aboutsummaryrefslogtreecommitdiff
path: root/disas/libvixl/a64
diff options
context:
space:
mode:
authorPeter Maydell <peter.maydell@linaro.org>2014-02-05 17:27:27 +0000
committerPeter Maydell <peter.maydell@linaro.org>2014-02-08 14:50:48 +0000
commit878a735d009d1e90e96d6c5c6f9471aa4ec2ba65 (patch)
treee10503be46746c30a6535451aba0625f8cfde585 /disas/libvixl/a64
parent3144f78b3f8d517d32641a7b606b67e7b3cc16f7 (diff)
downloadqemu-878a735d009d1e90e96d6c5c6f9471aa4ec2ba65.zip
qemu-878a735d009d1e90e96d6c5c6f9471aa4ec2ba65.tar.gz
qemu-878a735d009d1e90e96d6c5c6f9471aa4ec2ba65.tar.bz2
disas: Add subset of libvixl sources for A64 disassembler
Add the subset of the libvixl sources that are needed for the A64 disassembler support. These sources come from https://github.com/armvixl/vixl commit 578645f14e122d2b which is VIXL release 1.1. Signed-off-by: Peter Maydell <peter.maydell@linaro.org> Reviewed-by: Richard Henderson <rth@twiddle.net>
Diffstat (limited to 'disas/libvixl/a64')
-rw-r--r--disas/libvixl/a64/assembler-a64.h1784
-rw-r--r--disas/libvixl/a64/constants-a64.h1104
-rw-r--r--disas/libvixl/a64/cpu-a64.h56
-rw-r--r--disas/libvixl/a64/decoder-a64.cc712
-rw-r--r--disas/libvixl/a64/decoder-a64.h198
-rw-r--r--disas/libvixl/a64/disasm-a64.cc1678
-rw-r--r--disas/libvixl/a64/disasm-a64.h109
-rw-r--r--disas/libvixl/a64/instructions-a64.cc238
-rw-r--r--disas/libvixl/a64/instructions-a64.h344
9 files changed, 6223 insertions, 0 deletions
diff --git a/disas/libvixl/a64/assembler-a64.h b/disas/libvixl/a64/assembler-a64.h
new file mode 100644
index 0000000..93b3011
--- /dev/null
+++ b/disas/libvixl/a64/assembler-a64.h
@@ -0,0 +1,1784 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_ASSEMBLER_A64_H_
+#define VIXL_A64_ASSEMBLER_A64_H_
+
+#include <list>
+
+#include "globals.h"
+#include "utils.h"
+#include "a64/instructions-a64.h"
+
+namespace vixl {
+
+typedef uint64_t RegList;
+static const int kRegListSizeInBits = sizeof(RegList) * 8;
+
+// Registers.
+
+// Some CPURegister methods can return Register and FPRegister types, so we
+// need to declare them in advance.
+class Register;
+class FPRegister;
+
+
+class CPURegister {
+ public:
+ enum RegisterType {
+ // The kInvalid value is used to detect uninitialized static instances,
+ // which are always zero-initialized before any constructors are called.
+ kInvalid = 0,
+ kRegister,
+ kFPRegister,
+ kNoRegister
+ };
+
+ CPURegister() : code_(0), size_(0), type_(kNoRegister) {
+ ASSERT(!IsValid());
+ ASSERT(IsNone());
+ }
+
+ CPURegister(unsigned code, unsigned size, RegisterType type)
+ : code_(code), size_(size), type_(type) {
+ ASSERT(IsValidOrNone());
+ }
+
+ unsigned code() const {
+ ASSERT(IsValid());
+ return code_;
+ }
+
+ RegisterType type() const {
+ ASSERT(IsValidOrNone());
+ return type_;
+ }
+
+ RegList Bit() const {
+ ASSERT(code_ < (sizeof(RegList) * 8));
+ return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
+ }
+
+ unsigned size() const {
+ ASSERT(IsValid());
+ return size_;
+ }
+
+ int SizeInBytes() const {
+ ASSERT(IsValid());
+ ASSERT(size() % 8 == 0);
+ return size_ / 8;
+ }
+
+ int SizeInBits() const {
+ ASSERT(IsValid());
+ return size_;
+ }
+
+ bool Is32Bits() const {
+ ASSERT(IsValid());
+ return size_ == 32;
+ }
+
+ bool Is64Bits() const {
+ ASSERT(IsValid());
+ return size_ == 64;
+ }
+
+ bool IsValid() const {
+ if (IsValidRegister() || IsValidFPRegister()) {
+ ASSERT(!IsNone());
+ return true;
+ } else {
+ ASSERT(IsNone());
+ return false;
+ }
+ }
+
+ bool IsValidRegister() const {
+ return IsRegister() &&
+ ((size_ == kWRegSize) || (size_ == kXRegSize)) &&
+ ((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode));
+ }
+
+ bool IsValidFPRegister() const {
+ return IsFPRegister() &&
+ ((size_ == kSRegSize) || (size_ == kDRegSize)) &&
+ (code_ < kNumberOfFPRegisters);
+ }
+
+ bool IsNone() const {
+ // kNoRegister types should always have size 0 and code 0.
+ ASSERT((type_ != kNoRegister) || (code_ == 0));
+ ASSERT((type_ != kNoRegister) || (size_ == 0));
+
+ return type_ == kNoRegister;
+ }
+
+ bool Is(const CPURegister& other) const {
+ ASSERT(IsValidOrNone() && other.IsValidOrNone());
+ return (code_ == other.code_) && (size_ == other.size_) &&
+ (type_ == other.type_);
+ }
+
+ inline bool IsZero() const {
+ ASSERT(IsValid());
+ return IsRegister() && (code_ == kZeroRegCode);
+ }
+
+ inline bool IsSP() const {
+ ASSERT(IsValid());
+ return IsRegister() && (code_ == kSPRegInternalCode);
+ }
+
+ inline bool IsRegister() const {
+ return type_ == kRegister;
+ }
+
+ inline bool IsFPRegister() const {
+ return type_ == kFPRegister;
+ }
+
+ const Register& W() const;
+ const Register& X() const;
+ const FPRegister& S() const;
+ const FPRegister& D() const;
+
+ inline bool IsSameSizeAndType(const CPURegister& other) const {
+ return (size_ == other.size_) && (type_ == other.type_);
+ }
+
+ protected:
+ unsigned code_;
+ unsigned size_;
+ RegisterType type_;
+
+ private:
+ bool IsValidOrNone() const {
+ return IsValid() || IsNone();
+ }
+};
+
+
+class Register : public CPURegister {
+ public:
+ explicit Register() : CPURegister() {}
+ inline explicit Register(const CPURegister& other)
+ : CPURegister(other.code(), other.size(), other.type()) {
+ ASSERT(IsValidRegister());
+ }
+ explicit Register(unsigned code, unsigned size)
+ : CPURegister(code, size, kRegister) {}
+
+ bool IsValid() const {
+ ASSERT(IsRegister() || IsNone());
+ return IsValidRegister();
+ }
+
+ static const Register& WRegFromCode(unsigned code);
+ static const Register& XRegFromCode(unsigned code);
+
+ // V8 compatibility.
+ static const int kNumRegisters = kNumberOfRegisters;
+ static const int kNumAllocatableRegisters = kNumberOfRegisters - 1;
+
+ private:
+ static const Register wregisters[];
+ static const Register xregisters[];
+};
+
+
+class FPRegister : public CPURegister {
+ public:
+ inline FPRegister() : CPURegister() {}
+ inline explicit FPRegister(const CPURegister& other)
+ : CPURegister(other.code(), other.size(), other.type()) {
+ ASSERT(IsValidFPRegister());
+ }
+ inline FPRegister(unsigned code, unsigned size)
+ : CPURegister(code, size, kFPRegister) {}
+
+ bool IsValid() const {
+ ASSERT(IsFPRegister() || IsNone());
+ return IsValidFPRegister();
+ }
+
+ static const FPRegister& SRegFromCode(unsigned code);
+ static const FPRegister& DRegFromCode(unsigned code);
+
+ // V8 compatibility.
+ static const int kNumRegisters = kNumberOfFPRegisters;
+ static const int kNumAllocatableRegisters = kNumberOfFPRegisters - 1;
+
+ private:
+ static const FPRegister sregisters[];
+ static const FPRegister dregisters[];
+};
+
+
+// No*Reg is used to indicate an unused argument, or an error case. Note that
+// these all compare equal (using the Is() method). The Register and FPRegister
+// variants are provided for convenience.
+const Register NoReg;
+const FPRegister NoFPReg;
+const CPURegister NoCPUReg;
+
+
+#define DEFINE_REGISTERS(N) \
+const Register w##N(N, kWRegSize); \
+const Register x##N(N, kXRegSize);
+REGISTER_CODE_LIST(DEFINE_REGISTERS)
+#undef DEFINE_REGISTERS
+const Register wsp(kSPRegInternalCode, kWRegSize);
+const Register sp(kSPRegInternalCode, kXRegSize);
+
+
+#define DEFINE_FPREGISTERS(N) \
+const FPRegister s##N(N, kSRegSize); \
+const FPRegister d##N(N, kDRegSize);
+REGISTER_CODE_LIST(DEFINE_FPREGISTERS)
+#undef DEFINE_FPREGISTERS
+
+
+// Registers aliases.
+const Register ip0 = x16;
+const Register ip1 = x17;
+const Register lr = x30;
+const Register xzr = x31;
+const Register wzr = w31;
+
+
+// AreAliased returns true if any of the named registers overlap. Arguments
+// set to NoReg are ignored. The system stack pointer may be specified.
+bool AreAliased(const CPURegister& reg1,
+ const CPURegister& reg2,
+ const CPURegister& reg3 = NoReg,
+ const CPURegister& reg4 = NoReg,
+ const CPURegister& reg5 = NoReg,
+ const CPURegister& reg6 = NoReg,
+ const CPURegister& reg7 = NoReg,
+ const CPURegister& reg8 = NoReg);
+
+
+// AreSameSizeAndType returns true if all of the specified registers have the
+// same size, and are of the same type. The system stack pointer may be
+// specified. Arguments set to NoReg are ignored, as are any subsequent
+// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
+bool AreSameSizeAndType(const CPURegister& reg1,
+ const CPURegister& reg2,
+ const CPURegister& reg3 = NoCPUReg,
+ const CPURegister& reg4 = NoCPUReg,
+ const CPURegister& reg5 = NoCPUReg,
+ const CPURegister& reg6 = NoCPUReg,
+ const CPURegister& reg7 = NoCPUReg,
+ const CPURegister& reg8 = NoCPUReg);
+
+
+// Lists of registers.
+class CPURegList {
+ public:
+ inline explicit CPURegList(CPURegister reg1,
+ CPURegister reg2 = NoCPUReg,
+ CPURegister reg3 = NoCPUReg,
+ CPURegister reg4 = NoCPUReg)
+ : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
+ size_(reg1.size()), type_(reg1.type()) {
+ ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
+ ASSERT(IsValid());
+ }
+
+ inline CPURegList(CPURegister::RegisterType type, unsigned size, RegList list)
+ : list_(list), size_(size), type_(type) {
+ ASSERT(IsValid());
+ }
+
+ inline CPURegList(CPURegister::RegisterType type, unsigned size,
+ unsigned first_reg, unsigned last_reg)
+ : size_(size), type_(type) {
+ ASSERT(((type == CPURegister::kRegister) &&
+ (last_reg < kNumberOfRegisters)) ||
+ ((type == CPURegister::kFPRegister) &&
+ (last_reg < kNumberOfFPRegisters)));
+ ASSERT(last_reg >= first_reg);
+ list_ = (1UL << (last_reg + 1)) - 1;
+ list_ &= ~((1UL << first_reg) - 1);
+ ASSERT(IsValid());
+ }
+
+ inline CPURegister::RegisterType type() const {
+ ASSERT(IsValid());
+ return type_;
+ }
+
+ // Combine another CPURegList into this one. Registers that already exist in
+ // this list are left unchanged. The type and size of the registers in the
+ // 'other' list must match those in this list.
+ void Combine(const CPURegList& other) {
+ ASSERT(IsValid());
+ ASSERT(other.type() == type_);
+ ASSERT(other.RegisterSizeInBits() == size_);
+ list_ |= other.list();
+ }
+
+ // Remove every register in the other CPURegList from this one. Registers that
+ // do not exist in this list are ignored. The type and size of the registers
+ // in the 'other' list must match those in this list.
+ void Remove(const CPURegList& other) {
+ ASSERT(IsValid());
+ ASSERT(other.type() == type_);
+ ASSERT(other.RegisterSizeInBits() == size_);
+ list_ &= ~other.list();
+ }
+
+ // Variants of Combine and Remove which take a single register.
+ inline void Combine(const CPURegister& other) {
+ ASSERT(other.type() == type_);
+ ASSERT(other.size() == size_);
+ Combine(other.code());
+ }
+
+ inline void Remove(const CPURegister& other) {
+ ASSERT(other.type() == type_);
+ ASSERT(other.size() == size_);
+ Remove(other.code());
+ }
+
+ // Variants of Combine and Remove which take a single register by its code;
+ // the type and size of the register is inferred from this list.
