aboutsummaryrefslogtreecommitdiff
path: root/hw/rtc
diff options
context:
space:
mode:
authorPhilippe Mathieu-Daudé <philmd@redhat.com>2019-10-04 01:03:53 +0200
committerLaurent Vivier <laurent@vivier.eu>2019-10-24 20:13:10 +0200
commitbcdb90640ae41128e0c2ae2ec8ebf5a832102097 (patch)
tree62743a64e9670faca7aba86faf50153d141c3665 /hw/rtc
parent877c181cd41e024ba1d076f96efe3c5777938846 (diff)
downloadqemu-bcdb90640ae41128e0c2ae2ec8ebf5a832102097.zip
qemu-bcdb90640ae41128e0c2ae2ec8ebf5a832102097.tar.gz
qemu-bcdb90640ae41128e0c2ae2ec8ebf5a832102097.tar.bz2
hw: Move MC146818 device from hw/timer/ to hw/rtc/ subdirectory
The MC146818 is a Real Time Clock, not a timer. Move it under the hw/rtc/ subdirectory. Use copyright statement from 80cabfad163 for "hw/rtc/mc146818rtc.h". Reviewed-by: Alistair Francis <alistair.francis@wdc.com> Acked-by: David Gibson <david@gibson.dropbear.id.au> Signed-off-by: Philippe Mathieu-Daudé <philmd@redhat.com> Message-Id: <20191003230404.19384-4-philmd@redhat.com> Signed-off-by: Laurent Vivier <laurent@vivier.eu>
Diffstat (limited to 'hw/rtc')
-rw-r--r--hw/rtc/Kconfig3
-rw-r--r--hw/rtc/Makefile.objs1
-rw-r--r--hw/rtc/mc146818rtc.c1063
3 files changed, 1067 insertions, 0 deletions
diff --git a/hw/rtc/Kconfig b/hw/rtc/Kconfig
index 8a4383b..7ffd702 100644
--- a/hw/rtc/Kconfig
+++ b/hw/rtc/Kconfig
@@ -1,2 +1,5 @@
config PL031
bool
+
+config MC146818RTC
+ bool
diff --git a/hw/rtc/Makefile.objs b/hw/rtc/Makefile.objs
index 3e1eb42..3cac0d5 100644
--- a/hw/rtc/Makefile.objs
+++ b/hw/rtc/Makefile.objs
@@ -1 +1,2 @@
common-obj-$(CONFIG_PL031) += pl031.o
+obj-$(CONFIG_MC146818RTC) += mc146818rtc.o
diff --git a/hw/rtc/mc146818rtc.c b/hw/rtc/mc146818rtc.c
new file mode 100644
index 0000000..ced15f7
--- /dev/null
+++ b/hw/rtc/mc146818rtc.c
@@ -0,0 +1,1063 @@
+/*
+ * QEMU MC146818 RTC emulation
+ *
+ * Copyright (c) 2003-2004 Fabrice Bellard
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to deal
+ * in the Software without restriction, including without limitation the rights
+ * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ * copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in
+ * all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
+ * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ * THE SOFTWARE.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu-common.h"
+#include "qemu/cutils.h"
+#include "qemu/module.h"
+#include "qemu/bcd.h"
+#include "hw/irq.h"
+#include "hw/qdev-properties.h"
+#include "qemu/timer.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/replay.h"
+#include "sysemu/reset.h"
+#include "sysemu/runstate.h"
+#include "hw/rtc/mc146818rtc.h"
+#include "migration/vmstate.h"
+#include "qapi/error.h"
+#include "qapi/qapi-commands-misc-target.h"
+#include "qapi/qapi-events-misc-target.h"
+#include "qapi/visitor.h"
+#include "exec/address-spaces.h"
+
+#ifdef TARGET_I386
+#include "hw/i386/apic.h"
+#endif
+
+//#define DEBUG_CMOS
+//#define DEBUG_COALESCED
+
+#ifdef DEBUG_CMOS
+# define CMOS_DPRINTF(format, ...) printf(format, ## __VA_ARGS__)
+#else
+# define CMOS_DPRINTF(format, ...) do { } while (0)
+#endif
+
+#ifdef DEBUG_COALESCED
+# define DPRINTF_C(format, ...) printf(format, ## __VA_ARGS__)
+#else
+# define DPRINTF_C(format, ...) do { } while (0)
+#endif
+
+#define SEC_PER_MIN 60
+#define MIN_PER_HOUR 60
+#define SEC_PER_HOUR 3600
+#define HOUR_PER_DAY 24
+#define SEC_PER_DAY 86400
+
+#define RTC_REINJECT_ON_ACK_COUNT 20
+#define RTC_CLOCK_RATE 32768
+#define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
+
+#define MC146818_RTC(obj) OBJECT_CHECK(RTCState, (obj), TYPE_MC146818_RTC)
+
+typedef struct RTCState {
+ ISADevice parent_obj;
+
+ MemoryRegion io;
+ MemoryRegion coalesced_io;
+ uint8_t cmos_data[128];
+ uint8_t cmos_index;
+ int32_t base_year;
+ uint64_t base_rtc;
+ uint64_t last_update;
+ int64_t offset;
+ qemu_irq irq;
+ int it_shift;
+ /* periodic timer */
+ QEMUTimer *periodic_timer;
+ int64_t next_periodic_time;
