aboutsummaryrefslogtreecommitdiff
path: root/target/ppc
diff options
context:
space:
mode:
authorDaniel Henrique Barboza <danielhb413@gmail.com>2021-12-17 17:57:18 +0100
committerCédric Le Goater <clg@kaod.org>2021-12-17 17:57:18 +0100
commit1474ba6d100179c248fed6c67756814a6fa89432 (patch)
treea2b8fd65eb3d47243bf6fc8c36a4a2669e577b53 /target/ppc
parenta6f91249e064a2ee935c900529b03f949ad89e6c (diff)
downloadqemu-1474ba6d100179c248fed6c67756814a6fa89432.zip
qemu-1474ba6d100179c248fed6c67756814a6fa89432.tar.gz
qemu-1474ba6d100179c248fed6c67756814a6fa89432.tar.bz2
target/ppc: enable PMU counter overflow with cycle events
The PowerISA v3.1 defines that if the proper bits are set (MMCR0_PMC1CE for PMC1 and MMCR0_PMCjCE for the remaining PMCs), counter negative conditions are enabled. This means that if the counter value overflows (i.e. exceeds 0x80000000) a performance monitor alert will occur. This alert can trigger an event-based exception (to be implemented in the next patches) if the MMCR0_EBE bit is set. For now, overflowing the counter when the PMC is counting cycles will just trigger a performance monitor alert. This is done by starting the overflow timer to expire in the moment the overflow would be occuring. The timer will call fire_PMC_interrupt() (via cpu_ppc_pmu_timer_cb) which will trigger the PMU alert and, if the conditions are met, an EBB exception. Reviewed-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com> Message-Id: <20211201151734.654994-6-danielhb413@gmail.com> Signed-off-by: Cédric Le Goater <clg@kaod.org>
Diffstat (limited to 'target/ppc')
-rw-r--r--target/ppc/cpu.h2
-rw-r--r--target/ppc/power8-pmu.c71
2 files changed, 73 insertions, 0 deletions
diff --git a/target/ppc/cpu.h b/target/ppc/cpu.h
index 69cfb2e..cf637f0 100644
--- a/target/ppc/cpu.h
+++ b/target/ppc/cpu.h
@@ -363,6 +363,8 @@ typedef enum {
#define MMCR0_PMCC PPC_BITMASK(44, 45) /* PMC Control */
#define MMCR0_FC14 PPC_BIT(58) /* PMC Freeze Counters 1-4 bit */
#define MMCR0_FC56 PPC_BIT(59) /* PMC Freeze Counters 5-6 bit */
+#define MMCR0_PMC1CE PPC_BIT(48) /* MMCR0 PMC1 Condition Enabled */
+#define MMCR0_PMCjCE PPC_BIT(49) /* MMCR0 PMCj Condition Enabled */
/* MMCR0 userspace r/w mask */
#define MMCR0_UREG_MASK (MMCR0_FC | MMCR0_PMAO | MMCR0_PMAE)
/* MMCR2 userspace r/w mask */
diff --git a/target/ppc/power8-pmu.c b/target/ppc/power8-pmu.c
index 7325252..399234a 100644
--- a/target/ppc/power8-pmu.c
+++ b/target/ppc/power8-pmu.c
@@ -23,6 +23,8 @@
#if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)
+#define PMC_COUNTER_NEGATIVE_VAL 0x80000000UL
+
static bool pmc_is_inactive(CPUPPCState *env, int sprn)
{
if (env->spr[SPR_POWER_MMCR0] & MMCR0_FC) {
@@ -36,6 +38,15 @@ static bool pmc_is_inactive(CPUPPCState *env, int sprn)
return env->spr[SPR_POWER_MMCR0] & MMCR0_FC56;
}
+static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn)
+{
+ if (sprn == SPR_POWER_PMC1) {
+ return env->spr[SPR_POWER_MMCR0] & MMCR0_PMC1CE;
+ }
+
+ return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE;
+}
+
/*
* For PMCs 1-4, IBM POWER chips has support for an implementation
* dependent event, 0x1E, that enables cycle counting. The Linux kernel
@@ -123,6 +134,61 @@ static void pmu_update_cycles(CPUPPCState *env)
env->pmu_base_time = now;
}
+/*
+ * Helper function to retrieve the cycle overflow timer of the
+ * 'sprn' counter.
+ */
+static QEMUTimer *get_cyc_overflow_timer(CPUPPCState *env, int sprn)
+{
+ return env->pmu_cyc_overflow_timers[sprn - SPR_POWER_PMC1];
+}
+
+static void pmc_update_overflow_timer(CPUPPCState *env, int sprn)
+{
+ QEMUTimer *pmc_overflow_timer = get_cyc_overflow_timer(env, sprn);
+ int64_t timeout;
+
+ /*
+ * PMC5 does not have an overflow timer and this pointer
+ * will be NULL.
+ */
+ if (!pmc_overflow_timer) {
+ return;
+ }
+
+ if (pmc_get_event(env, sprn) != PMU_EVENT_CYCLES ||
+ !pmc_has_overflow_enabled(env, sprn)) {
+ /* Overflow timer is not needed for this counter */
+ timer_del(pmc_overflow_timer);
+ return;
+ }
+
+ if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) {
+ timeout = 0;
+ } else {
+ timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn];
+ }
+
+ /*
+ * Use timer_mod_anticipate() because an overflow timer might
+ * be already running for this PMC.
+ */
+ timer_mod_anticipate(pmc_overflow_timer, env->pmu_base_time + timeout);
+}
+
+static void pmu_update_overflow_timers(CPUPPCState *env)
+{
+ int sprn;
+
+ /*
+ * Scroll through all PMCs and start counter overflow timers for
+ * PM_CYC events, if needed.
+ */
+ for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
+ pmc_update_overflow_timer(env, sprn);
+ }
+}
+
void helper_store_mmcr0(CPUPPCState *env, target_ulong value)
{
pmu_update_cycles(env);
@@ -131,6 +197,9 @@ void helper_store_mmcr0(CPUPPCState *env, target_ulong value)
/* MMCR0 writes can change HFLAGS_PMCCCLEAR */
hreg_compute_hflags(env);
+
+ /* Update cycle overflow timers with the current MMCR0 state */
+ pmu_update_overflow_timers(env);
}
void helper_store_mmcr1(CPUPPCState *env, uint64_t value)
@@ -152,6 +221,8 @@ void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value)
pmu_update_cycles(env);
env->spr[sprn] = value;
+
+ pmc_update_overflow_timer(env, sprn);
}
static void fire_PMC_interrupt(PowerPCCPU *cpu)