+ inline void Combine(int code) {
+ ASSERT(IsValid());
+ ASSERT(CPURegister(code, size_, type_).IsValid());
+ list_ |= (1UL << code);
+ }
+
+ inline void Remove(int code) {
+ ASSERT(IsValid());
+ ASSERT(CPURegister(code, size_, type_).IsValid());
+ list_ &= ~(1UL << code);
+ }
+
+ inline RegList list() const {
+ ASSERT(IsValid());
+ return list_;
+ }
+
+ // Remove all callee-saved registers from the list. This can be useful when
+ // preparing registers for an AAPCS64 function call, for example.
+ void RemoveCalleeSaved();
+
+ CPURegister PopLowestIndex();
+ CPURegister PopHighestIndex();
+
+ // AAPCS64 callee-saved registers.
+ static CPURegList GetCalleeSaved(unsigned size = kXRegSize);
+ static CPURegList GetCalleeSavedFP(unsigned size = kDRegSize);
+
+ // AAPCS64 caller-saved registers. Note that this includes lr.
+ static CPURegList GetCallerSaved(unsigned size = kXRegSize);
+ static CPURegList GetCallerSavedFP(unsigned size = kDRegSize);
+
+ inline bool IsEmpty() const {
+ ASSERT(IsValid());
+ return list_ == 0;
+ }
+
+ inline bool IncludesAliasOf(const CPURegister& other) const {
+ ASSERT(IsValid());
+ return (type_ == other.type()) && (other.Bit() & list_);
+ }
+
+ inline int Count() const {
+ ASSERT(IsValid());
+ return CountSetBits(list_, kRegListSizeInBits);
+ }
+
+ inline unsigned RegisterSizeInBits() const {
+ ASSERT(IsValid());
+ return size_;
+ }
+
+ inline unsigned RegisterSizeInBytes() const {
+ int size_in_bits = RegisterSizeInBits();
+ ASSERT((size_in_bits % 8) == 0);
+ return size_in_bits / 8;
+ }
+
+ private:
+ RegList list_;
+ unsigned size_;
+ CPURegister::RegisterType type_;
+
+ bool IsValid() const;
+};
+
+
+// AAPCS64 callee-saved registers.
+extern const CPURegList kCalleeSaved;
+extern const CPURegList kCalleeSavedFP;
+
+
+// AAPCS64 caller-saved registers. Note that this includes lr.
+extern const CPURegList kCallerSaved;
+extern const CPURegList kCallerSavedFP;
+
+
+// Operand.
+class Operand {
+ public:
+ // #<immediate>
+ // where <immediate> is int64_t.
+ // This is allowed to be an implicit constructor because Operand is
+ // a wrapper class that doesn't normally perform any type conversion.
+ Operand(int64_t immediate); // NOLINT(runtime/explicit)
+
+ // rm, {<shift> #<shift_amount>}
+ // where <shift> is one of {LSL, LSR, ASR, ROR}.
+ // <shift_amount> is uint6_t.
+ // This is allowed to be an implicit constructor because Operand is
+ // a wrapper class that doesn't normally perform any type conversion.
+ Operand(Register reg,
+ Shift shift = LSL,
+ unsigned shift_amount = 0); // NOLINT(runtime/explicit)
+
+ // rm, {<extend> {#<shift_amount>}}
+ // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
+ // <shift_amount> is uint2_t.
+ explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0);
+
+ bool IsImmediate() const;
+ bool IsShiftedRegister() const;
+ bool IsExtendedRegister() const;
+
+ // This returns an LSL shift (<= 4) operand as an equivalent extend operand,
+ // which helps in the encoding of instructions that use the stack pointer.
+ Operand ToExtendedRegister() const;
+
+ int64_t immediate() const {
+ ASSERT(IsImmediate());
+ return immediate_;
+ }
+
+ Register reg() const {
+ ASSERT(IsShiftedRegister() || IsExtendedRegister());
+ return reg_;
+ }
+
+ Shift shift() const {
+ ASSERT(IsShiftedRegister());
+ return shift_;
+ }
+
+ Extend extend() const {
+ ASSERT(IsExtendedRegister());
+ return extend_;
+ }
+
+ unsigned shift_amount() const {
+ ASSERT(IsShiftedRegister() || IsExtendedRegister());
+ return shift_amount_;
+ }
+
+ private:
+ int64_t immediate_;
+ Register reg_;
+ Shift shift_;
+ Extend extend_;
+ unsigned shift_amount_;
+};
+
+
+// MemOperand represents the addressing mode of a load or store instruction.
+class MemOperand {
+ public:
+ explicit MemOperand(Register base,
+ ptrdiff_t offset = 0,
+ AddrMode addrmode = Offset);
+ explicit MemOperand(Register base,
+ Register regoffset,
+ Shift shift = LSL,
+ unsigned shift_amount = 0);
+ explicit MemOperand(Register base,
+ Register regoffset,
+ Extend extend,
+ unsigned shift_amount = 0);
+ explicit MemOperand(Register base,
+ const Operand& offset,
+ AddrMode addrmode = Offset);
+
+ const Register& base() const { return base_; }
+ const Register& regoffset() const { return regoffset_; }
+ ptrdiff_t offset() const { return offset_; }
+ AddrMode addrmode() const { return addrmode_; }
+ Shift shift() const { return shift_; }
+ Extend extend() const { return extend_; }
+ unsigned shift_amount() const { return shift_amount_; }
+ bool IsImmediateOffset() const;
+ bool IsRegisterOffset() const;
+ bool IsPreIndex() const;
+ bool IsPostIndex() const;
+
+ private:
+ Register base_;
+ Register regoffset_;
+ ptrdiff_t offset_;
+ AddrMode addrmode_;
+ Shift shift_;
+ Extend extend_;
+ unsigned shift_amount_;
+};
+
+
+class Label {
+ public:
+ Label() : is_bound_(false), link_(NULL), target_(NULL) {}
+ ~Label() {
+ // If the label has been linked to, it needs to be bound to a target.
+ ASSERT(!IsLinked() || IsBound());
+ }
+
+ inline Instruction* link() const { return link_; }
+ inline Instruction* target() const { return target_; }
+
+ inline bool IsBound() const { return is_bound_; }
+ inline bool IsLinked() const { return link_ != NULL; }
+
+ inline void set_link(Instruction* new_link) { link_ = new_link; }
+
+ static const int kEndOfChain = 0;
+
+ private:
+ // Indicates if the label has been bound, ie its location is fixed.
+ bool is_bound_;
+ // Branches instructions branching to this label form a chained list, with
+ // their offset indicating where the next instruction is located.
+ // link_ points to the latest branch instruction generated branching to this
+ // branch.
+ // If link_ is not NULL, the label has been linked to.
+ Instruction* link_;
+ // The label location.
+ Instruction* target_;
+
+ friend class Assembler;
+};
+
+
+// TODO: Obtain better values for these, based on real-world data.
+const int kLiteralPoolCheckInterval = 4 * KBytes;
+const int kRecommendedLiteralPoolRange = 2 * kLiteralPoolCheckInterval;
+
+
+// Control whether a branch over the literal pool should also be emitted. This
+// is needed if the literal pool has to be emitted in the middle of the JITted
+// code.
+enum LiteralPoolEmitOption {
+ JumpRequired,
+ NoJumpRequired
+};
+
+
+// Literal pool entry.
+class Literal {
+ public:
+ Literal(Instruction* pc, uint64_t imm, unsigned size)
+ : pc_(pc), value_(imm), size_(size) {}
+
+ private:
+ Instruction* pc_;
+ int64_t value_;
+ unsigned size_;
+
+ friend class Assembler;
+};
+
+
+// Assembler.
+class Assembler {
+ public:
+ Assembler(byte* buffer, unsigned buffer_size);
+
+ // The destructor asserts that one of the following is true:
+ // * The Assembler object has not been used.
+ // * Nothing has been emitted since the last Reset() call.
+ // * Nothing has been emitted since the last FinalizeCode() call.
+ ~Assembler();
+
+ // System functions.
+
+ // Start generating code from the beginning of the buffer, discarding any code
+ // and data that has already been emitted into the buffer.
+ //
+ // In order to avoid any accidental transfer of state, Reset ASSERTs that the
+ // constant pool is not blocked.
+ void Reset();
+
+ // Finalize a code buffer of generated instructions. This function must be
+ // called before executing or copying code from the buffer.
+ void FinalizeCode();
+
+ // Label.
+ // Bind a label to the current PC.
+ void bind(Label* label);
+ int UpdateAndGetByteOffsetTo(Label* label);
+ inline int UpdateAndGetInstructionOffsetTo(Label* label) {
+ ASSERT(Label::kEndOfChain == 0);
+ return UpdateAndGetByteOffsetTo(label) >> kInstructionSizeLog2;
+ }
+
+
+ // Instruction set functions.
+
+ // Branch / Jump instructions.
+ // Branch to register.
+ void br(const Register& xn);
+
+ // Branch with link to register.
+ void blr(const Register& xn);
+
+ // Branch to register with return hint.
+ void ret(const Register& xn = lr);
+
+ // Unconditional branch to label.
+ void b(Label* label);
+
+ // Conditional branch to label.
+ void b(Label* label, Condition cond);
+
+ // Unconditional branch to PC offset.
+ void b(int imm26);
+
+ // Conditional branch to PC offset.
+ void b(int imm19, Condition cond);
+
+ // Branch with link to label.
+ void bl(Label* label);
+
+ // Branch with link to PC offset.
+ void bl(int imm26);
+
+ // Compare and branch to label if zero.
+ void cbz(const Register& rt, Label* label);
+
+ // Compare and branch to PC offset if zero.
+ void cbz(const Register& rt, int imm19);
+
+ // Compare and branch to label if not zero.
+ void cbnz(const Register& rt, Label* label);
+
+ // Compare and branch to PC offset if not zero.
+ void cbnz(const Register& rt, int imm19);
+
+ // Test bit and branch to label if zero.
+ void tbz(const Register& rt, unsigned bit_pos, Label* label);
+
+ // Test bit and branch to PC offset if zero.
+ void tbz(const Register& rt, unsigned bit_pos, int imm14);
+
+ // Test bit and branch to label if not zero.
+ void tbnz(const Register& rt, unsigned bit_pos, Label* label);
+
+ // Test bit and branch to PC offset if not zero.
+ void tbnz(const Register& rt, unsigned bit_pos, int imm14);
+
+ // Address calculation instructions.
+ // Calculate a PC-relative address. Unlike for branches the offset in adr is
+ // unscaled (i.e. the result can be unaligned).
+
+ // Calculate the address of a label.
+ void adr(const Register& rd, Label* label);
+
+ // Calculate the address of a PC offset.
+ void adr(const Register& rd, int imm21);
+
+ // Data Processing instructions.
+ // Add.
+ void add(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Compare negative.
+ void cmn(const Register& rn, const Operand& operand);
+
+ // Subtract.
+ void sub(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Compare.
+ void cmp(const Register& rn, const Operand& operand);
+
+ // Negate.
+ void neg(const Register& rd,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Add with carry bit.
+ void adc(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Subtract with carry bit.
+ void sbc(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Negate with carry bit.
+ void ngc(const Register& rd,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Logical instructions.
+ // Bitwise and (A & B).
+ void and_(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Bit test and set flags.
+ void tst(const Register& rn, const Operand& operand);
+
+ // Bit clear (A & ~B).
+ void bic(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S = LeaveFlags);
+
+ // Bitwise or (A | B).
+ void orr(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Bitwise nor (A | ~B).
+ void orn(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Bitwise eor/xor (A ^ B).
+ void eor(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Bitwise enor/xnor (A ^ ~B).
+ void eon(const Register& rd, const Register& rn, const Operand& operand);
+
+ // Logical shift left by variable.
+ void lslv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Logical shift right by variable.
+ void lsrv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Arithmetic shift right by variable.
+ void asrv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Rotate right by variable.
+ void rorv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Bitfield instructions.
+ // Bitfield move.
+ void bfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms);
+
+ // Signed bitfield move.
+ void sbfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms);
+
+ // Unsigned bitfield move.
+ void ubfm(const Register& rd,
+ const Register& rn,
+ unsigned immr,
+ unsigned imms);
+
+ // Bfm aliases.
+ // Bitfield insert.
+ inline void bfi(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+ }
+
+ // Bitfield extract and insert low.
+ inline void bfxil(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ bfm(rd, rn, lsb, lsb + width - 1);
+ }
+
+ // Sbfm aliases.
+ // Arithmetic shift right.
+ inline void asr(const Register& rd, const Register& rn, unsigned shift) {
+ ASSERT(shift < rd.size());
+ sbfm(rd, rn, shift, rd.size() - 1);
+ }
+
+ // Signed bitfield insert with zero at right.
+ inline void sbfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+ }
+
+ // Signed bitfield extract.
+ inline void sbfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ sbfm(rd, rn, lsb, lsb + width - 1);
+ }
+
+ // Signed extend byte.
+ inline void sxtb(const Register& rd, const Register& rn) {
+ sbfm(rd, rn, 0, 7);
+ }
+
+ // Signed extend halfword.
+ inline void sxth(const Register& rd, const Register& rn) {
+ sbfm(rd, rn, 0, 15);
+ }
+
+ // Signed extend word.
+ inline void sxtw(const Register& rd, const Register& rn) {
+ sbfm(rd, rn, 0, 31);
+ }
+
+ // Ubfm aliases.
+ // Logical shift left.
+ inline void lsl(const Register& rd, const Register& rn, unsigned shift) {
+ unsigned reg_size = rd.size();
+ ASSERT(shift < reg_size);
+ ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
+ }
+
+ // Logical shift right.