+ /* update-ended timer */
+ QEMUTimer *update_timer;
+ uint64_t next_alarm_time;
+ uint16_t irq_reinject_on_ack_count;
+ uint32_t irq_coalesced;
+ uint32_t period;
+ QEMUTimer *coalesced_timer;
+ LostTickPolicy lost_tick_policy;
+ Notifier suspend_notifier;
+ QLIST_ENTRY(RTCState) link;
+} RTCState;
+
+static void rtc_set_time(RTCState *s);
+static void rtc_update_time(RTCState *s);
+static void rtc_set_cmos(RTCState *s, const struct tm *tm);
+static inline int rtc_from_bcd(RTCState *s, int a);
+static uint64_t get_next_alarm(RTCState *s);
+
+static inline bool rtc_running(RTCState *s)
+{
+ return (!(s->cmos_data[RTC_REG_B] & REG_B_SET) &&
+ (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20);
+}
+
+static uint64_t get_guest_rtc_ns(RTCState *s)
+{
+ uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
+
+ return s->base_rtc * NANOSECONDS_PER_SECOND +
+ guest_clock - s->last_update + s->offset;
+}
+
+static void rtc_coalesced_timer_update(RTCState *s)
+{
+ if (s->irq_coalesced == 0) {
+ timer_del(s->coalesced_timer);
+ } else {
+ /* divide each RTC interval to 2 - 8 smaller intervals */
+ int c = MIN(s->irq_coalesced, 7) + 1;
+ int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
+ periodic_clock_to_ns(s->period / c);
+ timer_mod(s->coalesced_timer, next_clock);
+ }
+}
+
+static QLIST_HEAD(, RTCState) rtc_devices =
+ QLIST_HEAD_INITIALIZER(rtc_devices);
+
+#ifdef TARGET_I386
+void qmp_rtc_reset_reinjection(Error **errp)
+{
+ RTCState *s;
+
+ QLIST_FOREACH(s, &rtc_devices, link) {
+ s->irq_coalesced = 0;
+ }
+}
+
+static bool rtc_policy_slew_deliver_irq(RTCState *s)
+{
+ apic_reset_irq_delivered();
+ qemu_irq_raise(s->irq);
+ return apic_get_irq_delivered();
+}
+
+static void rtc_coalesced_timer(void *opaque)
+{
+ RTCState *s = opaque;
+
+ if (s->irq_coalesced != 0) {
+ s->cmos_data[RTC_REG_C] |= 0xc0;
+ DPRINTF_C("cmos: injecting from timer\n");
+ if (rtc_policy_slew_deliver_irq(s)) {
+ s->irq_coalesced--;
+ DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
+ s->irq_coalesced);
+ }
+ }
+
+ rtc_coalesced_timer_update(s);
+}
+#else
+static bool rtc_policy_slew_deliver_irq(RTCState *s)
+{
+ assert(0);
+ return false;
+}
+#endif
+
+static uint32_t rtc_periodic_clock_ticks(RTCState *s)
+{
+ int period_code;
+
+ if (!(s->cmos_data[RTC_REG_B] & REG_B_PIE)) {
+ return 0;
+ }
+
+ period_code = s->cmos_data[RTC_REG_A] & 0x0f;
+
+ return periodic_period_to_clock(period_code);
+}
+
+/*
+ * handle periodic timer. @old_period indicates the periodic timer update
+ * is just due to period adjustment.
+ */
+static void
+periodic_timer_update(RTCState *s, int64_t current_time, uint32_t old_period)
+{
+ uint32_t period;
+ int64_t cur_clock, next_irq_clock, lost_clock = 0;
+
+ period = rtc_periodic_clock_ticks(s);
+
+ if (period) {
+ /* compute 32 khz clock */
+ cur_clock =
+ muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
+
+ /*
+ * if the periodic timer's update is due to period re-configuration,
+ * we should count the clock since last interrupt.
+ */
+ if (old_period) {
+ int64_t last_periodic_clock, next_periodic_clock;
+
+ next_periodic_clock = muldiv64(s->next_periodic_time,
+ RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
+ last_periodic_clock = next_periodic_clock - old_period;
+ lost_clock = cur_clock - last_periodic_clock;
+ assert(lost_clock >= 0);
+ }
+
+ /*
+ * s->irq_coalesced can change for two reasons:
+ *
+ * a) if one or more periodic timer interrupts have been lost,
+ * lost_clock will be more that a period.
+ *
+ * b) when the period may be reconfigured, we expect the OS to
+ * treat delayed tick as the new period. So, when switching
+ * from a shorter to a longer period, scale down the missing,
+ * because the OS will treat past delayed ticks as longer
+ * (leftovers are put back into lost_clock). When switching
+ * to a shorter period, scale up the missing ticks since the
+ * OS handler will treat past delayed ticks as shorter.
