diff options
author | Daniel Henrique Barboza <danielhb413@gmail.com> | 2021-12-17 17:57:18 +0100 |
---|---|---|
committer | Cédric Le Goater <clg@kaod.org> | 2021-12-17 17:57:18 +0100 |
commit | 1474ba6d100179c248fed6c67756814a6fa89432 (patch) | |
tree | a2b8fd65eb3d47243bf6fc8c36a4a2669e577b53 /target/ppc | |
parent | a6f91249e064a2ee935c900529b03f949ad89e6c (diff) | |
download | qemu-1474ba6d100179c248fed6c67756814a6fa89432.zip qemu-1474ba6d100179c248fed6c67756814a6fa89432.tar.gz qemu-1474ba6d100179c248fed6c67756814a6fa89432.tar.bz2 |
target/ppc: enable PMU counter overflow with cycle events
The PowerISA v3.1 defines that if the proper bits are set (MMCR0_PMC1CE
for PMC1 and MMCR0_PMCjCE for the remaining PMCs), counter negative
conditions are enabled. This means that if the counter value overflows
(i.e. exceeds 0x80000000) a performance monitor alert will occur. This alert
can trigger an event-based exception (to be implemented in the next patches)
if the MMCR0_EBE bit is set.
For now, overflowing the counter when the PMC is counting cycles will
just trigger a performance monitor alert. This is done by starting the
overflow timer to expire in the moment the overflow would be occuring. The
timer will call fire_PMC_interrupt() (via cpu_ppc_pmu_timer_cb) which will
trigger the PMU alert and, if the conditions are met, an EBB exception.
Reviewed-by: David Gibson <david@gibson.dropbear.id.au>
Signed-off-by: Daniel Henrique Barboza <danielhb413@gmail.com>
Message-Id: <20211201151734.654994-6-danielhb413@gmail.com>
Signed-off-by: Cédric Le Goater <clg@kaod.org>
Diffstat (limited to 'target/ppc')
-rw-r--r-- | target/ppc/cpu.h | 2 | ||||
-rw-r--r-- | target/ppc/power8-pmu.c | 71 |
2 files changed, 73 insertions, 0 deletions
diff --git a/target/ppc/cpu.h b/target/ppc/cpu.h index 69cfb2e..cf637f0 100644 --- a/target/ppc/cpu.h +++ b/target/ppc/cpu.h @@ -363,6 +363,8 @@ typedef enum { #define MMCR0_PMCC PPC_BITMASK(44, 45) /* PMC Control */ #define MMCR0_FC14 PPC_BIT(58) /* PMC Freeze Counters 1-4 bit */ #define MMCR0_FC56 PPC_BIT(59) /* PMC Freeze Counters 5-6 bit */ +#define MMCR0_PMC1CE PPC_BIT(48) /* MMCR0 PMC1 Condition Enabled */ +#define MMCR0_PMCjCE PPC_BIT(49) /* MMCR0 PMCj Condition Enabled */ /* MMCR0 userspace r/w mask */ #define MMCR0_UREG_MASK (MMCR0_FC | MMCR0_PMAO | MMCR0_PMAE) /* MMCR2 userspace r/w mask */ diff --git a/target/ppc/power8-pmu.c b/target/ppc/power8-pmu.c index 7325252..399234a 100644 --- a/target/ppc/power8-pmu.c +++ b/target/ppc/power8-pmu.c @@ -23,6 +23,8 @@ #if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) +#define PMC_COUNTER_NEGATIVE_VAL 0x80000000UL + static bool pmc_is_inactive(CPUPPCState *env, int sprn) { if (env->spr[SPR_POWER_MMCR0] & MMCR0_FC) { @@ -36,6 +38,15 @@ static bool pmc_is_inactive(CPUPPCState *env, int sprn) return env->spr[SPR_POWER_MMCR0] & MMCR0_FC56; } +static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn) +{ + if (sprn == SPR_POWER_PMC1) { + return env->spr[SPR_POWER_MMCR0] & MMCR0_PMC1CE; + } + + return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE; +} + /* * For PMCs 1-4, IBM POWER chips has support for an implementation * dependent event, 0x1E, that enables cycle counting. The Linux kernel @@ -123,6 +134,61 @@ static void pmu_update_cycles(CPUPPCState *env) env->pmu_base_time = now; } +/* + * Helper function to retrieve the cycle overflow timer of the + * 'sprn' counter. + */ +static QEMUTimer *get_cyc_overflow_timer(CPUPPCState *env, int sprn) +{ + return env->pmu_cyc_overflow_timers[sprn - SPR_POWER_PMC1]; +} + +static void pmc_update_overflow_timer(CPUPPCState *env, int sprn) +{ + QEMUTimer *pmc_overflow_timer = get_cyc_overflow_timer(env, sprn); + int64_t timeout; + + /* + * PMC5 does not have an overflow timer and this pointer + * will be NULL. + */ + if (!pmc_overflow_timer) { + return; + } + + if (pmc_get_event(env, sprn) != PMU_EVENT_CYCLES || + !pmc_has_overflow_enabled(env, sprn)) { + /* Overflow timer is not needed for this counter */ + timer_del(pmc_overflow_timer); + return; + } + + if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) { + timeout = 0; + } else { + timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn]; + } + + /* + * Use timer_mod_anticipate() because an overflow timer might + * be already running for this PMC. + */ + timer_mod_anticipate(pmc_overflow_timer, env->pmu_base_time + timeout); +} + +static void pmu_update_overflow_timers(CPUPPCState *env) +{ + int sprn; + + /* + * Scroll through all PMCs and start counter overflow timers for + * PM_CYC events, if needed. + */ + for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) { + pmc_update_overflow_timer(env, sprn); + } +} + void helper_store_mmcr0(CPUPPCState *env, target_ulong value) { pmu_update_cycles(env); @@ -131,6 +197,9 @@ void helper_store_mmcr0(CPUPPCState *env, target_ulong value) /* MMCR0 writes can change HFLAGS_PMCCCLEAR */ hreg_compute_hflags(env); + + /* Update cycle overflow timers with the current MMCR0 state */ + pmu_update_overflow_timers(env); } void helper_store_mmcr1(CPUPPCState *env, uint64_t value) @@ -152,6 +221,8 @@ void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value) pmu_update_cycles(env); env->spr[sprn] = value; + + pmc_update_overflow_timer(env, sprn); } static void fire_PMC_interrupt(PowerPCCPU *cpu) |