+ inline void lsr(const Register& rd, const Register& rn, unsigned shift) {
+ ASSERT(shift < rd.size());
+ ubfm(rd, rn, shift, rd.size() - 1);
+ }
+
+ // Unsigned bitfield insert with zero at right.
+ inline void ubfiz(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+ }
+
+ // Unsigned bitfield extract.
+ inline void ubfx(const Register& rd,
+ const Register& rn,
+ unsigned lsb,
+ unsigned width) {
+ ASSERT(width >= 1);
+ ASSERT(lsb + width <= rn.size());
+ ubfm(rd, rn, lsb, lsb + width - 1);
+ }
+
+ // Unsigned extend byte.
+ inline void uxtb(const Register& rd, const Register& rn) {
+ ubfm(rd, rn, 0, 7);
+ }
+
+ // Unsigned extend halfword.
+ inline void uxth(const Register& rd, const Register& rn) {
+ ubfm(rd, rn, 0, 15);
+ }
+
+ // Unsigned extend word.
+ inline void uxtw(const Register& rd, const Register& rn) {
+ ubfm(rd, rn, 0, 31);
+ }
+
+ // Extract.
+ void extr(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ unsigned lsb);
+
+ // Conditional select: rd = cond ? rn : rm.
+ void csel(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional select increment: rd = cond ? rn : rm + 1.
+ void csinc(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional select inversion: rd = cond ? rn : ~rm.
+ void csinv(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional select negation: rd = cond ? rn : -rm.
+ void csneg(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond);
+
+ // Conditional set: rd = cond ? 1 : 0.
+ void cset(const Register& rd, Condition cond);
+
+ // Conditional set mask: rd = cond ? -1 : 0.
+ void csetm(const Register& rd, Condition cond);
+
+ // Conditional increment: rd = cond ? rn + 1 : rn.
+ void cinc(const Register& rd, const Register& rn, Condition cond);
+
+ // Conditional invert: rd = cond ? ~rn : rn.
+ void cinv(const Register& rd, const Register& rn, Condition cond);
+
+ // Conditional negate: rd = cond ? -rn : rn.
+ void cneg(const Register& rd, const Register& rn, Condition cond);
+
+ // Rotate right.
+ inline void ror(const Register& rd, const Register& rs, unsigned shift) {
+ extr(rd, rs, rs, shift);
+ }
+
+ // Conditional comparison.
+ // Conditional compare negative.
+ void ccmn(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // Conditional compare.
+ void ccmp(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // Multiply.
+ void mul(const Register& rd, const Register& rn, const Register& rm);
+
+ // Negated multiply.
+ void mneg(const Register& rd, const Register& rn, const Register& rm);
+
+ // Signed long multiply: 32 x 32 -> 64-bit.
+ void smull(const Register& rd, const Register& rn, const Register& rm);
+
+ // Signed multiply high: 64 x 64 -> 64-bit <127:64>.
+ void smulh(const Register& xd, const Register& xn, const Register& xm);
+
+ // Multiply and accumulate.
+ void madd(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Multiply and subtract.
+ void msub(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
+ void smaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
+ void umaddl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit.
+ void smsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit.
+ void umsubl(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra);
+
+ // Signed integer divide.
+ void sdiv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Unsigned integer divide.
+ void udiv(const Register& rd, const Register& rn, const Register& rm);
+
+ // Bit reverse.
+ void rbit(const Register& rd, const Register& rn);
+
+ // Reverse bytes in 16-bit half words.
+ void rev16(const Register& rd, const Register& rn);
+
+ // Reverse bytes in 32-bit words.
+ void rev32(const Register& rd, const Register& rn);
+
+ // Reverse bytes.
+ void rev(const Register& rd, const Register& rn);
+
+ // Count leading zeroes.
+ void clz(const Register& rd, const Register& rn);
+
+ // Count leading sign bits.
+ void cls(const Register& rd, const Register& rn);
+
+ // Memory instructions.
+ // Load integer or FP register.
+ void ldr(const CPURegister& rt, const MemOperand& src);
+
+ // Store integer or FP register.
+ void str(const CPURegister& rt, const MemOperand& dst);
+
+ // Load word with sign extension.
+ void ldrsw(const Register& rt, const MemOperand& src);
+
+ // Load byte.
+ void ldrb(const Register& rt, const MemOperand& src);
+
+ // Store byte.
+ void strb(const Register& rt, const MemOperand& dst);
+
+ // Load byte with sign extension.
+ void ldrsb(const Register& rt, const MemOperand& src);
+
+ // Load half-word.
+ void ldrh(const Register& rt, const MemOperand& src);
+
+ // Store half-word.
+ void strh(const Register& rt, const MemOperand& dst);
+
+ // Load half-word with sign extension.
+ void ldrsh(const Register& rt, const MemOperand& src);
+
+ // Load integer or FP register pair.
+ void ldp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& src);
+
+ // Store integer or FP register pair.
+ void stp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& dst);
+
+ // Load word pair with sign extension.
+ void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);
+
+ // Load integer or FP register pair, non-temporal.
+ void ldnp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& src);
+
+ // Store integer or FP register pair, non-temporal.
+ void stnp(const CPURegister& rt, const CPURegister& rt2,
+ const MemOperand& dst);
+
+ // Load literal to register.
+ void ldr(const Register& rt, uint64_t imm);
+
+ // Load literal to FP register.
+ void ldr(const FPRegister& ft, double imm);
+
+ // Move instructions. The default shift of -1 indicates that the move
+ // instruction will calculate an appropriate 16-bit immediate and left shift
+ // that is equal to the 64-bit immediate argument. If an explicit left shift
+ // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
+ //
+ // For movk, an explicit shift can be used to indicate which half word should
+ // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
+ // half word with zero, whereas movk(x0, 0, 48) will overwrite the
+ // most-significant.
+
+ // Move immediate and keep.
+ void movk(const Register& rd, uint64_t imm, int shift = -1) {
+ MoveWide(rd, imm, shift, MOVK);
+ }
+
+ // Move inverted immediate.
+ void movn(const Register& rd, uint64_t imm, int shift = -1) {
+ MoveWide(rd, imm, shift, MOVN);
+ }
+
+ // Move immediate.
+ void movz(const Register& rd, uint64_t imm, int shift = -1) {
+ MoveWide(rd, imm, shift, MOVZ);
+ }
+
+ // Misc instructions.
+ // Monitor debug-mode breakpoint.
+ void brk(int code);
+
+ // Halting debug-mode breakpoint.
+ void hlt(int code);
+
+ // Move register to register.
+ void mov(const Register& rd, const Register& rn);
+
+ // Move inverted operand to register.
+ void mvn(const Register& rd, const Operand& operand);
+
+ // System instructions.
+ // Move to register from system register.
+ void mrs(const Register& rt, SystemRegister sysreg);
+
+ // Move from register to system register.
+ void msr(SystemRegister sysreg, const Register& rt);
+
+ // System hint.
+ void hint(SystemHint code);
+
+ // Alias for system instructions.
+ // No-op.
+ void nop() {
+ hint(NOP);
+ }
+
+ // FP instructions.
+ // Move immediate to FP register.
+ void fmov(FPRegister fd, double imm);
+
+ // Move FP register to register.
+ void fmov(Register rd, FPRegister fn);
+
+ // Move register to FP register.
+ void fmov(FPRegister fd, Register rn);
+
+ // Move FP register to FP register.
+ void fmov(FPRegister fd, FPRegister fn);
+
+ // FP add.
+ void fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP subtract.
+ void fsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP multiply.
+ void fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP multiply and subtract.
+ void fmsub(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ const FPRegister& fa);
+
+ // FP divide.
+ void fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP maximum.
+ void fmax(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP minimum.
+ void fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+ // FP absolute.
+ void fabs(const FPRegister& fd, const FPRegister& fn);
+
+ // FP negate.
+ void fneg(const FPRegister& fd, const FPRegister& fn);
+
+ // FP square root.
+ void fsqrt(const FPRegister& fd, const FPRegister& fn);
+
+ // FP round to integer (nearest with ties to even).
+ void frintn(const FPRegister& fd, const FPRegister& fn);
+
+ // FP round to integer (towards zero).
+ void frintz(const FPRegister& fd, const FPRegister& fn);
+
+ // FP compare registers.
+ void fcmp(const FPRegister& fn, const FPRegister& fm);
+
+ // FP compare immediate.
+ void fcmp(const FPRegister& fn, double value);
+
+ // FP conditional compare.
+ void fccmp(const FPRegister& fn,
+ const FPRegister& fm,
+ StatusFlags nzcv,
+ Condition cond);
+
+ // FP conditional select.
+ void fcsel(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ Condition cond);
+
+ // Common FP Convert function.
+ void FPConvertToInt(const Register& rd,
+ const FPRegister& fn,
+ FPIntegerConvertOp op);
+
+ // FP convert between single and double precision.
+ void fcvt(const FPRegister& fd, const FPRegister& fn);
+
+ // Convert FP to unsigned integer (round towards -infinity).
+ void fcvtmu(const Register& rd, const FPRegister& fn);
+
+ // Convert FP to signed integer (round towards -infinity).
+ void fcvtms(const Register& rd, const FPRegister& fn);
+
+ // Convert FP to unsigned integer (nearest with ties to even).
+ void fcvtnu(const Register& rd, const FPRegister& fn);
+
+ // Convert FP to signed integer (nearest with ties to even).
+ void fcvtns(const Register& rd, const FPRegister& fn);
+
+ // Convert FP to unsigned integer (round towards zero).
+ void fcvtzu(const Register& rd, const FPRegister& fn);
+
+ // Convert FP to signed integer (round towards zero).
+ void fcvtzs(const Register& rd, const FPRegister& fn);
+
+ // Convert signed integer or fixed point to FP.
+ void scvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
+
+ // Convert unsigned integer or fixed point to FP.
+ void ucvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
+
+ // Emit generic instructions.
+ // Emit raw instructions into the instruction stream.
+ inline void dci(Instr raw_inst) { Emit(raw_inst); }
+
+ // Emit 32 bits of data into the instruction stream.
+ inline void dc32(uint32_t data) { EmitData(&data, sizeof(data)); }
+
+ // Emit 64 bits of data into the instruction stream.
+ inline void dc64(uint64_t data) { EmitData(&data, sizeof(data)); }
+
+ // Copy a string into the instruction stream, including the terminating NULL
+ // character. The instruction pointer (pc_) is then aligned correctly for
+ // subsequent instructions.
+ void EmitStringData(const char * string) {
+ ASSERT(string != NULL);
+
+ size_t len = strlen(string) + 1;
+ EmitData(string, len);
+
+ // Pad with NULL characters until pc_ is aligned.
+ const char pad[] = {'\0', '\0', '\0', '\0'};
+ ASSERT(sizeof(pad) == kInstructionSize);
+ Instruction* next_pc = AlignUp(pc_, kInstructionSize);
+ EmitData(&pad, next_pc - pc_);
+ }
+
+ // Code generation helpers.
+
+ // Register encoding.
+ static Instr Rd(CPURegister rd) {
+ ASSERT(rd.code() != kSPRegInternalCode);
+ return rd.code() << Rd_offset;
+ }
+
+ static Instr Rn(CPURegister rn) {
+ ASSERT(rn.code() != kSPRegInternalCode);
+ return rn.code() << Rn_offset;
+ }
+
+ static Instr Rm(CPURegister rm) {
+ ASSERT(rm.code() != kSPRegInternalCode);
+ return rm.code() << Rm_offset;
+ }
+
+ static Instr Ra(CPURegister ra) {
+ ASSERT(ra.code() != kSPRegInternalCode);
+ return ra.code() << Ra_offset;
+ }
+
+ static Instr Rt(CPURegister rt) {
+ ASSERT(rt.code() != kSPRegInternalCode);
+ return rt.code() << Rt_offset;
+ }
+
+ static Instr Rt2(CPURegister rt2) {
+ ASSERT(rt2.code() != kSPRegInternalCode);
+ return rt2.code() << Rt2_offset;
+ }
+
+ // These encoding functions allow the stack pointer to be encoded, and
+ // disallow the zero register.
+ static Instr RdSP(Register rd) {
+ ASSERT(!rd.IsZero());
+ return (rd.code() & kRegCodeMask) << Rd_offset;
+ }
+
+ static Instr RnSP(Register rn) {
+ ASSERT(!rn.IsZero());
+ return (rn.code() & kRegCodeMask) << Rn_offset;
+ }
+
+ // Flags encoding.
+ static Instr Flags(FlagsUpdate S) {
+ if (S == SetFlags) {
+ return 1 << FlagsUpdate_offset;
+ } else if (S == LeaveFlags) {
+ return 0 << FlagsUpdate_offset;
+ }
+ UNREACHABLE();
+ return 0;
+ }
+
+ static Instr Cond(Condition cond) {
+ return cond << Condition_offset;
+ }
+
+ // PC-relative address encoding.
+ static Instr ImmPCRelAddress(int imm21) {
+ ASSERT(is_int21(imm21));
+ Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
+ Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
+ Instr immlo = imm << ImmPCRelLo_offset;
+ return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
+ }
+
+ // Branch encoding.