+ */
+ if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
+ uint32_t old_irq_coalesced = s->irq_coalesced;
+
+ s->period = period;
+ lost_clock += old_irq_coalesced * old_period;
+ s->irq_coalesced = lost_clock / s->period;
+ lost_clock %= s->period;
+ if (old_irq_coalesced != s->irq_coalesced ||
+ old_period != s->period) {
+ DPRINTF_C("cmos: coalesced irqs scaled from %d to %d, "
+ "period scaled from %d to %d\n", old_irq_coalesced,
+ s->irq_coalesced, old_period, s->period);
+ rtc_coalesced_timer_update(s);
+ }
+ } else {
+ /*
+ * no way to compensate the interrupt if LOST_TICK_POLICY_SLEW
+ * is not used, we should make the time progress anyway.
+ */
+ lost_clock = MIN(lost_clock, period);
+ }
+
+ assert(lost_clock >= 0 && lost_clock <= period);
+
+ next_irq_clock = cur_clock + period - lost_clock;
+ s->next_periodic_time = periodic_clock_to_ns(next_irq_clock) + 1;
+ timer_mod(s->periodic_timer, s->next_periodic_time);
+ } else {
+ s->irq_coalesced = 0;
+ timer_del(s->periodic_timer);
+ }
+}
+
+static void rtc_periodic_timer(void *opaque)
+{
+ RTCState *s = opaque;
+
+ periodic_timer_update(s, s->next_periodic_time, 0);
+ s->cmos_data[RTC_REG_C] |= REG_C_PF;
+ if (s->cmos_data[RTC_REG_B] & REG_B_PIE) {
+ s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
+ if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
+ if (s->irq_reinject_on_ack_count >= RTC_REINJECT_ON_ACK_COUNT)
+ s->irq_reinject_on_ack_count = 0;
+ if (!rtc_policy_slew_deliver_irq(s)) {
+ s->irq_coalesced++;
+ rtc_coalesced_timer_update(s);
+ DPRINTF_C("cmos: coalesced irqs increased to %d\n",
+ s->irq_coalesced);
+ }
+ } else
+ qemu_irq_raise(s->irq);
+ }
+}
+
+/* handle update-ended timer */
+static void check_update_timer(RTCState *s)
+{
+ uint64_t next_update_time;
+ uint64_t guest_nsec;
+ int next_alarm_sec;
+
+ /* From the data sheet: "Holding the dividers in reset prevents
+ * interrupts from operating, while setting the SET bit allows"
+ * them to occur.
+ */
+ if ((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) {
+ assert((s->cmos_data[RTC_REG_A] & REG_A_UIP) == 0);
+ timer_del(s->update_timer);
+ return;
+ }
+
+ guest_nsec = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
+ next_update_time = qemu_clock_get_ns(rtc_clock)
+ + NANOSECONDS_PER_SECOND - guest_nsec;
+
+ /* Compute time of next alarm. One second is already accounted
+ * for in next_update_time.
+ */
+ next_alarm_sec = get_next_alarm(s);
+ s->next_alarm_time = next_update_time +
+ (next_alarm_sec - 1) * NANOSECONDS_PER_SECOND;
+
+ /* If update_in_progress latched the UIP bit, we must keep the timer
+ * programmed to the next second, so that UIP is cleared. Otherwise,
+ * if UF is already set, we might be able to optimize.
+ */
+ if (!(s->cmos_data[RTC_REG_A] & REG_A_UIP) &&
+ (s->cmos_data[RTC_REG_C] & REG_C_UF)) {
+ /* If AF cannot change (i.e. either it is set already, or
+ * SET=1 and then the time is not updated), nothing to do.
+ */
+ if ((s->cmos_data[RTC_REG_B] & REG_B_SET) ||
+ (s->cmos_data[RTC_REG_C] & REG_C_AF)) {
+ timer_del(s->update_timer);
+ return;
+ }
+
+ /* UF is set, but AF is clear. Program the timer to target
+ * the alarm time. */
+ next_update_time = s->next_alarm_time;
+ }
+ if (next_update_time != timer_expire_time_ns(s->update_timer)) {
+ timer_mod(s->update_timer, next_update_time);
+ }
+}
+
+static inline uint8_t convert_hour(RTCState *s, uint8_t hour)
+{
+ if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
+ hour %= 12;
+ if (s->cmos_data[RTC_HOURS] & 0x80) {
+ hour += 12;
+ }
+ }
+ return hour;
+}
+
+static uint64_t get_next_alarm(RTCState *s)
+{
+ int32_t alarm_sec, alarm_min, alarm_hour, cur_hour, cur_min, cur_sec;
+ int32_t hour, min, sec;
+
+ rtc_update_time(s);
+
+ alarm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS_ALARM]);
+ alarm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES_ALARM]);
+ alarm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS_ALARM]);
