest +for real hardware and will dominate more general introductions to CXL. +It will also completely ignore the fabric management aspects of CXL +by considering only a single host and a static configuration. + +CXL shares many concepts and much of the infrastructure of PCI Express, +with CXL Host Bridges, which have CXL Root Ports which may be directly +attached to CXL or PCI End Points. Alternatively there may be CXL Switches +with CXL and PCI Endpoints attached below them. In many cases additional +control and capabilities are exposed via PCI Express interfaces. +This sharing of interfaces and hence emulation code is is reflected +in how the devices are emulated in QEMU. In most cases the various +CXL elements are built upon an equivalent PCIe devices. + +CXL devices support the following interfaces: + +* Most conventional PCIe interfaces + + - Configuration space access + - BAR mapped memory accesses used for registers and mailboxes. + - MSI/MSI-X + - AER + - DOE mailboxes + - IDE + - Many other PCI express defined interfaces.. + +* Memory operations + + - Equivalent of accessing DRAM / NVDIMMs. Any access / feature + supported by the host for normal memory should also work for + CXL attached memory devices. + +* Cache operations. The are mostly irrelevant to QEMU emulation as + QEMU is not emulating a coherency protocol. Any emulation related + to these will be device specific and is out of the scope of this + document. + +CXL 2.0 Device Types +-------------------- +CXL 2.0 End Points are often categorized into three types. + +**Type 1:** These support coherent caching of host memory. Example might +be a crypto accelerators. May also have device private memory accessible +via means such as PCI memory reads and writes to BARs. + +**Type 2:** These support coherent caching of host memory and host +managed device memory (HDM) for which the coherency protocol is managed +by the host. This is a complex topic, so for more information on CXL +coherency see the CXL 2.0 specification. + +**Type 3 Memory devices:** These devices act as a means of attaching +additional memory (HDM) to a CXL host including both volatile and +persistent memory. The CXL topology may support interleaving across a +number of Type 3 memory devices using HDM Decoders in the host, host +bridge, switch upstream port and endpoints. + +Scope of CXL emulation in QEMU +------------------------------ +The focus of CXL emulation is CXL revision 2.0 and later. Earlier CXL +revisions defined a smaller set of features, leaving much of the control +interface as implementation defined or device specific, making generic +emulation challenging with host specific firmware being responsible +for setup and the Endpoints being presented to operating systems +as Root Complex Integrated End Points. CXL rev 2.0 looks a lot +more like PCI Express, with fully specified discoverability +of the CXL topology. + +CXL System components +---------------------- +A CXL system is made up a Host with a number of 'standard components' +the control and capabilities of which are discoverable by system software +using means described in the CXL 2.0 specification. + +CXL Fixed Memory Windows (CFMW) +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ +A CFMW consists of a particular range of Host Physical Address space +which is routed to particular CXL Host Bridges. At time of generic +software initialization it will have a particularly interleaving +configuration and associated Quality of Serice Throtling Group (QTG). +This information is available to system software, when making +decisions about how to configure interleave across available CXL +memory devices. It is provide as CFMW Structures (CFMWS) in +the CXL Early Discovery Table, an ACPI table. + +Note: QTG 0 is the only one currently supported in QEMU. + +CXL Host Bridge (CXL HB) +~~~~~~~~~~~~~~~~~~~~~~~~ +A CXL host bridge is similar to the PCIe equivalent, but with a +specification defined register interface called CXL Host Bridge +Component Registers (CHBCR). The location of this CHBCR MMIO +space is described to system software via a CXL Host Bridge +Structure (CHBS) in the CEDT ACPI table. The actual interfaces +are identical to those used for other parts of the CXL heirarchy +as CXL Component Registers in PCI BARs. + +Interfaces provided include: + +* Configuration of HDM Decoders to route CXL Memory accesses with + a particularly Host Physical Address range to the