+ static Instr ImmUncondBranch(int imm26) {
+ ASSERT(is_int26(imm26));
+ return truncate_to_int26(imm26) << ImmUncondBranch_offset;
+ }
+
+ static Instr ImmCondBranch(int imm19) {
+ ASSERT(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmCondBranch_offset;
+ }
+
+ static Instr ImmCmpBranch(int imm19) {
+ ASSERT(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmCmpBranch_offset;
+ }
+
+ static Instr ImmTestBranch(int imm14) {
+ ASSERT(is_int14(imm14));
+ return truncate_to_int14(imm14) << ImmTestBranch_offset;
+ }
+
+ static Instr ImmTestBranchBit(unsigned bit_pos) {
+ ASSERT(is_uint6(bit_pos));
+ // Subtract five from the shift offset, as we need bit 5 from bit_pos.
+ unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
+ unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
+ b5 &= ImmTestBranchBit5_mask;
+ b40 &= ImmTestBranchBit40_mask;
+ return b5 | b40;
+ }
+
+ // Data Processing encoding.
+ static Instr SF(Register rd) {
+ return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
+ }
+
+ static Instr ImmAddSub(int64_t imm) {
+ ASSERT(IsImmAddSub(imm));
+ if (is_uint12(imm)) { // No shift required.
+ return imm << ImmAddSub_offset;
+ } else {
+ return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
+ }
+ }
+
+ static inline Instr ImmS(unsigned imms, unsigned reg_size) {
+ ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
+ ((reg_size == kWRegSize) && is_uint5(imms)));
+ USE(reg_size);
+ return imms << ImmS_offset;
+ }
+
+ static inline Instr ImmR(unsigned immr, unsigned reg_size) {
+ ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+ ((reg_size == kWRegSize) && is_uint5(immr)));
+ USE(reg_size);
+ ASSERT(is_uint6(immr));
+ return immr << ImmR_offset;
+ }
+
+ static inline Instr ImmSetBits(unsigned imms, unsigned reg_size) {
+ ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ ASSERT(is_uint6(imms));
+ ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
+ USE(reg_size);
+ return imms << ImmSetBits_offset;
+ }
+
+ static inline Instr ImmRotate(unsigned immr, unsigned reg_size) {
+ ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+ ((reg_size == kWRegSize) && is_uint5(immr)));
+ USE(reg_size);
+ return immr << ImmRotate_offset;
+ }
+
+ static inline Instr ImmLLiteral(int imm19) {
+ ASSERT(is_int19(imm19));
+ return truncate_to_int19(imm19) << ImmLLiteral_offset;
+ }
+
+ static inline Instr BitN(unsigned bitn, unsigned reg_size) {
+ ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ ASSERT((reg_size == kXRegSize) || (bitn == 0));
+ USE(reg_size);
+ return bitn << BitN_offset;
+ }
+
+ static Instr ShiftDP(Shift shift) {
+ ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
+ return shift << ShiftDP_offset;
+ }
+
+ static Instr ImmDPShift(unsigned amount) {
+ ASSERT(is_uint6(amount));
+ return amount << ImmDPShift_offset;
+ }
+
+ static Instr ExtendMode(Extend extend) {
+ return extend << ExtendMode_offset;
+ }
+
+ static Instr ImmExtendShift(unsigned left_shift) {
+ ASSERT(left_shift <= 4);
+ return left_shift << ImmExtendShift_offset;
+ }
+
+ static Instr ImmCondCmp(unsigned imm) {
+ ASSERT(is_uint5(imm));
+ return imm << ImmCondCmp_offset;
+ }
+
+ static Instr Nzcv(StatusFlags nzcv) {
+ return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
+ }
+
+ // MemOperand offset encoding.
+ static Instr ImmLSUnsigned(int imm12) {
+ ASSERT(is_uint12(imm12));
+ return imm12 << ImmLSUnsigned_offset;
+ }
+
+ static Instr ImmLS(int imm9) {
+ ASSERT(is_int9(imm9));
+ return truncate_to_int9(imm9) << ImmLS_offset;
+ }
+
+ static Instr ImmLSPair(int imm7, LSDataSize size) {
+ ASSERT(((imm7 >> size) << size) == imm7);
+ int scaled_imm7 = imm7 >> size;
+ ASSERT(is_int7(scaled_imm7));
+ return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
+ }
+
+ static Instr ImmShiftLS(unsigned shift_amount) {
+ ASSERT(is_uint1(shift_amount));
+ return shift_amount << ImmShiftLS_offset;
+ }
+
+ static Instr ImmException(int imm16) {
+ ASSERT(is_uint16(imm16));
+ return imm16 << ImmException_offset;
+ }
+
+ static Instr ImmSystemRegister(int imm15) {
+ ASSERT(is_uint15(imm15));
+ return imm15 << ImmSystemRegister_offset;
+ }
+
+ static Instr ImmHint(int imm7) {
+ ASSERT(is_uint7(imm7));
+ return imm7 << ImmHint_offset;
+ }
+
+ static LSDataSize CalcLSDataSize(LoadStoreOp op) {
+ ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
+ return static_cast<LSDataSize>(op >> SizeLS_offset);
+ }
+
+ // Move immediates encoding.
+ static Instr ImmMoveWide(uint64_t imm) {
+ ASSERT(is_uint16(imm));
+ return imm << ImmMoveWide_offset;
+ }
+
+ static Instr ShiftMoveWide(int64_t shift) {
+ ASSERT(is_uint2(shift));
+ return shift << ShiftMoveWide_offset;
+ }
+
+ // FP Immediates.
+ static Instr ImmFP32(float imm);
+ static Instr ImmFP64(double imm);
+
+ // FP register type.
+ static Instr FPType(FPRegister fd) {
+ return fd.Is64Bits() ? FP64 : FP32;
+ }
+
+ static Instr FPScale(unsigned scale) {
+ ASSERT(is_uint6(scale));
+ return scale << FPScale_offset;
+ }
+
+ // Size of the code generated in bytes
+ uint64_t SizeOfCodeGenerated() const {
+ ASSERT((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_)));
+ return pc_ - buffer_;
+ }
+
+ // Size of the code generated since label to the current position.
+ uint64_t SizeOfCodeGeneratedSince(Label* label) const {
+ ASSERT(label->IsBound());
+ ASSERT((pc_ >= label->target()) && (pc_ < (buffer_ + buffer_size_)));
+ return pc_ - label->target();
+ }
+
+
+ inline void BlockLiteralPool() {
+ literal_pool_monitor_++;
+ }
+
+ inline void ReleaseLiteralPool() {
+ if (--literal_pool_monitor_ == 0) {
+ // Has the literal pool been blocked for too long?
+ ASSERT(literals_.empty() ||
+ (pc_ < (literals_.back()->pc_ + kMaxLoadLiteralRange)));
+ }
+ }
+
+ inline bool IsLiteralPoolBlocked() {
+ return literal_pool_monitor_ != 0;
+ }
+
+ void CheckLiteralPool(LiteralPoolEmitOption option = JumpRequired);
+ void EmitLiteralPool(LiteralPoolEmitOption option = NoJumpRequired);
+ size_t LiteralPoolSize();
+
+ protected:
+ inline const Register& AppropriateZeroRegFor(const CPURegister& reg) const {
+ return reg.Is64Bits() ? xzr : wzr;
+ }
+
+
+ void LoadStore(const CPURegister& rt,
+ const MemOperand& addr,
+ LoadStoreOp op);
+ static bool IsImmLSUnscaled(ptrdiff_t offset);
+ static bool IsImmLSScaled(ptrdiff_t offset, LSDataSize size);
+
+ void Logical(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ LogicalOp op);
+ void LogicalImmediate(const Register& rd,
+ const Register& rn,
+ unsigned n,
+ unsigned imm_s,
+ unsigned imm_r,
+ LogicalOp op);
+ static bool IsImmLogical(uint64_t value,
+ unsigned width,
+ unsigned* n,
+ unsigned* imm_s,
+ unsigned* imm_r);
+
+ void ConditionalCompare(const Register& rn,
+ const Operand& operand,
+ StatusFlags nzcv,
+ Condition cond,
+ ConditionalCompareOp op);
+ static bool IsImmConditionalCompare(int64_t immediate);
+
+ void AddSubWithCarry(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubWithCarryOp op);
+
+ // Functions for emulating operands not directly supported by the instruction
+ // set.
+ void EmitShift(const Register& rd,
+ const Register& rn,
+ Shift shift,
+ unsigned amount);
+ void EmitExtendShift(const Register& rd,
+ const Register& rn,
+ Extend extend,
+ unsigned left_shift);
+
+ void AddSub(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ AddSubOp op);
+ static bool IsImmAddSub(int64_t immediate);
+
+ // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
+ // registers. Only simple loads are supported; sign- and zero-extension (such
+ // as in LDPSW_x or LDRB_w) are not supported.
+ static LoadStoreOp LoadOpFor(const CPURegister& rt);
+ static LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
+ const CPURegister& rt2);
+ static LoadStoreOp StoreOpFor(const CPURegister& rt);
+ static LoadStorePairOp StorePairOpFor(const CPURegister& rt,
+ const CPURegister& rt2);
+ static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2);
+ static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
+ const CPURegister& rt, const CPURegister& rt2);
+
+
+ private:
+ // Instruction helpers.
+ void MoveWide(const Register& rd,
+ uint64_t imm,
+ int shift,
+ MoveWideImmediateOp mov_op);
+ void DataProcShiftedRegister(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ Instr op);
+ void DataProcExtendedRegister(const Register& rd,
+ const Register& rn,
+ const Operand& operand,
+ FlagsUpdate S,
+ Instr op);
+ void LoadStorePair(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairOp op);
+ void LoadStorePairNonTemporal(const CPURegister& rt,
+ const CPURegister& rt2,
+ const MemOperand& addr,
+ LoadStorePairNonTemporalOp op);
+ void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op);
+ void ConditionalSelect(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ Condition cond,
+ ConditionalSelectOp op);
+ void DataProcessing1Source(const Register& rd,
+ const Register& rn,
+ DataProcessing1SourceOp op);
+ void DataProcessing3Source(const Register& rd,
+ const Register& rn,
+ const Register& rm,
+ const Register& ra,
+ DataProcessing3SourceOp op);
+ void FPDataProcessing1Source(const FPRegister& fd,
+ const FPRegister& fn,
+ FPDataProcessing1SourceOp op);
+ void FPDataProcessing2Source(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ FPDataProcessing2SourceOp op);
+ void FPDataProcessing3Source(const FPRegister& fd,
+ const FPRegister& fn,
+ const FPRegister& fm,
+ const FPRegister& fa,
+ FPDataProcessing3SourceOp op);
+
+ // Encoding helpers.
+ static bool IsImmFP32(float imm);
+ static bool IsImmFP64(double imm);
+
+ void RecordLiteral(int64_t imm, unsigned size);
+
+ // Emit the instruction at pc_.
+ void Emit(Instr instruction) {
+ ASSERT(sizeof(*pc_) == 1);
+ ASSERT(sizeof(instruction) == kInstructionSize);
+ ASSERT((pc_ + sizeof(instruction)) <= (buffer_ + buffer_size_));
+
+#ifdef DEBUG
+ finalized_ = false;
+#endif
+
+ memcpy(pc_, &instruction, sizeof(instruction));
+ pc_ += sizeof(instruction);
+ CheckBufferSpace();
+ }
+
+ // Emit data inline in the instruction stream.
+ void EmitData(void const * data, unsigned size) {
+ ASSERT(sizeof(*pc_) == 1);
+ ASSERT((pc_ + size) <= (buffer_ + buffer_size_));
+
+#ifdef DEBUG
+ finalized_ = false;
+#endif
+
+ // TODO: Record this 'instruction' as data, so that it can be disassembled
+ // correctly.
+ memcpy(pc_, data, size);
+ pc_ += size;
+ CheckBufferSpace();
+ }
+
+ inline void CheckBufferSpace() {
+ ASSERT(pc_ < (buffer_ + buffer_size_));
+ if (pc_ > next_literal_pool_check_) {
+ CheckLiteralPool();
+ }
+ }
+
+ // The buffer into which code and relocation info are generated.
+ Instruction* buffer_;
+ // Buffer size, in bytes.
+ unsigned buffer_size_;
+ Instruction* pc_;
+ std::list<Literal*> literals_;
+ Instruction* next_literal_pool_check_;
+ unsigned literal_pool_monitor_;
+
+ friend class BlockLiteralPoolScope;
+
+#ifdef DEBUG
+ bool finalized_;
+#endif
+};
+
+class BlockLiteralPoolScope {
+ public:
+ explicit BlockLiteralPoolScope(Assembler* assm) : assm_(assm) {
+ assm_->BlockLiteralPool();
+ }
+
+ ~BlockLiteralPoolScope() {
+ assm_->ReleaseLiteralPool();
+ }
+
+ private:
+ Assembler* assm_;
+};
+} // namespace vixl
+
+#endif // VIXL_A64_ASSEMBLER_A64_H_
diff --git a/disas/libvixl/a64/constants-a64.h b/disas/libvixl/a64/constants-a64.h
new file mode 100644
index 0000000..2e0336d
--- /dev/null
+++ b/disas/libvixl/a64/constants-a64.h
@@ -0,0 +1,1104 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_CONSTANTS_A64_H_
+#define VIXL_A64_CONSTANTS_A64_H_
+
+namespace vixl {
+
+const unsigned kNumberOfRegisters = 32;
+const unsigned kNumberOfFPRegisters = 32;
+// Callee saved registers are x21-x30(lr).