+ alarm_hour = alarm_hour == -1 ? -1 : convert_hour(s, alarm_hour);
+
+ cur_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
+ cur_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
+ cur_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS]);
+ cur_hour = convert_hour(s, cur_hour);
+
+ if (alarm_hour == -1) {
+ alarm_hour = cur_hour;
+ if (alarm_min == -1) {
+ alarm_min = cur_min;
+ if (alarm_sec == -1) {
+ alarm_sec = cur_sec + 1;
+ } else if (cur_sec > alarm_sec) {
+ alarm_min++;
+ }
+ } else if (cur_min == alarm_min) {
+ if (alarm_sec == -1) {
+ alarm_sec = cur_sec + 1;
+ } else {
+ if (cur_sec > alarm_sec) {
+ alarm_hour++;
+ }
+ }
+ if (alarm_sec == SEC_PER_MIN) {
+ /* wrap to next hour, minutes is not in don't care mode */
+ alarm_sec = 0;
+ alarm_hour++;
+ }
+ } else if (cur_min > alarm_min) {
+ alarm_hour++;
+ }
+ } else if (cur_hour == alarm_hour) {
+ if (alarm_min == -1) {
+ alarm_min = cur_min;
+ if (alarm_sec == -1) {
+ alarm_sec = cur_sec + 1;
+ } else if (cur_sec > alarm_sec) {
+ alarm_min++;
+ }
+
+ if (alarm_sec == SEC_PER_MIN) {
+ alarm_sec = 0;
+ alarm_min++;
+ }
+ /* wrap to next day, hour is not in don't care mode */
+ alarm_min %= MIN_PER_HOUR;
+ } else if (cur_min == alarm_min) {
+ if (alarm_sec == -1) {
+ alarm_sec = cur_sec + 1;
+ }
+ /* wrap to next day, hours+minutes not in don't care mode */
+ alarm_sec %= SEC_PER_MIN;
+ }
+ }
+
+ /* values that are still don't care fire at the next min/sec */
+ if (alarm_min == -1) {
+ alarm_min = 0;
+ }
+ if (alarm_sec == -1) {
+ alarm_sec = 0;
+ }
+
+ /* keep values in range */
+ if (alarm_sec == SEC_PER_MIN) {
+ alarm_sec = 0;
+ alarm_min++;
+ }
+ if (alarm_min == MIN_PER_HOUR) {
+ alarm_min = 0;
+ alarm_hour++;
+ }
+ alarm_hour %= HOUR_PER_DAY;
+
+ hour = alarm_hour - cur_hour;
+ min = hour * MIN_PER_HOUR + alarm_min - cur_min;
+ sec = min * SEC_PER_MIN + alarm_sec - cur_sec;
+ return sec <= 0 ? sec + SEC_PER_DAY : sec;
+}
+
+static void rtc_update_timer(void *opaque)
+{
+ RTCState *s = opaque;
+ int32_t irqs = REG_C_UF;
+ int32_t new_irqs;
+
+ assert((s->cmos_data[RTC_REG_A] & 0x60) != 0x60);
+
+ /* UIP might have been latched, update time and clear it. */
+ rtc_update_time(s);
+ s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
+
+ if (qemu_clock_get_ns(rtc_clock) >= s->next_alarm_time) {
+ irqs |= REG_C_AF;
+ if (s->cmos_data[RTC_REG_B] & REG_B_AIE) {
+ qemu_system_wakeup_request(QEMU_WAKEUP_REASON_RTC, NULL);
+ }
+ }
+
+ new_irqs = irqs & ~s->cmos_data[RTC_REG_C];
+ s->cmos_data[RTC_REG_C] |= irqs;
+ if ((new_irqs & s->cmos_data[RTC_REG_B]) != 0) {
+ s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
+ qemu_irq_raise(s->irq);
+ }
+ check_update_timer(s);
+}
+
+static void cmos_ioport_write(void *opaque, hwaddr addr,
+ uint64_t data, unsigned size)
+{
+ RTCState *s = opaque;
+ uint32_t old_period;
+ bool update_periodic_timer;
+
+ if ((addr & 1) == 0) {
+ s->cmos_index = data & 0x7f;
+ } else {
+ CMOS_DPRINTF("cmos: write index=0x%02x val=0x%02" PRIx64 "\n",
+ s->cmos_index, data);
+ switch(s->cmos_index) {
+ case RTC_SECONDS_ALARM:
+ case RTC_MINUTES_ALARM:
+ case RTC_HOURS_ALARM:
+ s->cmos_data[s->cmos_index] = data;
+ check_update_timer(s);
+ break;
+ case RTC_IBM_PS2_CENTURY_BYTE:
+ s->cmos_index = RTC_CENTURY;
+ /* fall through */
+ case RTC_CENTURY:
+ case RTC_SECONDS:
+ case RTC_MINUTES:
+ case RTC_HOURS:
+ case RTC_DAY_OF_WEEK:
+ case RTC_DAY_OF_MONTH:
+ case RTC_MONTH:
+ case RTC_YEAR:
+ s->cmos_data[s->cmos_index] = data;
+ /* if in set mode, do not update the time */
+ if (rtc_running(s)) {
+ rtc_set_time(s);
+ check_update_timer(s);
+ }
+ break;
+ case RTC_REG_A:
+ update_periodic_timer = (s->cmos_data[RTC_REG_A] ^ data) & 0x0f;
+ old_period = rtc_periodic_clock_ticks(s);
+
+ if ((data & 0x60) == 0x60) {
+ if (rtc_running(s)) {
+ rtc_update_time(s);
+ }
+ /* What happens to UIP when divider reset is enabled is
+ * unclear from the datasheet. Shouldn't matter much
+ * though.