target port + below which the CXL device servicing that address lies. This + may be a mapping to a single Root Port (RP) or across a set of + target RPs. + +CXL Root Ports (CXL RP) +~~~~~~~~~~~~~~~~~~~~~~~ +A CXL Root Port servers te same purpose as a PCIe Root Port. +There are a number of CXL specific Designated Vendor Specific +Extended Capabilities (DVSEC) in PCIe Configuration Space +and associated component register access via PCI bars. + +CXL Switch +~~~~~~~~~~ +Not yet implemented in QEMU. + +Here we consider a simple CXL switch with only a single +virtual hierarchy. Whilst more complex devices exist, their +visibility to a particular host is generally the same as for +a simple switch design. Hosts often have no awareness +of complex rerouting and device pooling, they simply see +devices being hot added or hot removed. + +A CXL switch has a similar architecture to those in PCIe, +with a single upstream port, internal PCI bus and multiple +downstream ports. + +Both the CXL upstream and downstream ports have CXL specific +DVSECs in configuration space, and component registers in PCI +BARs. The Upstream Port has the configuration interfaces for +the HDM decoders which route incoming memory accesses to the +appropriate downstream port. + +CXL Memory Devices - Type 3 +~~~~~~~~~~~~~~~~~~~~~~~~~~~ +CXL type 3 devices use a PCI class code and are intended to be supported +by a generic operating system driver. They have HDM decoders +though in these EP devices, the decoder is reponsible not for +routing but for translation of the incoming host physical address (HPA) +into a Device Physical Address (DPA). + +CXL Memory Interleave +--------------------- +To understand the interaction of different CXL hardware components which +are emulated in QEMU, let us consider a memory read in a fully configured +CXL topology. Note that system software is responsible for configuration +of all components with the exception of the CFMWs. System software is +responsible for allocating appropriate ranges from within the CFMWs +and exposing those via normal memory configurations as would be done +for system RAM. + +Example system Topology. x marks the match in each decoder level:: + + |<------------------SYSTEM PHYSICAL ADDRESS MAP (1)----------------->| + | __________ __________________________________ __________ | + | | | | | | | | + | | CFMW 0 | | CXL Fixed Memory Window 1 | | CFMW 1 | | + | | HB0 only | | Configured to interleave memory | | HB1 only | | + | | | | memory accesses across HB0/HB1 | | | | + | |__________| |_____x____________________________| |__________| | + | | | | + | | | | + | | | | + | Interleave Decoder | | + | Matches this HB | | + \_____________| |_____________/ + __________|__________ _____|_______________ + | | | | + (2) | CXL HB 0 | | CXL HB 1 | + | HB IntLv Decoders | | HB IntLv Decoders | + | PCI/CXL Root Bus 0c | | PCI/CXL Root Bus 0d | + | | | | + |___x_________________| |_____________________| + | | | | + | | | | + A HB 0 HDM Decoder | | | + matches this Port | | | + | | | | + ___________|___ __________|__ __|_________ ___|_________ + (3)| Root Port 0 | | Root Port 1 | | Root Port 2| | Root Port 3 | + | Appears in | | Appears in | | Appears in | | Appear in | + | PCI topology | | PCI Topology| | PCI Topo | | PCI Topo | + | As 0c:00.0 | | as 0c:01.0 | | as de:00.0 | | as de:01.0 | + |_______________| |_____________| |____________| |_____________| + | | | | + | | | | + _____|_________ ______|______ ______|_____ ______|_______ + (4)| x | | | | | | | + | CXL Type3 0 | | CXL Type3 1 | | CXL type3 2| | CLX Type 3 3 | + | | | | | | | | + | PMEM0(Vol LSA)| | PMEM1 (...) | | PMEM2 (...)| | PMEM3 (...) | + | Decoder to go | | | | | | | + | from host PA | | PCI 0e:00.0 | | PCI df:00.0| | PCI e0:00.0 | + | to device PA | | | | | | | + | PCI as 0d:00.0| | | | | | | + |_______________| |_____________| |____________| |______________| + +Notes: + +(1) **3 CXL Fixed Memory Windows (CFMW)** corresponding to different + ranges of the system physical address map. Each CFMW has + particular interleave setup across the CXL Host Bridges (HB) + CFMW0 provides uninterleaved access to HB0, CFW2 provides + uninterleaved acess to HB1. CFW1 provides interleaved memory access + across HB0 and HB1. + +(2) **Two CXL Host Bridges**. Each of these has 2 CXL Root Ports and + programmable HDM decoders to route memory accesses either to + a single port or interleave them across multiple