+const int kNumberOfCalleeSavedRegisters = 10;
+const int kFirstCalleeSavedRegisterIndex = 21;
+// Callee saved FP registers are d8-d15.
+const int kNumberOfCalleeSavedFPRegisters = 8;
+const int kFirstCalleeSavedFPRegisterIndex = 8;
+
+#define REGISTER_CODE_LIST(R) \
+R(0) R(1) R(2) R(3) R(4) R(5) R(6) R(7) \
+R(8) R(9) R(10) R(11) R(12) R(13) R(14) R(15) \
+R(16) R(17) R(18) R(19) R(20) R(21) R(22) R(23) \
+R(24) R(25) R(26) R(27) R(28) R(29) R(30) R(31)
+
+#define INSTRUCTION_FIELDS_LIST(V_) \
+/* Register fields */ \
+V_(Rd, 4, 0, Bits) /* Destination register. */ \
+V_(Rn, 9, 5, Bits) /* First source register. */ \
+V_(Rm, 20, 16, Bits) /* Second source register. */ \
+V_(Ra, 14, 10, Bits) /* Third source register. */ \
+V_(Rt, 4, 0, Bits) /* Load dest / store source. */ \
+V_(Rt2, 14, 10, Bits) /* Load second dest / */ \
+ /* store second source. */ \
+V_(PrefetchMode, 4, 0, Bits) \
+ \
+/* Common bits */ \
+V_(SixtyFourBits, 31, 31, Bits) \
+V_(FlagsUpdate, 29, 29, Bits) \
+ \
+/* PC relative addressing */ \
+V_(ImmPCRelHi, 23, 5, SignedBits) \
+V_(ImmPCRelLo, 30, 29, Bits) \
+ \
+/* Add/subtract/logical shift register */ \
+V_(ShiftDP, 23, 22, Bits) \
+V_(ImmDPShift, 15, 10, Bits) \
+ \
+/* Add/subtract immediate */ \
+V_(ImmAddSub, 21, 10, Bits) \
+V_(ShiftAddSub, 23, 22, Bits) \
+ \
+/* Add/substract extend */ \
+V_(ImmExtendShift, 12, 10, Bits) \
+V_(ExtendMode, 15, 13, Bits) \
+ \
+/* Move wide */ \
+V_(ImmMoveWide, 20, 5, Bits) \
+V_(ShiftMoveWide, 22, 21, Bits) \
+ \
+/* Logical immediate, bitfield and extract */ \
+V_(BitN, 22, 22, Bits) \
+V_(ImmRotate, 21, 16, Bits) \
+V_(ImmSetBits, 15, 10, Bits) \
+V_(ImmR, 21, 16, Bits) \
+V_(ImmS, 15, 10, Bits) \
+ \
+/* Test and branch immediate */ \
+V_(ImmTestBranch, 18, 5, SignedBits) \
+V_(ImmTestBranchBit40, 23, 19, Bits) \
+V_(ImmTestBranchBit5, 31, 31, Bits) \
+ \
+/* Conditionals */ \
+V_(Condition, 15, 12, Bits) \
+V_(ConditionBranch, 3, 0, Bits) \
+V_(Nzcv, 3, 0, Bits) \
+V_(ImmCondCmp, 20, 16, Bits) \
+V_(ImmCondBranch, 23, 5, SignedBits) \
+ \
+/* Floating point */ \
+V_(FPType, 23, 22, Bits) \
+V_(ImmFP, 20, 13, Bits) \
+V_(FPScale, 15, 10, Bits) \
+ \
+/* Load Store */ \
+V_(ImmLS, 20, 12, SignedBits) \
+V_(ImmLSUnsigned, 21, 10, Bits) \
+V_(ImmLSPair, 21, 15, SignedBits) \
+V_(SizeLS, 31, 30, Bits) \
+V_(ImmShiftLS, 12, 12, Bits) \
+ \
+/* Other immediates */ \
+V_(ImmUncondBranch, 25, 0, SignedBits) \
+V_(ImmCmpBranch, 23, 5, SignedBits) \
+V_(ImmLLiteral, 23, 5, SignedBits) \
+V_(ImmException, 20, 5, Bits) \
+V_(ImmHint, 11, 5, Bits) \
+ \
+/* System (MRS, MSR) */ \
+V_(ImmSystemRegister, 19, 5, Bits) \
+V_(SysO0, 19, 19, Bits) \
+V_(SysOp1, 18, 16, Bits) \
+V_(SysOp2, 7, 5, Bits) \
+V_(CRn, 15, 12, Bits) \
+V_(CRm, 11, 8, Bits) \
+
+
+#define SYSTEM_REGISTER_FIELDS_LIST(V_, M_) \
+/* NZCV */ \
+V_(Flags, 31, 28, Bits) \
+V_(N, 31, 31, Bits) \
+V_(Z, 30, 30, Bits) \
+V_(C, 29, 29, Bits) \
+V_(V, 28, 28, Bits) \
+M_(NZCV, Flags_mask) \
+ \
+/* FPCR */ \
+V_(AHP, 26, 26, Bits) \
+V_(DN, 25, 25, Bits) \
+V_(FZ, 24, 24, Bits) \
+V_(RMode, 23, 22, Bits) \
+M_(FPCR, AHP_mask | DN_mask | FZ_mask | RMode_mask)
+
+
+// Fields offsets.
+#define DECLARE_FIELDS_OFFSETS(Name, HighBit, LowBit, X) \
+const int Name##_offset = LowBit; \
+const int Name##_width = HighBit - LowBit + 1; \
+const uint32_t Name##_mask = ((1 << Name##_width) - 1) << LowBit;
+#define NOTHING(A, B)
+INSTRUCTION_FIELDS_LIST(DECLARE_FIELDS_OFFSETS)
+SYSTEM_REGISTER_FIELDS_LIST(DECLARE_FIELDS_OFFSETS, NOTHING)
+#undef NOTHING
+#undef DECLARE_FIELDS_BITS
+
+// ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST), formed
+// from ImmPCRelLo and ImmPCRelHi.
+const int ImmPCRel_mask = ImmPCRelLo_mask | ImmPCRelHi_mask;
+
+// Condition codes.
+enum Condition {
+ eq = 0,
+ ne = 1,
+ hs = 2,
+ lo = 3,
+ mi = 4,
+ pl = 5,
+ vs = 6,
+ vc = 7,
+ hi = 8,
+ ls = 9,
+ ge = 10,
+ lt = 11,
+ gt = 12,
+ le = 13,
+ al = 14,
+ nv = 15 // Behaves as always/al.
+};
+
+inline Condition InvertCondition(Condition cond) {
+ // Conditions al and nv behave identically, as "always true". They can't be
+ // inverted, because there is no "always false" condition.
+ ASSERT((cond != al) && (cond != nv));
+ return static_cast<Condition>(cond ^ 1);
+}
+
+enum FlagsUpdate {
+ SetFlags = 1,
+ LeaveFlags = 0
+};
+
+enum StatusFlags {
+ NoFlag = 0,
+
+ // Derive the flag combinations from the system register bit descriptions.
+ NFlag = N_mask,
+ ZFlag = Z_mask,
+ CFlag = C_mask,
+ VFlag = V_mask,
+ NZFlag = NFlag | ZFlag,
+ NCFlag = NFlag | CFlag,
+ NVFlag = NFlag | VFlag,
+ ZCFlag = ZFlag | CFlag,
+ ZVFlag = ZFlag | VFlag,
+ CVFlag = CFlag | VFlag,
+ NZCFlag = NFlag | ZFlag | CFlag,
+ NZVFlag = NFlag | ZFlag | VFlag,
+ NCVFlag = NFlag | CFlag | VFlag,
+ ZCVFlag = ZFlag | CFlag | VFlag,
+ NZCVFlag = NFlag | ZFlag | CFlag | VFlag,
+
+ // Floating-point comparison results.
+ FPEqualFlag = ZCFlag,
+ FPLessThanFlag = NFlag,
+ FPGreaterThanFlag = CFlag,
+ FPUnorderedFlag = CVFlag
+};
+
+enum Shift {
+ NO_SHIFT = -1,
+ LSL = 0x0,
+ LSR = 0x1,
+ ASR = 0x2,
+ ROR = 0x3
+};
+
+enum Extend {
+ NO_EXTEND = -1,
+ UXTB = 0,
+ UXTH = 1,
+ UXTW = 2,
+ UXTX = 3,
+ SXTB = 4,
+ SXTH = 5,
+ SXTW = 6,
+ SXTX = 7
+};
+
+enum SystemHint {
+ NOP = 0,
+ YIELD = 1,
+ WFE = 2,
+ WFI = 3,
+ SEV = 4,
+ SEVL = 5
+};
+
+// System/special register names.
+// This information is not encoded as one field but as the concatenation of
+// multiple fields (Op0<0>, Op1, Crn, Crm, Op2).
+enum SystemRegister {
+ NZCV = ((0x1 << SysO0_offset) |
+ (0x3 << SysOp1_offset) |
+ (0x4 << CRn_offset) |
+ (0x2 << CRm_offset) |
+ (0x0 << SysOp2_offset)) >> ImmSystemRegister_offset,
+ FPCR = ((0x1 << SysO0_offset) |
+ (0x3 << SysOp1_offset) |
+ (0x4 << CRn_offset) |
+ (0x4 << CRm_offset) |
+ (0x0 << SysOp2_offset)) >> ImmSystemRegister_offset
+};
+
+// Instruction enumerations.
+//
+// These are the masks that define a class of instructions, and the list of
+// instructions within each class. Each enumeration has a Fixed, FMask and
+// Mask value.
+//
+// Fixed: The fixed bits in this instruction class.
+// FMask: The mask used to extract the fixed bits in the class.
+// Mask: The mask used to identify the instructions within a class.
+//
+// The enumerations can be used like this:
+//
+// ASSERT(instr->Mask(PCRelAddressingFMask) == PCRelAddressingFixed);
+// switch(instr->Mask(PCRelAddressingMask)) {
+// case ADR: Format("adr 'Xd, 'AddrPCRelByte"); break;
+// case ADRP: Format("adrp 'Xd, 'AddrPCRelPage"); break;
+// default: printf("Unknown instruction\n");
+// }
+
+
+// Generic fields.
+enum GenericInstrField {
+ SixtyFourBits = 0x80000000,
+ ThirtyTwoBits = 0x00000000,
+ FP32 = 0x00000000,
+ FP64 = 0x00400000
+};
+
+// PC relative addressing.
+enum PCRelAddressingOp {
+ PCRelAddressingFixed = 0x10000000,
+ PCRelAddressingFMask = 0x1F000000,
+ PCRelAddressingMask = 0x9F000000,
+ ADR = PCRelAddressingFixed | 0x00000000,
+ ADRP = PCRelAddressingFixed | 0x80000000
+};
+
+// Add/sub (immediate, shifted and extended.)
+const int kSFOffset = 31;
+enum AddSubOp {
+ AddSubOpMask = 0x60000000,
+ AddSubSetFlagsBit = 0x20000000,
+ ADD = 0x00000000,
+ ADDS = ADD | AddSubSetFlagsBit,
+ SUB = 0x40000000,
+ SUBS = SUB | AddSubSetFlagsBit
+};
+
+#define ADD_SUB_OP_LIST(V) \
+ V(ADD), \
+ V(ADDS), \
+ V(SUB), \
+ V(SUBS)
+
+enum AddSubImmediateOp {
+ AddSubImmediateFixed = 0x11000000,
+ AddSubImmediateFMask = 0x1F000000,
+ AddSubImmediateMask = 0xFF000000,
+ #define ADD_SUB_IMMEDIATE(A) \
+ A##_w_imm = AddSubImmediateFixed | A, \
+ A##_x_imm = AddSubImmediateFixed | A | SixtyFourBits
+ ADD_SUB_OP_LIST(ADD_SUB_IMMEDIATE)
+ #undef ADD_SUB_IMMEDIATE
+};
+
+enum AddSubShiftedOp {
+ AddSubShiftedFixed = 0x0B000000,
+ AddSubShiftedFMask = 0x1F200000,
+ AddSubShiftedMask = 0xFF200000,
+ #define ADD_SUB_SHIFTED(A) \
+ A##_w_shift = AddSubShiftedFixed | A, \
+ A##_x_shift = AddSubShiftedFixed | A | SixtyFourBits
+ ADD_SUB_OP_LIST(ADD_SUB_SHIFTED)
+ #undef ADD_SUB_SHIFTED
+};
+
+enum AddSubExtendedOp {
+ AddSubExtendedFixed = 0x0B200000,
+ AddSubExtendedFMask = 0x1F200000,
+ AddSubExtendedMask = 0xFFE00000,
+ #define ADD_SUB_EXTENDED(A) \
+ A##_w_ext = AddSubExtendedFixed | A, \
+ A##_x_ext = AddSubExtendedFixed | A | SixtyFourBits
+ ADD_SUB_OP_LIST(ADD_SUB_EXTENDED)
+ #undef ADD_SUB_EXTENDED
+};
+
+// Add/sub with carry.
