aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rw-r--r--scripts/simplebench/simplebench.py128
1 files changed, 128 insertions, 0 deletions
diff --git a/scripts/simplebench/simplebench.py b/scripts/simplebench/simplebench.py
new file mode 100644
index 0000000..59e7314
--- /dev/null
+++ b/scripts/simplebench/simplebench.py
@@ -0,0 +1,128 @@
+#!/usr/bin/env python
+#
+# Simple benchmarking framework
+#
+# Copyright (c) 2019 Virtuozzo International GmbH.
+#
+# This program is free software; you can redistribute it and/or modify
+# it under the terms of the GNU General Public License as published by
+# the Free Software Foundation; either version 2 of the License, or
+# (at your option) any later version.
+#
+# This program is distributed in the hope that it will be useful,
+# but WITHOUT ANY WARRANTY; without even the implied warranty of
+# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+# GNU General Public License for more details.
+#
+# You should have received a copy of the GNU General Public License
+# along with this program. If not, see <http://www.gnu.org/licenses/>.
+#
+
+
+def bench_one(test_func, test_env, test_case, count=5, initial_run=True):
+ """Benchmark one test-case
+
+ test_func -- benchmarking function with prototype
+ test_func(env, case), which takes test_env and test_case
+ arguments and returns {'seconds': int} (which is benchmark
+ result) on success and {'error': str} on error. Returned
+ dict may contain any other additional fields.
+ test_env -- test environment - opaque first argument for test_func
+ test_case -- test case - opaque second argument for test_func
+ count -- how many times to call test_func, to calculate average
+ initial_run -- do initial run of test_func, which don't get into result
+
+ Returns dict with the following fields:
+ 'runs': list of test_func results
+ 'average': average seconds per run (exists only if at least one run
+ succeeded)
+ 'delta': maximum delta between test_func result and the average
+ (exists only if at least one run succeeded)
+ 'n-failed': number of failed runs (exists only if at least one run
+ failed)
+ """
+ if initial_run:
+ print(' #initial run:')
+ print(' ', test_func(test_env, test_case))
+
+ runs = []
+ for i in range(count):
+ print(' #run {}'.format(i+1))
+ res = test_func(test_env, test_case)
+ print(' ', res)
+ runs.append(res)
+
+ result = {'runs': runs}
+
+ successed = [r for r in runs if ('seconds' in r)]
+ if successed:
+ avg = sum(r['seconds'] for r in successed) / len(successed)
+ result['average'] = avg
+ result['delta'] = max(abs(r['seconds'] - avg) for r in successed)
+
+ if len(successed) < count:
+ result['n-failed'] = count - len(successed)
+
+ return result
+
+
+def ascii_one(result):
+ """Return ASCII representation of bench_one() returned dict."""
+ if 'average' in result:
+ s = '{:.2f} +- {:.2f}'.format(result['average'], result['delta'])
+ if 'n-failed' in result:
+ s += '\n({} failed)'.format(result['n-failed'])
+ return s
+ else:
+ return 'FAILED'
+
+
+def bench(test_func, test_envs, test_cases, *args, **vargs):
+ """Fill benchmark table
+
+ test_func -- benchmarking function, see bench_one for description
+ test_envs -- list of test environments, see bench_one
+ test_cases -- list of test cases, see bench_one
+ args, vargs -- additional arguments for bench_one
+
+ Returns dict with the following fields:
+ 'envs': test_envs
+ 'cases': test_cases
+ 'tab': filled 2D array, where cell [i][j] is bench_one result for
+ test_cases[i] for test_envs[j] (i.e., rows are test cases and
+ columns are test environments)
+ """
+ tab = {}
+ results = {
+ 'envs': test_envs,
+ 'cases': test_cases,
+ 'tab': tab
+ }
+ n = 1
+ n_tests = len(test_envs) * len(test_cases)
+ for env in test_envs:
+ for case in test_cases:
+ print('Testing {}/{}: {} :: {}'.format(n, n_tests,
+ env['id'], case['id']))
+ if case['id'] not in tab:
+ tab[case['id']] = {}
+ tab[case['id']][env['id']] = bench_one(test_func, env, case,
+ *args, **vargs)
+ n += 1
+
+ print('Done')
+ return results
+
+
+def ascii(results):
+ """Return ASCII representation of bench() returned dict."""
+ from tabulate import tabulate
+
+ tab = [[""] + [c['id'] for c in results['envs']]]
+ for case in results['cases']:
+ row = [case['id']]
+ for env in results['envs']:
+ row.append(ascii_one(results['tab'][case['id']][env['id']]))
+ tab.append(row)
+
+ return tabulate(tab)