ports. + A complex configuration here, might be to use the following HDM + decoders in HB0. HDM0 routes CFMW0 requests to RP0 and hence + part of CXL Type3 0. HDM1 routes CFMW0 requests from a + different region of the CFMW0 PA range to RP2 and hence part + of CXL Type 3 1. HDM2 routes yet another PA range from within + CFMW0 to be interleaved across RP0 and RP1, providing 2 way + interleave of part of the memory provided by CXL Type3 0 and + CXL Type 3 1. HDM3 routes those interleaved accesses from + CFMW1 that target HB0 to RP 0 and another part of the memory of + CXL Type 3 0 (as part of a 2 way interleave at the system level + across for example CXL Type3 0 and CXL Type3 2. + HDM4 is used to enable system wide 4 way interleave across all + the present CXL type3 devices, by interleaving those (interleaved) + requests that HB0 receives from from CFMW1 across RP 0 and + RP 1 and hence to yet more regions of the memory of the + attached Type3 devices. Note this is a representative subset + of the full range of possible HDM decoder configurations in this + topology. + +(3) **Four CXL Root Ports.** In this case the CXL Type 3 devices are + directly attached to these ports. + +(4) **Four CXL Type3 memory expansion devices.** These will each have + HDM decoders, but in this case rather than performing interleave + they will take the Host Physical Addresses of accesses and map + them to their own local Device Physical Address Space (DPA). + +Example command lines +--------------------- +A very simple setup with just one directly attached CXL Type 3 device:: + + qemu-system-aarch64 -M virt,gic-version=3,cxl=on -m 4g,maxmem=8G,slots=8 -cpu max \ + ... + -object memory-backend-file,id=cxl-mem1,share=on,mem-path=/tmp/cxltest.raw,size=256M \ + -object memory-backend-file,id=cxl-lsa1,share=on,mem-path=/tmp/lsa.raw,size=256M \ + -device pxb-cxl,bus_nr=12,bus=pcie.0,id=cxl.1 \ + -device cxl-rp,port=0,bus=cxl.1,id=root_port13,chassis=0,slot=2 \ + -device cxl-type3,bus=root_port13,memdev=cxl-mem1,lsa=cxl-lsa1,id=cxl-pmem0 \ + -cxl-fixed-memory-window targets.0=cxl.1,size=4G + +A setup suitable for 4 way interleave. Only one fixed window provided, to enable 2 way +interleave across 2 CXL host bridges. Each host bridge has 2 CXL Root Ports, with +the CXL Type3 device directly attached (no switches).:: + + qemu-system-aarch64 -M virt,gic-version=3,cxl=on -m 4g,maxmem=8G,slots=8 -cpu max \ + ... + -object memory-backend-file,id=cxl-mem1,share=on,mem-path=/tmp/cxltest.raw,size=256M \ + -object memory-backend-file,id=cxl-mem2,share=on,mem-path=/tmp/cxltest2.raw,size=256M \ + -object memory-backend-file,id=cxl-mem3,share=on,mem-path=/tmp/cxltest3.raw,size=256M \ + -object memory-backend-file,id=cxl-mem4,share=on,mem-path=/tmp/cxltest4.raw,size=256M \ + -object memory-backend-file,id=cxl-lsa1,share=on,mem-path=/tmp/lsa.raw,size=256M \ + -object memory-backend-file,id=cxl-lsa2,share=on,mem-path=/tmp/lsa2.raw,size=256M \ + -object memory-backend-file,id=cxl-lsa3,share=on,mem-path=/tmp/lsa3.raw,size=256M \ + -object memory-backend-file,id=cxl-lsa4,share=on,mem-path=/tmp/lsa4.raw,size=256M \ + -device pxb-cxl,bus_nr=12,bus=pcie.0,id=cxl.1 \ + -device pxb-cxl,bus_nr=222,bus=pcie.0,id=cxl.2 \ + -device cxl-rp,port=0,bus=cxl.1,id=root_port13,chassis=0,slot=2 \ + -device cxl-type3,bus=root_port13,memdev=cxl-mem1,lsa=cxl-lsa1,id=cxl-pmem0 \ + -device cxl-rp,port=1,bus=cxl.1,id=root_port14,chassis=0,slot=3 \ + -device cxl-type3,bus=root_port14,memdev=cxl-mem2,lsa=cxl-lsa2,id=cxl-pmem1 \ + -device cxl-rp,port=0,bus=cxl.2,id=root_port15,chassis=0,slot=5 \ + -device cxl-type3,bus=root_port15,memdev=cxl-mem3,lsa=cxl-lsa3,id=cxl-pmem2 \ + -device cxl-rp,port=1,bus=cxl.2,id=root_port16,chassis=0,slot=6 \ + -device cxl-type3,bus=root_port16,memdev=cxl-mem4,lsa=cxl-lsa4,id=cxl-pmem3 \ + -cxl-fixed-memory-window targets.0=cxl.1,targets.1=cxl.2,size=4G,interleave-granularity=8k + +Kernel Configuration Options +---------------------------- + +In Linux 5.18 the followings options are necessary to make use of +OS management of CXL memory devices as described here. + +* CONFIG_CXL_BUS +* CONFIG_CXL_PCI +* CONFIG_CXL_ACPI +* CONFIG_CXL_PMEM +* CONFIG_CXL_MEM +* CONFIG_CXL_PORT +* CONFIG_CXL_REGION + +References +---------- + + - Consortium website for specifications etc: + http://www.computeexpresslink.org + - Compute Express link Revision 2 specification, October 2020 + - CEDT CFMWS & QTG _DSM ECN May 2021 |