+ */
+ s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
+ } else if (((s->cmos_data[RTC_REG_A] & 0x60) == 0x60) &&
+ (data & 0x70) <= 0x20) {
+ /* when the divider reset is removed, the first update cycle
+ * begins one-half second later*/
+ if (!(s->cmos_data[RTC_REG_B] & REG_B_SET)) {
+ s->offset = 500000000;
+ rtc_set_time(s);
+ }
+ s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
+ }
+ /* UIP bit is read only */
+ s->cmos_data[RTC_REG_A] = (data & ~REG_A_UIP) |
+ (s->cmos_data[RTC_REG_A] & REG_A_UIP);
+
+ if (update_periodic_timer) {
+ periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
+ old_period);
+ }
+
+ check_update_timer(s);
+ break;
+ case RTC_REG_B:
+ update_periodic_timer = (s->cmos_data[RTC_REG_B] ^ data)
+ & REG_B_PIE;
+ old_period = rtc_periodic_clock_ticks(s);
+
+ if (data & REG_B_SET) {
+ /* update cmos to when the rtc was stopping */
+ if (rtc_running(s)) {
+ rtc_update_time(s);
+ }
+ /* set mode: reset UIP mode */
+ s->cmos_data[RTC_REG_A] &= ~REG_A_UIP;
+ data &= ~REG_B_UIE;
+ } else {
+ /* if disabling set mode, update the time */
+ if ((s->cmos_data[RTC_REG_B] & REG_B_SET) &&
+ (s->cmos_data[RTC_REG_A] & 0x70) <= 0x20) {
+ s->offset = get_guest_rtc_ns(s) % NANOSECONDS_PER_SECOND;
+ rtc_set_time(s);
+ }
+ }
+ /* if an interrupt flag is already set when the interrupt
+ * becomes enabled, raise an interrupt immediately. */
+ if (data & s->cmos_data[RTC_REG_C] & REG_C_MASK) {
+ s->cmos_data[RTC_REG_C] |= REG_C_IRQF;
+ qemu_irq_raise(s->irq);
+ } else {
+ s->cmos_data[RTC_REG_C] &= ~REG_C_IRQF;
+ qemu_irq_lower(s->irq);
+ }
+ s->cmos_data[RTC_REG_B] = data;
+
+ if (update_periodic_timer) {
+ periodic_timer_update(s, qemu_clock_get_ns(rtc_clock),
+ old_period);
+ }
+
+ check_update_timer(s);
+ break;
+ case RTC_REG_C:
+ case RTC_REG_D:
+ /* cannot write to them */
+ break;
+ default:
+ s->cmos_data[s->cmos_index] = data;
+ break;
+ }
+ }
+}
+
+static inline int rtc_to_bcd(RTCState *s, int a)
+{
+ if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
+ return a;
+ } else {
+ return ((a / 10) << 4) | (a % 10);
+ }
+}
+
+static inline int rtc_from_bcd(RTCState *s, int a)
+{
+ if ((a & 0xc0) == 0xc0) {
+ return -1;
+ }
+ if (s->cmos_data[RTC_REG_B] & REG_B_DM) {
+ return a;
+ } else {
+ return ((a >> 4) * 10) + (a & 0x0f);
+ }
+}
+
+static void rtc_get_time(RTCState *s, struct tm *tm)
+{
+ tm->tm_sec = rtc_from_bcd(s, s->cmos_data[RTC_SECONDS]);
+ tm->tm_min = rtc_from_bcd(s, s->cmos_data[RTC_MINUTES]);
+ tm->tm_hour = rtc_from_bcd(s, s->cmos_data[RTC_HOURS] & 0x7f);
+ if (!(s->cmos_data[RTC_REG_B] & REG_B_24H)) {
+ tm->tm_hour %= 12;
+ if (s->cmos_data[RTC_HOURS] & 0x80) {
+ tm->tm_hour += 12;
+ }
+ }
+ tm->tm_wday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_WEEK]) - 1;
+ tm->tm_mday = rtc_from_bcd(s, s->cmos_data[RTC_DAY_OF_MONTH]);
+ tm->tm_mon = rtc_from_bcd(s, s->cmos_data[RTC_MONTH]) - 1;
+ tm->tm_year =
+ rtc_from_bcd(s, s->cmos_data[RTC_YEAR]) + s->base_year +
+ rtc_from_bcd(s, s->cmos_data[RTC_CENTURY]) * 100 - 1900;
+}
+
+static void rtc_set_time(RTCState *s)
+{
+ struct tm tm;
+
+ rtc_get_time(s, &tm);
+ s->base_rtc = mktimegm(&tm);
+ s->last_update = qemu_clock_get_ns(rtc_clock);
+
+ qapi_event_send_rtc_change(qemu_timedate_diff(&tm));
+}
+
+static void rtc_set_cmos(RTCState *s, const struct tm *tm)
+{
+ int year;
+
+ s->cmos_data[RTC_SECONDS] = rtc_to_bcd(s, tm->tm_sec);
+ s->cmos_data[RTC_MINUTES] = rtc_to_bcd(s, tm->tm_min);
+ if (s->cmos_data[RTC_REG_B] & REG_B_24H) {
+ /* 24 hour format */
+ s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, tm->tm_hour);
+ } else {
+ /* 12 hour format */
+ int h = (tm->tm_hour % 12) ? tm->tm_hour % 12 : 12;
+ s->cmos_data[RTC_HOURS] = rtc_to_bcd(s, h);
+ if (tm->tm_hour >= 12)
+ s->cmos_data[RTC_HOURS] |= 0x80;
+ }
+ s->cmos_data[RTC_DAY_OF_WEEK] = rtc_to_bcd(s, tm->tm_wday + 1);
