aboutsummaryrefslogtreecommitdiff
path: root/target/arm/cpu.h
diff options
context:
space:
mode:
authorPeter Maydell <peter.maydell@linaro.org>2024-11-05 10:09:58 +0000
committerPeter Maydell <peter.maydell@linaro.org>2024-11-05 10:09:58 +0000
commitefbe180ad2ed75d4cc64dfc6fb46a015eef713d1 (patch)
treec1ad039bbef5ec7daeb9e8854d30ab62c50cb2a8 /target/arm/cpu.h
parent056c5c90c171c4895b407af0cf3d198e1d44b40f (diff)
downloadqemu-efbe180ad2ed75d4cc64dfc6fb46a015eef713d1.zip
qemu-efbe180ad2ed75d4cc64dfc6fb46a015eef713d1.tar.gz
qemu-efbe180ad2ed75d4cc64dfc6fb46a015eef713d1.tar.bz2
target/arm: Add new MMU indexes for AArch32 Secure PL1&0
Our current usage of MMU indexes when EL3 is AArch32 is confused. Architecturally, when EL3 is AArch32, all Secure code runs under the Secure PL1&0 translation regime: * code at EL3, which might be Mon, or SVC, or any of the other privileged modes (PL1) * code at EL0 (Secure PL0) This is different from when EL3 is AArch64, in which case EL3 is its own translation regime, and EL1 and EL0 (whether AArch32 or AArch64) have their own regime. We claimed to be mapping Secure PL1 to our ARMMMUIdx_EL3, but didn't do anything special about Secure PL0, which meant it used the same ARMMMUIdx_EL10_0 that NonSecure PL0 does. This resulted in a bug where arm_sctlr() incorrectly picked the NonSecure SCTLR as the controlling register when in Secure PL0, which meant we were spuriously generating alignment faults because we were looking at the wrong SCTLR control bits. The use of ARMMMUIdx_EL3 for Secure PL1 also resulted in the bug that we wouldn't honour the PAN bit for Secure PL1, because there's no equivalent _PAN mmu index for it. Fix this by adding two new MMU indexes: * ARMMMUIdx_E30_0 is for Secure PL0 * ARMMMUIdx_E30_3_PAN is for Secure PL1 when PAN is enabled The existing ARMMMUIdx_E3 is used to mean "Secure PL1 without PAN" (and would be named ARMMMUIdx_E30_3 in an AArch32-centric scheme). These extra two indexes bring us up to the maximum of 16 that the core code can currently support. This commit: * adds the new MMU index handling to the various places where we deal in MMU index values * adds assertions that we aren't AArch32 EL3 in a couple of places that currently use the E10 indexes, to document why they don't also need to handle the E30 indexes * documents in a comment why regime_has_2_ranges() doesn't need updating Notes for backporting: this commit depends on the preceding revert of 4c2c04746932; that revert and this commit should probably be backported to everywhere that we originally backported 4c2c04746932. Cc: qemu-stable@nongnu.org Resolves: https://gitlab.com/qemu-project/qemu/-/issues/2326 Resolves: https://gitlab.com/qemu-project/qemu/-/issues/2588 Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Tested-by: Thomas Huth <thuth@redhat.com> Reviewed-by: Richard Henderson <richard.henderson@linaro.org> Message-id: 20241101142845.1712482-3-peter.maydell@linaro.org