+enum AddSubWithCarryOp {
+ AddSubWithCarryFixed = 0x1A000000,
+ AddSubWithCarryFMask = 0x1FE00000,
+ AddSubWithCarryMask = 0xFFE0FC00,
+ ADC_w = AddSubWithCarryFixed | ADD,
+ ADC_x = AddSubWithCarryFixed | ADD | SixtyFourBits,
+ ADC = ADC_w,
+ ADCS_w = AddSubWithCarryFixed | ADDS,
+ ADCS_x = AddSubWithCarryFixed | ADDS | SixtyFourBits,
+ SBC_w = AddSubWithCarryFixed | SUB,
+ SBC_x = AddSubWithCarryFixed | SUB | SixtyFourBits,
+ SBC = SBC_w,
+ SBCS_w = AddSubWithCarryFixed | SUBS,
+ SBCS_x = AddSubWithCarryFixed | SUBS | SixtyFourBits
+};
+
+
+// Logical (immediate and shifted register).
+enum LogicalOp {
+ LogicalOpMask = 0x60200000,
+ NOT = 0x00200000,
+ AND = 0x00000000,
+ BIC = AND | NOT,
+ ORR = 0x20000000,
+ ORN = ORR | NOT,
+ EOR = 0x40000000,
+ EON = EOR | NOT,
+ ANDS = 0x60000000,
+ BICS = ANDS | NOT
+};
+
+// Logical immediate.
+enum LogicalImmediateOp {
+ LogicalImmediateFixed = 0x12000000,
+ LogicalImmediateFMask = 0x1F800000,
+ LogicalImmediateMask = 0xFF800000,
+ AND_w_imm = LogicalImmediateFixed | AND,
+ AND_x_imm = LogicalImmediateFixed | AND | SixtyFourBits,
+ ORR_w_imm = LogicalImmediateFixed | ORR,
+ ORR_x_imm = LogicalImmediateFixed | ORR | SixtyFourBits,
+ EOR_w_imm = LogicalImmediateFixed | EOR,
+ EOR_x_imm = LogicalImmediateFixed | EOR | SixtyFourBits,
+ ANDS_w_imm = LogicalImmediateFixed | ANDS,
+ ANDS_x_imm = LogicalImmediateFixed | ANDS | SixtyFourBits
+};
+
+// Logical shifted register.
+enum LogicalShiftedOp {
+ LogicalShiftedFixed = 0x0A000000,
+ LogicalShiftedFMask = 0x1F000000,
+ LogicalShiftedMask = 0xFF200000,
+ AND_w = LogicalShiftedFixed | AND,
+ AND_x = LogicalShiftedFixed | AND | SixtyFourBits,
+ AND_shift = AND_w,
+ BIC_w = LogicalShiftedFixed | BIC,
+ BIC_x = LogicalShiftedFixed | BIC | SixtyFourBits,
+ BIC_shift = BIC_w,
+ ORR_w = LogicalShiftedFixed | ORR,
+ ORR_x = LogicalShiftedFixed | ORR | SixtyFourBits,
+ ORR_shift = ORR_w,
+ ORN_w = LogicalShiftedFixed | ORN,
+ ORN_x = LogicalShiftedFixed | ORN | SixtyFourBits,
+ ORN_shift = ORN_w,
+ EOR_w = LogicalShiftedFixed | EOR,
+ EOR_x = LogicalShiftedFixed | EOR | SixtyFourBits,
+ EOR_shift = EOR_w,
+ EON_w = LogicalShiftedFixed | EON,
+ EON_x = LogicalShiftedFixed | EON | SixtyFourBits,
+ EON_shift = EON_w,
+ ANDS_w = LogicalShiftedFixed | ANDS,
+ ANDS_x = LogicalShiftedFixed | ANDS | SixtyFourBits,
+ ANDS_shift = ANDS_w,
+ BICS_w = LogicalShiftedFixed | BICS,
+ BICS_x = LogicalShiftedFixed | BICS | SixtyFourBits,
+ BICS_shift = BICS_w
+};
+
+// Move wide immediate.
+enum MoveWideImmediateOp {
+ MoveWideImmediateFixed = 0x12800000,
+ MoveWideImmediateFMask = 0x1F800000,
+ MoveWideImmediateMask = 0xFF800000,
+ MOVN = 0x00000000,
+ MOVZ = 0x40000000,
+ MOVK = 0x60000000,
+ MOVN_w = MoveWideImmediateFixed | MOVN,
+ MOVN_x = MoveWideImmediateFixed | MOVN | SixtyFourBits,
+ MOVZ_w = MoveWideImmediateFixed | MOVZ,
+ MOVZ_x = MoveWideImmediateFixed | MOVZ | SixtyFourBits,
+ MOVK_w = MoveWideImmediateFixed | MOVK,
+ MOVK_x = MoveWideImmediateFixed | MOVK | SixtyFourBits
+};
+
+// Bitfield.
+const int kBitfieldNOffset = 22;
+enum BitfieldOp {
+ BitfieldFixed = 0x13000000,
+ BitfieldFMask = 0x1F800000,
+ BitfieldMask = 0xFF800000,
+ SBFM_w = BitfieldFixed | 0x00000000,
+ SBFM_x = BitfieldFixed | 0x80000000,
+ SBFM = SBFM_w,
+ BFM_w = BitfieldFixed | 0x20000000,
+ BFM_x = BitfieldFixed | 0xA0000000,
+ BFM = BFM_w,
+ UBFM_w = BitfieldFixed | 0x40000000,
+ UBFM_x = BitfieldFixed | 0xC0000000,
+ UBFM = UBFM_w
+ // Bitfield N field.
+};
+
+// Extract.
+enum ExtractOp {
+ ExtractFixed = 0x13800000,
+ ExtractFMask = 0x1F800000,
+ ExtractMask = 0xFFA00000,
+ EXTR_w = ExtractFixed | 0x00000000,
+ EXTR_x = ExtractFixed | 0x80000000,
+ EXTR = EXTR_w
+};
+
+// Unconditional branch.
+enum UnconditionalBranchOp {
+ UnconditionalBranchFixed = 0x14000000,
+ UnconditionalBranchFMask = 0x7C000000,
+ UnconditionalBranchMask = 0xFC000000,
+ B = UnconditionalBranchFixed | 0x00000000,
+ BL = UnconditionalBranchFixed | 0x80000000
+};
+
+// Unconditional branch to register.
+enum UnconditionalBranchToRegisterOp {
+ UnconditionalBranchToRegisterFixed = 0xD6000000,
+ UnconditionalBranchToRegisterFMask = 0xFE000000,
+ UnconditionalBranchToRegisterMask = 0xFFFFFC1F,
+ BR = UnconditionalBranchToRegisterFixed | 0x001F0000,
+ BLR = UnconditionalBranchToRegisterFixed | 0x003F0000,
+ RET = UnconditionalBranchToRegisterFixed | 0x005F0000
+};
+
+// Compare and branch.
+enum CompareBranchOp {
+ CompareBranchFixed = 0x34000000,
+ CompareBranchFMask = 0x7E000000,
+ CompareBranchMask = 0xFF000000,
+ CBZ_w = CompareBranchFixed | 0x00000000,
+ CBZ_x = CompareBranchFixed | 0x80000000,
+ CBZ = CBZ_w,
+ CBNZ_w = CompareBranchFixed | 0x01000000,
+ CBNZ_x = CompareBranchFixed | 0x81000000,
+ CBNZ = CBNZ_w
+};
+
+// Test and branch.
+enum TestBranchOp {
+ TestBranchFixed = 0x36000000,
+ TestBranchFMask = 0x7E000000,
+ TestBranchMask = 0x7F000000,
+ TBZ = TestBranchFixed | 0x00000000,
+ TBNZ = TestBranchFixed | 0x01000000
+};
+
+// Conditional branch.
+enum ConditionalBranchOp {
+ ConditionalBranchFixed = 0x54000000,
+ ConditionalBranchFMask = 0xFE000000,
+ ConditionalBranchMask = 0xFF000010,
+ B_cond = ConditionalBranchFixed | 0x00000000
+};
+
+// System.
+// System instruction encoding is complicated because some instructions use op
+// and CR fields to encode parameters. To handle this cleanly, the system
+// instructions are split into more than one enum.
+
+enum SystemOp {
+ SystemFixed = 0xD5000000,
+ SystemFMask = 0xFFC00000
+};
+
+enum SystemSysRegOp {
+ SystemSysRegFixed = 0xD5100000,
+ SystemSysRegFMask = 0xFFD00000,
+ SystemSysRegMask = 0xFFF00000,
+ MRS = SystemSysRegFixed | 0x00200000,
+ MSR = SystemSysRegFixed | 0x00000000
+};
+
+enum SystemHintOp {
+ SystemHintFixed = 0xD503201F,
+ SystemHintFMask = 0xFFFFF01F,
+ SystemHintMask = 0xFFFFF01F,
+ HINT = SystemHintFixed | 0x00000000
+};
+
+// Exception.
+enum ExceptionOp {
+ ExceptionFixed = 0xD4000000,
+ ExceptionFMask = 0xFF000000,
+ ExceptionMask = 0xFFE0001F,
+ HLT = ExceptionFixed | 0x00400000,
+ BRK = ExceptionFixed | 0x00200000,
+ SVC = ExceptionFixed | 0x00000001,
+ HVC = ExceptionFixed | 0x00000002,
+ SMC = ExceptionFixed | 0x00000003,
+ DCPS1 = ExceptionFixed | 0x00A00001,
+ DCPS2 = ExceptionFixed | 0x00A00002,
+ DCPS3 = ExceptionFixed | 0x00A00003
+};
+
+// Any load or store.
+enum LoadStoreAnyOp {
+ LoadStoreAnyFMask = 0x0a000000,
+ LoadStoreAnyFixed = 0x08000000
+};
+
+#define LOAD_STORE_PAIR_OP_LIST(V) \
+ V(STP, w, 0x00000000), \
+ V(LDP, w, 0x00400000), \
+ V(LDPSW, x, 0x40400000), \
+ V(STP, x, 0x80000000), \
+ V(LDP, x, 0x80400000), \
+ V(STP, s, 0x04000000), \
+ V(LDP, s, 0x04400000), \
+ V(STP, d, 0x44000000), \
+ V(LDP, d, 0x44400000)
+
+// Load/store pair (post, pre and offset.)
+enum LoadStorePairOp {
+ LoadStorePairMask = 0xC4400000,
+ LoadStorePairLBit = 1 << 22,
+ #define LOAD_STORE_PAIR(A, B, C) \
+ A##_##B = C
+ LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR)
+ #undef LOAD_STORE_PAIR
+};
+
+enum LoadStorePairPostIndexOp {
+ LoadStorePairPostIndexFixed = 0x28800000,
+ LoadStorePairPostIndexFMask = 0x3B800000,
+ LoadStorePairPostIndexMask = 0xFFC00000,
+ #define LOAD_STORE_PAIR_POST_INDEX(A, B, C) \
+ A##_##B##_post = LoadStorePairPostIndexFixed | A##_##B
+ LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_POST_INDEX)
+ #undef LOAD_STORE_PAIR_POST_INDEX
+};
+
+enum LoadStorePairPreIndexOp {
+ LoadStorePairPreIndexFixed = 0x29800000,
+ LoadStorePairPreIndexFMask = 0x3B800000,
+ LoadStorePairPreIndexMask = 0xFFC00000,
+ #define LOAD_STORE_PAIR_PRE_INDEX(A, B, C) \
+ A##_##B##_pre = LoadStorePairPreIndexFixed | A##_##B
+ LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_PRE_INDEX)
+ #undef LOAD_STORE_PAIR_PRE_INDEX
+};
+
+enum LoadStorePairOffsetOp {
+ LoadStorePairOffsetFixed = 0x29000000,
+ LoadStorePairOffsetFMask = 0x3B800000,
+ LoadStorePairOffsetMask = 0xFFC00000,
+ #define LOAD_STORE_PAIR_OFFSET(A, B, C) \
+ A##_##B##_off = LoadStorePairOffsetFixed | A##_##B
+ LOAD_STORE_PAIR_OP_LIST(LOAD_STORE_PAIR_OFFSET)
+ #undef LOAD_STORE_PAIR_OFFSET
+};
+
+enum LoadStorePairNonTemporalOp {
+ LoadStorePairNonTemporalFixed = 0x28000000,
+ LoadStorePairNonTemporalFMask = 0x3B800000,
+ LoadStorePairNonTemporalMask = 0xFFC00000,
+ STNP_w = LoadStorePairNonTemporalFixed | STP_w,
+ LDNP_w = LoadStorePairNonTemporalFixed | LDP_w,
+ STNP_x = LoadStorePairNonTemporalFixed | STP_x,
+ LDNP_x = LoadStorePairNonTemporalFixed | LDP_x,
+ STNP_s = LoadStorePairNonTemporalFixed | STP_s,
+ LDNP_s = LoadStorePairNonTemporalFixed | LDP_s,
+ STNP_d = LoadStorePairNonTemporalFixed | STP_d,
+ LDNP_d = LoadStorePairNonTemporalFixed | LDP_d
+};
+
+// Load literal.