+ s->cmos_data[RTC_DAY_OF_MONTH] = rtc_to_bcd(s, tm->tm_mday);
+ s->cmos_data[RTC_MONTH] = rtc_to_bcd(s, tm->tm_mon + 1);
+ year = tm->tm_year + 1900 - s->base_year;
+ s->cmos_data[RTC_YEAR] = rtc_to_bcd(s, year % 100);
+ s->cmos_data[RTC_CENTURY] = rtc_to_bcd(s, year / 100);
+}
+
+static void rtc_update_time(RTCState *s)
+{
+ struct tm ret;
+ time_t guest_sec;
+ int64_t guest_nsec;
+
+ guest_nsec = get_guest_rtc_ns(s);
+ guest_sec = guest_nsec / NANOSECONDS_PER_SECOND;
+ gmtime_r(&guest_sec, &ret);
+
+ /* Is SET flag of Register B disabled? */
+ if ((s->cmos_data[RTC_REG_B] & REG_B_SET) == 0) {
+ rtc_set_cmos(s, &ret);
+ }
+}
+
+static int update_in_progress(RTCState *s)
+{
+ int64_t guest_nsec;
+
+ if (!rtc_running(s)) {
+ return 0;
+ }
+ if (timer_pending(s->update_timer)) {
+ int64_t next_update_time = timer_expire_time_ns(s->update_timer);
+ /* Latch UIP until the timer expires. */
+ if (qemu_clock_get_ns(rtc_clock) >=
+ (next_update_time - UIP_HOLD_LENGTH)) {
+ s->cmos_data[RTC_REG_A] |= REG_A_UIP;
+ return 1;
+ }
+ }
+
+ guest_nsec = get_guest_rtc_ns(s);
+ /* UIP bit will be set at last 244us of every second. */
+ if ((guest_nsec % NANOSECONDS_PER_SECOND) >=
+ (NANOSECONDS_PER_SECOND - UIP_HOLD_LENGTH)) {
+ return 1;
+ }
+ return 0;
+}
+
+static uint64_t cmos_ioport_read(void *opaque, hwaddr addr,
+ unsigned size)
+{
+ RTCState *s = opaque;
+ int ret;
+ if ((addr & 1) == 0) {
+ return 0xff;
+ } else {
+ switch(s->cmos_index) {
+ case RTC_IBM_PS2_CENTURY_BYTE:
+ s->cmos_index = RTC_CENTURY;
+ /* fall through */
+ case RTC_CENTURY:
+ case RTC_SECONDS:
+ case RTC_MINUTES:
+ case RTC_HOURS:
+ case RTC_DAY_OF_WEEK:
+ case RTC_DAY_OF_MONTH:
+ case RTC_MONTH:
+ case RTC_YEAR:
+ /* if not in set mode, calibrate cmos before
+ * reading*/
+ if (rtc_running(s)) {
+ rtc_update_time(s);
+ }
+ ret = s->cmos_data[s->cmos_index];
+ break;
+ case RTC_REG_A:
+ ret = s->cmos_data[s->cmos_index];
+ if (update_in_progress(s)) {
+ ret |= REG_A_UIP;
+ }
+ break;
+ case RTC_REG_C:
+ ret = s->cmos_data[s->cmos_index];
+ qemu_irq_lower(s->irq);
+ s->cmos_data[RTC_REG_C] = 0x00;
+ if (ret & (REG_C_UF | REG_C_AF)) {
+ check_update_timer(s);
+ }
+
+ if(s->irq_coalesced &&
+ (s->cmos_data[RTC_REG_B] & REG_B_PIE) &&
+ s->irq_reinject_on_ack_count < RTC_REINJECT_ON_ACK_COUNT) {
+ s->irq_reinject_on_ack_count++;
+ s->cmos_data[RTC_REG_C] |= REG_C_IRQF | REG_C_PF;
+ DPRINTF_C("cmos: injecting on ack\n");
+ if (rtc_policy_slew_deliver_irq(s)) {
+ s->irq_coalesced--;
+ DPRINTF_C("cmos: coalesced irqs decreased to %d\n",
+ s->irq_coalesced);
+ }
+ }
+ break;
+ default:
+ ret = s->cmos_data[s->cmos_index];
+ break;
+ }
+ CMOS_DPRINTF("cmos: read index=0x%02x val=0x%02x\n",
+ s->cmos_index, ret);
+ return ret;
+ }
+}
+
+void rtc_set_memory(ISADevice *dev, int addr, int val)
+{
+ RTCState *s = MC146818_RTC(dev);
+ if (addr >= 0 && addr <= 127)
+ s->cmos_data[addr] = val;
+}
+
+int rtc_get_memory(ISADevice *dev, int addr)
+{
+ RTCState *s = MC146818_RTC(dev);
+ assert(addr >= 0 && addr <= 127);
+ return s->cmos_data[addr];
+}
+
+static void rtc_set_date_from_host(ISADevice *dev)
+{
+ RTCState *s = MC146818_RTC(dev);
+ struct tm tm;
+
+ qemu_get_timedate(&tm, 0);
+
+ s->base_rtc = mktimegm(&tm);
+ s->last_update = qemu_clock_get_ns(rtc_clock);
+ s->offset = 0;
+
+ /* set the CMOS date */
+ rtc_set_cmos(s, &tm);
+}
+
+static int rtc_pre_save(void *opaque)
+{
+ RTCState *s = opaque;
+
+ rtc_update_time(s);
+
+ return 0;
+}
+
+static int rtc_post_load(void *opaque, int version_id)
+{
+ RTCState *s = opaque;
+
+ if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
+ rtc_set_time(s);
+ s->offset = 0;
+ check_update_timer(s);
+ }
+
+ /* The periodic timer is deterministic in record/replay mode,
+ * so there is no need to update it after loading the vmstate.
