diff options
author | Peter Maydell <peter.maydell@linaro.org> | 2015-02-24 13:58:18 +0000 |
---|---|---|
committer | Peter Maydell <peter.maydell@linaro.org> | 2015-02-24 13:58:18 +0000 |
commit | 73104fd399c6778112f64fe0d439319f24508d9a (patch) | |
tree | c097e6a8acd33b8ad8561a2bccacc4247db76085 /docs | |
parent | 3dc10613c313a042a111e46a977733411495ea8c (diff) | |
parent | 0dc3f44aca18b1be8b425f3f4feb4b3e8d68de2e (diff) | |
download | qemu-73104fd399c6778112f64fe0d439319f24508d9a.zip qemu-73104fd399c6778112f64fe0d439319f24508d9a.tar.gz qemu-73104fd399c6778112f64fe0d439319f24508d9a.tar.bz2 |
Merge remote-tracking branch 'remotes/bonzini/tags/for-upstream' into staging
- vhost-scsi: add bootindex property
- RCU: fix MemoryRegion lifetime issues in PCI; document the rules;
convert of AddressSpaceDispatch and RAMList
- KVM: add kvm_exit reasons for aarch64
# gpg: Signature made Mon Feb 16 16:32:32 2015 GMT using RSA key ID 78C7AE83
# gpg: Good signature from "Paolo Bonzini <bonzini@gnu.org>"
# gpg: aka "Paolo Bonzini <pbonzini@redhat.com>"
# gpg: WARNING: This key is not certified with a trusted signature!
# gpg: There is no indication that the signature belongs to the owner.
# Primary key fingerprint: 46F5 9FBD 57D6 12E7 BFD4 E2F7 7E15 100C CD36 69B1
# Subkey fingerprint: F133 3857 4B66 2389 866C 7682 BFFB D25F 78C7 AE83
* remotes/bonzini/tags/for-upstream: (21 commits)
Convert ram_list to RCU
exec: convert ram_list to QLIST
cosmetic changes preparing for the following patches
exec: protect mru_block with RCU
rcu: add g_free_rcu
rcu: introduce RCU-enabled QLIST
exec: RCUify AddressSpaceDispatch
exec: make iotlb RCU-friendly
exec: introduce cpu_reload_memory_map
docs: clarify memory region lifecycle
pci: split shpc_cleanup and shpc_free
pcie: remove mmconfig memory leak and wrap mmconfig update with transaction
memory: keep the owner of the AddressSpace alive until do_address_space_destroy
rcu: run RCU callbacks under the BQL
rcu: do not let RCU callbacks pile up indefinitely
vhost-scsi: set the bootable value of channel/target/lun
vhost-scsi: add a property for booting
vhost-scsi: expose the TYPE_FW_PATH_PROVIDER interface
vhost-scsi: add bootindex property
qdev: support to get a device firmware path directly
...
Signed-off-by: Peter Maydell <peter.maydell@linaro.org>
Diffstat (limited to 'docs')
-rw-r--r-- | docs/memory.txt | 74 | ||||
-rw-r--r-- | docs/rcu.txt | 11 |
2 files changed, 65 insertions, 20 deletions
diff --git a/docs/memory.txt b/docs/memory.txt index b12f1f0..2ceb348 100644 --- a/docs/memory.txt +++ b/docs/memory.txt @@ -73,17 +73,66 @@ stability. Region lifecycle ---------------- -A region is created by one of the constructor functions (memory_region_init*()) -and attached to an object. It is then destroyed by object_unparent() or simply -when the parent object dies. +A region is created by one of the memory_region_init*() functions and +attached to an object, which acts as its owner or parent. QEMU ensures +that the owner object remains alive as long as the region is visible to +the guest, or as long as the region is in use by a virtual CPU or another +device. For example, the owner object will not die between an +address_space_map operation and the corresponding address_space_unmap. -In between, a region can be added to an address space -by using memory_region_add_subregion() and removed using -memory_region_del_subregion(). Destroying the region implicitly -removes the region from the address space. +After creation, a region can be added to an address space or a +container with memory_region_add_subregion(), and removed using +memory_region_del_subregion(). + +Various region attributes (read-only, dirty logging, coalesced mmio, +ioeventfd) can be changed during the region lifecycle. They take effect +as soon as the region is made visible. This can be immediately, later, +or never. + +Destruction of a memory region happens automatically when the owner +object dies. + +If however the memory region is part of a dynamically allocated data +structure, you should call object_unparent() to destroy the memory region +before the data structure is freed. For an example see VFIOMSIXInfo +and VFIOQuirk in hw/vfio/pci.c. + +You must not destroy a memory region as long as it may be in use by a +device or CPU. In order to do this, as a general rule do not create or +destroy memory regions dynamically during a device's lifetime, and only +call object_unparent() in the memory region owner's instance_finalize +callback. The dynamically allocated data structure that contains the +memory region then should obviously be freed in the instance_finalize +callback as well. + +If you break this rule, the following situation can happen: + +- the memory region's owner had a reference taken via memory_region_ref + (for example by address_space_map) + +- the region is unparented, and has no owner anymore + +- when address_space_unmap is called, the reference to the memory region's + owner is leaked. + + +There is an exception to the above rule: it is okay to call +object_unparent at any time for an alias or a container region. It is +therefore also okay to create or destroy alias and container regions +dynamically during a device's lifetime. + +This exceptional usage is valid because aliases and containers only help +QEMU building the guest's memory map; they are never accessed directly. +memory_region_ref and memory_region_unref are never called on aliases +or containers, and the above situation then cannot happen. Exploiting +this exception is rarely necessary, and therefore it is discouraged, +but nevertheless it is used in a few places. + +For regions that "have no owner" (NULL is passed at creation time), the +machine object is actually used as the owner. Since instance_finalize is +never called for the machine object, you must never call object_unparent +on regions that have no owner, unless they are aliases or containers. -Region attributes may be changed at any point; they take effect once -the region becomes exposed to the guest. Overlapping regions and priority -------------------------------- @@ -215,13 +264,6 @@ BAR containing MMIO registers is mapped after it. Note that if the guest maps a BAR outside the PCI hole, it would not be visible as the pci-hole alias clips it to a 0.5GB range. -Attributes ----------- - -Various region attributes (read-only, dirty logging, coalesced mmio, ioeventfd) -can be changed during the region lifecycle. They take effect once the region -is made visible (which can be immediately, later, or never). - MMIO Operations --------------- diff --git a/docs/rcu.txt b/docs/rcu.txt index 61752b9..21ecb81 100644 --- a/docs/rcu.txt +++ b/docs/rcu.txt @@ -120,12 +120,15 @@ The core RCU API is small: void call_rcu(T *p, void (*func)(T *p), field-name); + void g_free_rcu(T *p, + field-name); - call_rcu1 is typically used through this macro, in the common case - where the "struct rcu_head" is the first field in the struct. In - the above case, one could have written simply: + call_rcu1 is typically used through these macro, in the common case + where the "struct rcu_head" is the first field in the struct. If + the callback function is g_free, in particular, g_free_rcu can be + used. In the above case, one could have written simply: - call_rcu(foo_reclaim, g_free, rcu); + g_free_rcu(foo_reclaim, rcu); typeof(*p) atomic_rcu_read(p); |