+enum LoadLiteralOp {
+ LoadLiteralFixed = 0x18000000,
+ LoadLiteralFMask = 0x3B000000,
+ LoadLiteralMask = 0xFF000000,
+ LDR_w_lit = LoadLiteralFixed | 0x00000000,
+ LDR_x_lit = LoadLiteralFixed | 0x40000000,
+ LDRSW_x_lit = LoadLiteralFixed | 0x80000000,
+ PRFM_lit = LoadLiteralFixed | 0xC0000000,
+ LDR_s_lit = LoadLiteralFixed | 0x04000000,
+ LDR_d_lit = LoadLiteralFixed | 0x44000000
+};
+
+#define LOAD_STORE_OP_LIST(V) \
+ V(ST, RB, w, 0x00000000), \
+ V(ST, RH, w, 0x40000000), \
+ V(ST, R, w, 0x80000000), \
+ V(ST, R, x, 0xC0000000), \
+ V(LD, RB, w, 0x00400000), \
+ V(LD, RH, w, 0x40400000), \
+ V(LD, R, w, 0x80400000), \
+ V(LD, R, x, 0xC0400000), \
+ V(LD, RSB, x, 0x00800000), \
+ V(LD, RSH, x, 0x40800000), \
+ V(LD, RSW, x, 0x80800000), \
+ V(LD, RSB, w, 0x00C00000), \
+ V(LD, RSH, w, 0x40C00000), \
+ V(ST, R, s, 0x84000000), \
+ V(ST, R, d, 0xC4000000), \
+ V(LD, R, s, 0x84400000), \
+ V(LD, R, d, 0xC4400000)
+
+
+// Load/store unscaled offset.
+enum LoadStoreUnscaledOffsetOp {
+ LoadStoreUnscaledOffsetFixed = 0x38000000,
+ LoadStoreUnscaledOffsetFMask = 0x3B200C00,
+ LoadStoreUnscaledOffsetMask = 0xFFE00C00,
+ #define LOAD_STORE_UNSCALED(A, B, C, D) \
+ A##U##B##_##C = LoadStoreUnscaledOffsetFixed | D
+ LOAD_STORE_OP_LIST(LOAD_STORE_UNSCALED)
+ #undef LOAD_STORE_UNSCALED
+};
+
+// Load/store (post, pre, offset and unsigned.)
+enum LoadStoreOp {
+ LoadStoreOpMask = 0xC4C00000,
+ #define LOAD_STORE(A, B, C, D) \
+ A##B##_##C = D
+ LOAD_STORE_OP_LIST(LOAD_STORE),
+ #undef LOAD_STORE
+ PRFM = 0xC0800000
+};
+
+// Load/store post index.
+enum LoadStorePostIndex {
+ LoadStorePostIndexFixed = 0x38000400,
+ LoadStorePostIndexFMask = 0x3B200C00,
+ LoadStorePostIndexMask = 0xFFE00C00,
+ #define LOAD_STORE_POST_INDEX(A, B, C, D) \
+ A##B##_##C##_post = LoadStorePostIndexFixed | D
+ LOAD_STORE_OP_LIST(LOAD_STORE_POST_INDEX)
+ #undef LOAD_STORE_POST_INDEX
+};
+
+// Load/store pre index.
+enum LoadStorePreIndex {
+ LoadStorePreIndexFixed = 0x38000C00,
+ LoadStorePreIndexFMask = 0x3B200C00,
+ LoadStorePreIndexMask = 0xFFE00C00,
+ #define LOAD_STORE_PRE_INDEX(A, B, C, D) \
+ A##B##_##C##_pre = LoadStorePreIndexFixed | D
+ LOAD_STORE_OP_LIST(LOAD_STORE_PRE_INDEX)
+ #undef LOAD_STORE_PRE_INDEX
+};
+
+// Load/store unsigned offset.
+enum LoadStoreUnsignedOffset {
+ LoadStoreUnsignedOffsetFixed = 0x39000000,
+ LoadStoreUnsignedOffsetFMask = 0x3B000000,
+ LoadStoreUnsignedOffsetMask = 0xFFC00000,
+ PRFM_unsigned = LoadStoreUnsignedOffsetFixed | PRFM,
+ #define LOAD_STORE_UNSIGNED_OFFSET(A, B, C, D) \
+ A##B##_##C##_unsigned = LoadStoreUnsignedOffsetFixed | D
+ LOAD_STORE_OP_LIST(LOAD_STORE_UNSIGNED_OFFSET)
+ #undef LOAD_STORE_UNSIGNED_OFFSET
+};
+
+// Load/store register offset.
+enum LoadStoreRegisterOffset {
+ LoadStoreRegisterOffsetFixed = 0x38200800,
+ LoadStoreRegisterOffsetFMask = 0x3B200C00,
+ LoadStoreRegisterOffsetMask = 0xFFE00C00,
+ PRFM_reg = LoadStoreRegisterOffsetFixed | PRFM,
+ #define LOAD_STORE_REGISTER_OFFSET(A, B, C, D) \
+ A##B##_##C##_reg = LoadStoreRegisterOffsetFixed | D
+ LOAD_STORE_OP_LIST(LOAD_STORE_REGISTER_OFFSET)
+ #undef LOAD_STORE_REGISTER_OFFSET
+};
+
+// Conditional compare.
+enum ConditionalCompareOp {
+ ConditionalCompareMask = 0x60000000,
+ CCMN = 0x20000000,
+ CCMP = 0x60000000
+};
+
+// Conditional compare register.
+enum ConditionalCompareRegisterOp {
+ ConditionalCompareRegisterFixed = 0x1A400000,
+ ConditionalCompareRegisterFMask = 0x1FE00800,
+ ConditionalCompareRegisterMask = 0xFFE00C10,
+ CCMN_w = ConditionalCompareRegisterFixed | CCMN,
+ CCMN_x = ConditionalCompareRegisterFixed | SixtyFourBits | CCMN,
+ CCMP_w = ConditionalCompareRegisterFixed | CCMP,
+ CCMP_x = ConditionalCompareRegisterFixed | SixtyFourBits | CCMP
+};
+
+// Conditional compare immediate.
+enum ConditionalCompareImmediateOp {
+ ConditionalCompareImmediateFixed = 0x1A400800,
+ ConditionalCompareImmediateFMask = 0x1FE00800,
+ ConditionalCompareImmediateMask = 0xFFE00C10,
+ CCMN_w_imm = ConditionalCompareImmediateFixed | CCMN,
+ CCMN_x_imm = ConditionalCompareImmediateFixed | SixtyFourBits | CCMN,
+ CCMP_w_imm = ConditionalCompareImmediateFixed | CCMP,
+ CCMP_x_imm = ConditionalCompareImmediateFixed | SixtyFourBits | CCMP
+};
+
+// Conditional select.
+enum ConditionalSelectOp {
+ ConditionalSelectFixed = 0x1A800000,
+ ConditionalSelectFMask = 0x1FE00000,
+ ConditionalSelectMask = 0xFFE00C00,
+ CSEL_w = ConditionalSelectFixed | 0x00000000,
+ CSEL_x = ConditionalSelectFixed | 0x80000000,
+ CSEL = CSEL_w,
+ CSINC_w = ConditionalSelectFixed | 0x00000400,
+ CSINC_x = ConditionalSelectFixed | 0x80000400,
+ CSINC = CSINC_w,
+ CSINV_w = ConditionalSelectFixed | 0x40000000,
+ CSINV_x = ConditionalSelectFixed | 0xC0000000,
+ CSINV = CSINV_w,
+ CSNEG_w = ConditionalSelectFixed | 0x40000400,
+ CSNEG_x = ConditionalSelectFixed | 0xC0000400,
+ CSNEG = CSNEG_w
+};
+
+// Data processing 1 source.
+enum DataProcessing1SourceOp {
+ DataProcessing1SourceFixed = 0x5AC00000,
+ DataProcessing1SourceFMask = 0x5FE00000,
+ DataProcessing1SourceMask = 0xFFFFFC00,
+ RBIT = DataProcessing1SourceFixed | 0x00000000,
+ RBIT_w = RBIT,
+ RBIT_x = RBIT | SixtyFourBits,
+ REV16 = DataProcessing1SourceFixed | 0x00000400,
+ REV16_w = REV16,
+ REV16_x = REV16 | SixtyFourBits,
+ REV = DataProcessing1SourceFixed | 0x00000800,
+ REV_w = REV,
+ REV32_x = REV | SixtyFourBits,
+ REV_x = DataProcessing1SourceFixed | SixtyFourBits | 0x00000C00,
+ CLZ = DataProcessing1SourceFixed | 0x00001000,
+ CLZ_w = CLZ,
+ CLZ_x = CLZ | SixtyFourBits,
+ CLS = DataProcessing1SourceFixed | 0x00001400,
+ CLS_w = CLS,
+ CLS_x = CLS | SixtyFourBits
+};
+
+// Data processing 2 source.
+enum DataProcessing2SourceOp {
+ DataProcessing2SourceFixed = 0x1AC00000,
+ DataProcessing2SourceFMask = 0x5FE00000,
+ DataProcessing2SourceMask = 0xFFE0FC00,
+ UDIV_w = DataProcessing2SourceFixed | 0x00000800,
+ UDIV_x = DataProcessing2SourceFixed | 0x80000800,
+ UDIV = UDIV_w,
+ SDIV_w = DataProcessing2SourceFixed | 0x00000C00,
+ SDIV_x = DataProcessing2SourceFixed | 0x80000C00,
+ SDIV = SDIV_w,
+ LSLV_w = DataProcessing2SourceFixed | 0x00002000,
+ LSLV_x = DataProcessing2SourceFixed | 0x80002000,
+ LSLV = LSLV_w,
+ LSRV_w = DataProcessing2SourceFixed | 0x00002400,
+ LSRV_x = DataProcessing2SourceFixed | 0x80002400,
+ LSRV = LSRV_w,
+ ASRV_w = DataProcessing2SourceFixed | 0x00002800,
+ ASRV_x = DataProcessing2SourceFixed | 0x80002800,
+ ASRV = ASRV_w,
+ RORV_w = DataProcessing2SourceFixed | 0x00002C00,
+ RORV_x = DataProcessing2SourceFixed | 0x80002C00,
+ RORV = RORV_w,
+ CRC32B = DataProcessing2SourceFixed | 0x00004000,
+ CRC32H = DataProcessing2SourceFixed | 0x00004400,
+ CRC32W = DataProcessing2SourceFixed | 0x00004800,
+ CRC32X = DataProcessing2SourceFixed | SixtyFourBits | 0x00004C00,
+ CRC32CB = DataProcessing2SourceFixed | 0x00005000,
+ CRC32CH = DataProcessing2SourceFixed | 0x00005400,
+ CRC32CW = DataProcessing2SourceFixed | 0x00005800,
+ CRC32CX = DataProcessing2SourceFixed | SixtyFourBits | 0x00005C00
+};
+
+// Data processing 3 source.
+enum DataProcessing3SourceOp {
+ DataProcessing3SourceFixed = 0x1B000000,
+ DataProcessing3SourceFMask = 0x1F000000,
+ DataProcessing3SourceMask = 0xFFE08000,
+ MADD_w = DataProcessing3SourceFixed | 0x00000000,
+ MADD_x = DataProcessing3SourceFixed | 0x80000000,
+ MADD = MADD_w,
+ MSUB_w = DataProcessing3SourceFixed | 0x00008000,
+ MSUB_x = DataProcessing3SourceFixed | 0x80008000,
+ MSUB = MSUB_w,
+ SMADDL_x = DataProcessing3SourceFixed | 0x80200000,
+ SMSUBL_x = DataProcessing3SourceFixed | 0x80208000,
+ SMULH_x = DataProcessing3SourceFixed | 0x80400000,
+ UMADDL_x = DataProcessing3SourceFixed | 0x80A00000,
+ UMSUBL_x = DataProcessing3SourceFixed | 0x80A08000,
+ UMULH_x = DataProcessing3SourceFixed | 0x80C00000
+};
+
+// Floating point compare.
+enum FPCompareOp {
+ FPCompareFixed = 0x1E202000,
+ FPCompareFMask = 0x5F203C00,
+ FPCompareMask = 0xFFE0FC1F,
+ FCMP_s = FPCompareFixed | 0x00000000,
+ FCMP_d = FPCompareFixed | FP64 | 0x00000000,
+ FCMP = FCMP_s,
+ FCMP_s_zero = FPCompareFixed | 0x00000008,
+ FCMP_d_zero = FPCompareFixed | FP64 | 0x00000008,
+ FCMP_zero = FCMP_s_zero,
+ FCMPE_s = FPCompareFixed | 0x00000010,
+ FCMPE_d = FPCompareFixed | FP64 | 0x00000010,
+ FCMPE_s_zero = FPCompareFixed | 0x00000018,
+ FCMPE_d_zero = FPCompareFixed | FP64 | 0x00000018
+};
+
+// Floating point conditional compare.
+enum FPConditionalCompareOp {
+ FPConditionalCompareFixed = 0x1E200400,
+ FPConditionalCompareFMask = 0x5F200C00,
+ FPConditionalCompareMask = 0xFFE00C10,
+ FCCMP_s = FPConditionalCompareFixed | 0x00000000,
+ FCCMP_d = FPConditionalCompareFixed | FP64 | 0x00000000,
+ FCCMP = FCCMP_s,
+ FCCMPE_s = FPConditionalCompareFixed | 0x00000010,
+ FCCMPE_d = FPConditionalCompareFixed | FP64 | 0x00000010,
+ FCCMPE = FCCMPE_s
+};
+
+// Floating point conditional select.
+enum FPConditionalSelectOp {
+ FPConditionalSelectFixed = 0x1E200C00,
+ FPConditionalSelectFMask = 0x5F200C00,
+ FPConditionalSelectMask = 0xFFE00C00,
+ FCSEL_s = FPConditionalSelectFixed | 0x00000000,
+ FCSEL_d = FPConditionalSelectFixed | FP64 | 0x00000000,
+ FCSEL = FCSEL_s
+};
+
+// Floating point immediate.