+ * Reading RTC here would misalign record and replay.
+ */
+ if (replay_mode == REPLAY_MODE_NONE) {
+ uint64_t now = qemu_clock_get_ns(rtc_clock);
+ if (now < s->next_periodic_time ||
+ now > (s->next_periodic_time + get_max_clock_jump())) {
+ periodic_timer_update(s, qemu_clock_get_ns(rtc_clock), 0);
+ }
+ }
+
+ if (version_id >= 2) {
+ if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
+ rtc_coalesced_timer_update(s);
+ }
+ }
+ return 0;
+}
+
+static bool rtc_irq_reinject_on_ack_count_needed(void *opaque)
+{
+ RTCState *s = (RTCState *)opaque;
+ return s->irq_reinject_on_ack_count != 0;
+}
+
+static const VMStateDescription vmstate_rtc_irq_reinject_on_ack_count = {
+ .name = "mc146818rtc/irq_reinject_on_ack_count",
+ .version_id = 1,
+ .minimum_version_id = 1,
+ .needed = rtc_irq_reinject_on_ack_count_needed,
+ .fields = (VMStateField[]) {
+ VMSTATE_UINT16(irq_reinject_on_ack_count, RTCState),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+static const VMStateDescription vmstate_rtc = {
+ .name = "mc146818rtc",
+ .version_id = 3,
+ .minimum_version_id = 1,
+ .pre_save = rtc_pre_save,
+ .post_load = rtc_post_load,
+ .fields = (VMStateField[]) {
+ VMSTATE_BUFFER(cmos_data, RTCState),
+ VMSTATE_UINT8(cmos_index, RTCState),
+ VMSTATE_UNUSED(7*4),
+ VMSTATE_TIMER_PTR(periodic_timer, RTCState),
+ VMSTATE_INT64(next_periodic_time, RTCState),
+ VMSTATE_UNUSED(3*8),
+ VMSTATE_UINT32_V(irq_coalesced, RTCState, 2),
+ VMSTATE_UINT32_V(period, RTCState, 2),
+ VMSTATE_UINT64_V(base_rtc, RTCState, 3),
+ VMSTATE_UINT64_V(last_update, RTCState, 3),
+ VMSTATE_INT64_V(offset, RTCState, 3),
+ VMSTATE_TIMER_PTR_V(update_timer, RTCState, 3),
+ VMSTATE_UINT64_V(next_alarm_time, RTCState, 3),
+ VMSTATE_END_OF_LIST()
+ },
+ .subsections = (const VMStateDescription*[]) {
+ &vmstate_rtc_irq_reinject_on_ack_count,
+ NULL
+ }
+};
+
+/* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE)
+ BIOS will read it and start S3 resume at POST Entry */
+static void rtc_notify_suspend(Notifier *notifier, void *data)
+{
+ RTCState *s = container_of(notifier, RTCState, suspend_notifier);
+ rtc_set_memory(ISA_DEVICE(s), 0xF, 0xFE);
+}
+
+static void rtc_reset(void *opaque)
+{
+ RTCState *s = opaque;
+
+ s->cmos_data[RTC_REG_B] &= ~(REG_B_PIE | REG_B_AIE | REG_B_SQWE);
+ s->cmos_data[RTC_REG_C] &= ~(REG_C_UF | REG_C_IRQF | REG_C_PF | REG_C_AF);
+ check_update_timer(s);
+
+ qemu_irq_lower(s->irq);
+
+ if (s->lost_tick_policy == LOST_TICK_POLICY_SLEW) {
+ s->irq_coalesced = 0;
+ s->irq_reinject_on_ack_count = 0;
+ }
+}
+
+static const MemoryRegionOps cmos_ops = {
+ .read = cmos_ioport_read,
+ .write = cmos_ioport_write,
+ .impl = {
+ .min_access_size = 1,
+ .max_access_size = 1,
+ },
+ .endianness = DEVICE_LITTLE_ENDIAN,
+};
+
+static void rtc_get_date(Object *obj, struct tm *current_tm, Error **errp)
+{
+ RTCState *s = MC146818_RTC(obj);
+
+ rtc_update_time(s);
+ rtc_get_time(s, current_tm);
+}
+
+static void rtc_realizefn(DeviceState *dev, Error **errp)
+{
+ ISADevice *isadev = ISA_DEVICE(dev);
+ RTCState *s = MC146818_RTC(dev);
+ int base = 0x70;
+
+ s->cmos_data[RTC_REG_A] = 0x26;
+ s->cmos_data[RTC_REG_B] = 0x02;
+ s->cmos_data[RTC_REG_C] = 0x00;
+ s->cmos_data[RTC_REG_D] = 0x80;
+
+ /* This is for historical reasons. The default base year qdev property
+ * was set to 2000 for most machine types before the century byte was
+ * implemented.