Diffstat (limited to 'target/arm/cpu.h')
-rw-r--r--target/arm/cpu.h31
1 files changed, 18 insertions, 13 deletions
diff --git a/target/arm/cpu.h b/target/arm/cpu.h
index 133a87e..fb0f217 100644
--- a/target/arm/cpu.h
+++ b/target/arm/cpu.h
@@ -2787,8 +2787,7 @@ bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
* + NonSecure PL1 & 0 stage 1
* + NonSecure PL1 & 0 stage 2
* + NonSecure PL2
- * + Secure PL0
- * + Secure PL1
+ * + Secure PL1 & 0
* (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
*
* For QEMU, an mmu_idx is not quite the same as a translation regime because:
@@ -2823,19 +2822,21 @@ bool write_cpustate_to_list(ARMCPU *cpu, bool kvm_sync);
*
* This gives us the following list of cases:
*
- * EL0 EL1&0 stage 1+2 (aka NS PL0)
- * EL1 EL1&0 stage 1+2 (aka NS PL1)
- * EL1 EL1&0 stage 1+2 +PAN
+ * EL0 EL1&0 stage 1+2 (aka NS PL0 PL1&0 stage 1+2)
+ * EL1 EL1&0 stage 1+2 (aka NS PL1 PL1&0 stage 1+2)
+ * EL1 EL1&0 stage 1+2 +PAN (aka NS PL1 P1&0 stage 1+2 +PAN)
* EL0 EL2&0
* EL2 EL2&0
* EL2 EL2&0 +PAN
* EL2 (aka NS PL2)
- * EL3 (aka S PL1)
+ * EL3 (aka AArch32 S PL1 PL1&0)
+ * AArch32 S PL0 PL1&0 (we call this EL30_0)
+ * AArch32 S PL1 PL1&0 +PAN (we call this EL30_3_PAN)
* Stage2 Secure
* Stage2 NonSecure
* plus one TLB per Physical address space: S, NS, Realm, Root
*
- * for a total of 14 different mmu_idx.
+ * for a total of 16 different mmu_idx.
*
* R profile CPUs have an MPU, but can use the same set of MMU indexes
* as A profile. They only need to distinguish EL0 and EL1 (and
@@ -2899,6 +2900,8 @@ typedef enum ARMMMUIdx {
ARMMMUIdx_E20_2_PAN = 5 | ARM_MMU_IDX_A,
ARMMMUIdx_E2 = 6 | ARM_MMU_IDX_A,
ARMMMUIdx_E3 = 7 | ARM_MMU_IDX_A,
+ ARMMMUIdx_E30_0 = 8 | ARM_MMU_IDX_A,
+ ARMMMUIdx_E30_3_PAN = 9 | ARM_MMU_IDX_A,
/*
* Used for second stage of an S12 page table walk, or for descriptor
@@ -2906,14 +2909,14 @@ typedef enum ARMMMUIdx {
* are in use simultaneously for SecureEL2: the security state for
* the S2 ptw is selected by the NS bit from the S1 ptw.
*/
- ARMMMUIdx_Stage2_S = 8 | ARM_MMU_IDX_A,
- ARMMMUIdx_Stage2 = 9 | ARM_MMU_IDX_A,
+ ARMMMUIdx_Stage2_S = 10 | ARM_MMU_IDX_A,
+ ARMMMUIdx_Stage2 = 11 | ARM_MMU_IDX_A,
/* TLBs with 1-1 mapping to the physical address spaces. */
- ARMMMUIdx_Phys_S = 10 | ARM_MMU_IDX_A,
- ARMMMUIdx_Phys_NS = 11 | ARM_MMU_IDX_A,
- ARMMMUIdx_Phys_Root = 12 | ARM_MMU_IDX_A,
- ARMMMUIdx_Phys_Realm = 13 | ARM_MMU_IDX_A,
+ ARMMMUIdx_Phys_S = 12 | ARM_MMU_IDX_A,
+ ARMMMUIdx_Phys_NS = 13 | ARM_MMU_IDX_A,
+ ARMMMUIdx_Phys_Root = 14 | ARM_MMU_IDX_A,
+ ARMMMUIdx_Phys_Realm = 15 | ARM_MMU_IDX_A,
/*
* These are not allocated TLBs and are used only for AT system
@@ -2952,6 +2955,8 @@ typedef enum ARMMMUIdxBit {
TO_CORE_BIT(E20_2),
TO_CORE_BIT(E20_2_PAN),
TO_CORE_BIT(E3),
+ TO_CORE_BIT(E30_0),
+ TO_CORE_BIT(E30_3_PAN),
TO_CORE_BIT(Stage2),
TO_CORE_BIT(Stage2_S),