+ *
+ * This if statement means that the century byte will be always 0
+ * (at least until 2079...) for base_year = 1980, but will be set
+ * correctly for base_year = 2000.
+ */
+ if (s->base_year == 2000) {
+ s->base_year = 0;
+ }
+
+ rtc_set_date_from_host(isadev);
+
+ switch (s->lost_tick_policy) {
+#ifdef TARGET_I386
+ case LOST_TICK_POLICY_SLEW:
+ s->coalesced_timer =
+ timer_new_ns(rtc_clock, rtc_coalesced_timer, s);
+ break;
+#endif
+ case LOST_TICK_POLICY_DISCARD:
+ break;
+ default:
+ error_setg(errp, "Invalid lost tick policy.");
+ return;
+ }
+
+ s->periodic_timer = timer_new_ns(rtc_clock, rtc_periodic_timer, s);
+ s->update_timer = timer_new_ns(rtc_clock, rtc_update_timer, s);
+ check_update_timer(s);
+
+ s->suspend_notifier.notify = rtc_notify_suspend;
+ qemu_register_suspend_notifier(&s->suspend_notifier);
+
+ memory_region_init_io(&s->io, OBJECT(s), &cmos_ops, s, "rtc", 2);
+ isa_register_ioport(isadev, &s->io, base);
+
+ /* register rtc 0x70 port for coalesced_pio */
+ memory_region_set_flush_coalesced(&s->io);
+ memory_region_init_io(&s->coalesced_io, OBJECT(s), &cmos_ops,
+ s, "rtc-index", 1);
+ memory_region_add_subregion(&s->io, 0, &s->coalesced_io);
+ memory_region_add_coalescing(&s->coalesced_io, 0, 1);
+
+ qdev_set_legacy_instance_id(dev, base, 3);
+ qemu_register_reset(rtc_reset, s);
+
+ object_property_add_tm(OBJECT(s), "date", rtc_get_date, NULL);
+
+ qdev_init_gpio_out(dev, &s->irq, 1);
+}
+
+ISADevice *mc146818_rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
+{
+ DeviceState *dev;
+ ISADevice *isadev;
+ RTCState *s;
+
+ isadev = isa_create(bus, TYPE_MC146818_RTC);
+ dev = DEVICE(isadev);
+ s = MC146818_RTC(isadev);
+ qdev_prop_set_int32(dev, "base_year", base_year);
+ qdev_init_nofail(dev);
+ if (intercept_irq) {
+ qdev_connect_gpio_out(dev, 0, intercept_irq);
+ } else {
+ isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ);
+ }
+ QLIST_INSERT_HEAD(&rtc_devices, s, link);
+
+ object_property_add_alias(qdev_get_machine(), "rtc-time", OBJECT(s),
+ "date", NULL);
+
+ return isadev;
+}
+
+static Property mc146818rtc_properties[] = {
+ DEFINE_PROP_INT32("base_year", RTCState, base_year, 1980),
+ DEFINE_PROP_LOSTTICKPOLICY("lost_tick_policy", RTCState,
+ lost_tick_policy, LOST_TICK_POLICY_DISCARD),
+ DEFINE_PROP_END_OF_LIST(),
+};
+
+static void rtc_resetdev(DeviceState *d)
+{
+ RTCState *s = MC146818_RTC(d);
+
+ /* Reason: VM do suspend self will set 0xfe
+ * Reset any values other than 0xfe(Guest suspend case) */
+ if (s->cmos_data[0x0f] != 0xfe) {
+ s->cmos_data[0x0f] = 0x00;
+ }
+}
+
+static void rtc_class_initfn(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+
+ dc->realize = rtc_realizefn;
+ dc->reset = rtc_resetdev;
+ dc->vmsd = &vmstate_rtc;
+ dc->props = mc146818rtc_properties;
+ /* Reason: needs to be wired up by rtc_init() */
+ dc->user_creatable = false;
+}
+
+static const TypeInfo mc146818rtc_info = {
+ .name = TYPE_MC146818_RTC,
+ .parent = TYPE_ISA_DEVICE,
+ .instance_size = sizeof(RTCState),
+ .class_init = rtc_class_initfn,
+};
+
+static void mc146818rtc_register_types(void)
+{
+ type_register_static(&mc146818rtc_info);
+}
+
+type_init(mc146818rtc_register_types)