+enum FPImmediateOp {
+ FPImmediateFixed = 0x1E201000,
+ FPImmediateFMask = 0x5F201C00,
+ FPImmediateMask = 0xFFE01C00,
+ FMOV_s_imm = FPImmediateFixed | 0x00000000,
+ FMOV_d_imm = FPImmediateFixed | FP64 | 0x00000000
+};
+
+// Floating point data processing 1 source.
+enum FPDataProcessing1SourceOp {
+ FPDataProcessing1SourceFixed = 0x1E204000,
+ FPDataProcessing1SourceFMask = 0x5F207C00,
+ FPDataProcessing1SourceMask = 0xFFFFFC00,
+ FMOV_s = FPDataProcessing1SourceFixed | 0x00000000,
+ FMOV_d = FPDataProcessing1SourceFixed | FP64 | 0x00000000,
+ FMOV = FMOV_s,
+ FABS_s = FPDataProcessing1SourceFixed | 0x00008000,
+ FABS_d = FPDataProcessing1SourceFixed | FP64 | 0x00008000,
+ FABS = FABS_s,
+ FNEG_s = FPDataProcessing1SourceFixed | 0x00010000,
+ FNEG_d = FPDataProcessing1SourceFixed | FP64 | 0x00010000,
+ FNEG = FNEG_s,
+ FSQRT_s = FPDataProcessing1SourceFixed | 0x00018000,
+ FSQRT_d = FPDataProcessing1SourceFixed | FP64 | 0x00018000,
+ FSQRT = FSQRT_s,
+ FCVT_ds = FPDataProcessing1SourceFixed | 0x00028000,
+ FCVT_sd = FPDataProcessing1SourceFixed | FP64 | 0x00020000,
+ FRINTN_s = FPDataProcessing1SourceFixed | 0x00040000,
+ FRINTN_d = FPDataProcessing1SourceFixed | FP64 | 0x00040000,
+ FRINTN = FRINTN_s,
+ FRINTP_s = FPDataProcessing1SourceFixed | 0x00048000,
+ FRINTP_d = FPDataProcessing1SourceFixed | FP64 | 0x00048000,
+ FRINTM_s = FPDataProcessing1SourceFixed | 0x00050000,
+ FRINTM_d = FPDataProcessing1SourceFixed | FP64 | 0x00050000,
+ FRINTZ_s = FPDataProcessing1SourceFixed | 0x00058000,
+ FRINTZ_d = FPDataProcessing1SourceFixed | FP64 | 0x00058000,
+ FRINTZ = FRINTZ_s,
+ FRINTA_s = FPDataProcessing1SourceFixed | 0x00060000,
+ FRINTA_d = FPDataProcessing1SourceFixed | FP64 | 0x00060000,
+ FRINTX_s = FPDataProcessing1SourceFixed | 0x00070000,
+ FRINTX_d = FPDataProcessing1SourceFixed | FP64 | 0x00070000,
+ FRINTI_s = FPDataProcessing1SourceFixed | 0x00078000,
+ FRINTI_d = FPDataProcessing1SourceFixed | FP64 | 0x00078000
+};
+
+// Floating point data processing 2 source.
+enum FPDataProcessing2SourceOp {
+ FPDataProcessing2SourceFixed = 0x1E200800,
+ FPDataProcessing2SourceFMask = 0x5F200C00,
+ FPDataProcessing2SourceMask = 0xFFE0FC00,
+ FMUL = FPDataProcessing2SourceFixed | 0x00000000,
+ FMUL_s = FMUL,
+ FMUL_d = FMUL | FP64,
+ FDIV = FPDataProcessing2SourceFixed | 0x00001000,
+ FDIV_s = FDIV,
+ FDIV_d = FDIV | FP64,
+ FADD = FPDataProcessing2SourceFixed | 0x00002000,
+ FADD_s = FADD,
+ FADD_d = FADD | FP64,
+ FSUB = FPDataProcessing2SourceFixed | 0x00003000,
+ FSUB_s = FSUB,
+ FSUB_d = FSUB | FP64,
+ FMAX = FPDataProcessing2SourceFixed | 0x00004000,
+ FMAX_s = FMAX,
+ FMAX_d = FMAX | FP64,
+ FMIN = FPDataProcessing2SourceFixed | 0x00005000,
+ FMIN_s = FMIN,
+ FMIN_d = FMIN | FP64,
+ FMAXNM = FPDataProcessing2SourceFixed | 0x00006000,
+ FMAXNM_s = FMAXNM,
+ FMAXNM_d = FMAXNM | FP64,
+ FMINNM = FPDataProcessing2SourceFixed | 0x00007000,
+ FMINNM_s = FMINNM,
+ FMINNM_d = FMINNM | FP64,
+ FNMUL = FPDataProcessing2SourceFixed | 0x00008000,
+ FNMUL_s = FNMUL,
+ FNMUL_d = FNMUL | FP64
+};
+
+// Floating point data processing 3 source.
+enum FPDataProcessing3SourceOp {
+ FPDataProcessing3SourceFixed = 0x1F000000,
+ FPDataProcessing3SourceFMask = 0x5F000000,
+ FPDataProcessing3SourceMask = 0xFFE08000,
+ FMADD_s = FPDataProcessing3SourceFixed | 0x00000000,
+ FMSUB_s = FPDataProcessing3SourceFixed | 0x00008000,
+ FNMADD_s = FPDataProcessing3SourceFixed | 0x00200000,
+ FNMSUB_s = FPDataProcessing3SourceFixed | 0x00208000,
+ FMADD_d = FPDataProcessing3SourceFixed | 0x00400000,
+ FMSUB_d = FPDataProcessing3SourceFixed | 0x00408000,
+ FNMADD_d = FPDataProcessing3SourceFixed | 0x00600000,
+ FNMSUB_d = FPDataProcessing3SourceFixed | 0x00608000
+};
+
+// Conversion between floating point and integer.
+enum FPIntegerConvertOp {
+ FPIntegerConvertFixed = 0x1E200000,
+ FPIntegerConvertFMask = 0x5F20FC00,
+ FPIntegerConvertMask = 0xFFFFFC00,
+ FCVTNS = FPIntegerConvertFixed | 0x00000000,
+ FCVTNS_ws = FCVTNS,
+ FCVTNS_xs = FCVTNS | SixtyFourBits,
+ FCVTNS_wd = FCVTNS | FP64,
+ FCVTNS_xd = FCVTNS | SixtyFourBits | FP64,
+ FCVTNU = FPIntegerConvertFixed | 0x00010000,
+ FCVTNU_ws = FCVTNU,
+ FCVTNU_xs = FCVTNU | SixtyFourBits,
+ FCVTNU_wd = FCVTNU | FP64,
+ FCVTNU_xd = FCVTNU | SixtyFourBits | FP64,
+ FCVTPS = FPIntegerConvertFixed | 0x00080000,
+ FCVTPS_ws = FCVTPS,
+ FCVTPS_xs = FCVTPS | SixtyFourBits,
+ FCVTPS_wd = FCVTPS | FP64,
+ FCVTPS_xd = FCVTPS | SixtyFourBits | FP64,
+ FCVTPU = FPIntegerConvertFixed | 0x00090000,
+ FCVTPU_ws = FCVTPU,
+ FCVTPU_xs = FCVTPU | SixtyFourBits,
+ FCVTPU_wd = FCVTPU | FP64,
+ FCVTPU_xd = FCVTPU | SixtyFourBits | FP64,
+ FCVTMS = FPIntegerConvertFixed | 0x00100000,
+ FCVTMS_ws = FCVTMS,
+ FCVTMS_xs = FCVTMS | SixtyFourBits,
+ FCVTMS_wd = FCVTMS | FP64,
+ FCVTMS_xd = FCVTMS | SixtyFourBits | FP64,
+ FCVTMU = FPIntegerConvertFixed | 0x00110000,
+ FCVTMU_ws = FCVTMU,
+ FCVTMU_xs = FCVTMU | SixtyFourBits,
+ FCVTMU_wd = FCVTMU | FP64,
+ FCVTMU_xd = FCVTMU | SixtyFourBits | FP64,
+ FCVTZS = FPIntegerConvertFixed | 0x00180000,
+ FCVTZS_ws = FCVTZS,
+ FCVTZS_xs = FCVTZS | SixtyFourBits,
+ FCVTZS_wd = FCVTZS | FP64,
+ FCVTZS_xd = FCVTZS | SixtyFourBits | FP64,
+ FCVTZU = FPIntegerConvertFixed | 0x00190000,
+ FCVTZU_ws = FCVTZU,
+ FCVTZU_xs = FCVTZU | SixtyFourBits,
+ FCVTZU_wd = FCVTZU | FP64,
+ FCVTZU_xd = FCVTZU | SixtyFourBits | FP64,
+ SCVTF = FPIntegerConvertFixed | 0x00020000,
+ SCVTF_sw = SCVTF,
+ SCVTF_sx = SCVTF | SixtyFourBits,
+ SCVTF_dw = SCVTF | FP64,
+ SCVTF_dx = SCVTF | SixtyFourBits | FP64,
+ UCVTF = FPIntegerConvertFixed | 0x00030000,
+ UCVTF_sw = UCVTF,
+ UCVTF_sx = UCVTF | SixtyFourBits,
+ UCVTF_dw = UCVTF | FP64,
+ UCVTF_dx = UCVTF | SixtyFourBits | FP64,
+ FCVTAS = FPIntegerConvertFixed | 0x00040000,
+ FCVTAS_ws = FCVTAS,
+ FCVTAS_xs = FCVTAS | SixtyFourBits,
+ FCVTAS_wd = FCVTAS | FP64,
+ FCVTAS_xd = FCVTAS | SixtyFourBits | FP64,
+ FCVTAU = FPIntegerConvertFixed | 0x00050000,
+ FCVTAU_ws = FCVTAU,
+ FCVTAU_xs = FCVTAU | SixtyFourBits,
+ FCVTAU_wd = FCVTAU | FP64,
+ FCVTAU_xd = FCVTAU | SixtyFourBits | FP64,
+ FMOV_ws = FPIntegerConvertFixed | 0x00060000,
+ FMOV_sw = FPIntegerConvertFixed | 0x00070000,
+ FMOV_xd = FMOV_ws | SixtyFourBits | FP64,
+ FMOV_dx = FMOV_sw | SixtyFourBits | FP64
+};
+
+// Conversion between fixed point and floating point.
+enum FPFixedPointConvertOp {
+ FPFixedPointConvertFixed = 0x1E000000,
+ FPFixedPointConvertFMask = 0x5F200000,
+ FPFixedPointConvertMask = 0xFFFF0000,
+ FCVTZS_fixed = FPFixedPointConvertFixed | 0x00180000,
+ FCVTZS_ws_fixed = FCVTZS_fixed,
+ FCVTZS_xs_fixed = FCVTZS_fixed | SixtyFourBits,
+ FCVTZS_wd_fixed = FCVTZS_fixed | FP64,
+ FCVTZS_xd_fixed = FCVTZS_fixed | SixtyFourBits | FP64,
+ FCVTZU_fixed = FPFixedPointConvertFixed | 0x00190000,
+ FCVTZU_ws_fixed = FCVTZU_fixed,
+ FCVTZU_xs_fixed = FCVTZU_fixed | SixtyFourBits,
+ FCVTZU_wd_fixed = FCVTZU_fixed | FP64,
+ FCVTZU_xd_fixed = FCVTZU_fixed | SixtyFourBits | FP64,
+ SCVTF_fixed = FPFixedPointConvertFixed | 0x00020000,
+ SCVTF_sw_fixed = SCVTF_fixed,
+ SCVTF_sx_fixed = SCVTF_fixed | SixtyFourBits,
+ SCVTF_dw_fixed = SCVTF_fixed | FP64,
+ SCVTF_dx_fixed = SCVTF_fixed | SixtyFourBits | FP64,
+ UCVTF_fixed = FPFixedPointConvertFixed | 0x00030000,
+ UCVTF_sw_fixed = UCVTF_fixed,
+ UCVTF_sx_fixed = UCVTF_fixed | SixtyFourBits,
+ UCVTF_dw_fixed = UCVTF_fixed | FP64,
+ UCVTF_dx_fixed = UCVTF_fixed | SixtyFourBits | FP64
+};
+
+// Unimplemented and unallocated instructions. These are defined to make fixed
+// bit assertion easier.
+enum UnimplementedOp {
+ UnimplementedFixed = 0x00000000,
+ UnimplementedFMask = 0x00000000
+};
+
+enum UnallocatedOp {
+ UnallocatedFixed = 0x00000000,
+ UnallocatedFMask = 0x00000000
+};
+
+} // namespace vixl
+
+#endif // VIXL_A64_CONSTANTS_A64_H_
diff --git a/disas/libvixl/a64/cpu-a64.h b/disas/libvixl/a64/cpu-a64.h
new file mode 100644
index 0000000..dfd8f01
--- /dev/null
+++ b/disas/libvixl/a64/cpu-a64.h
@@ -0,0 +1,56 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_CPU_A64_H
+#define VIXL_CPU_A64_H
+
+#include "globals.h"
+
+namespace vixl {
+
+class CPU {
+ public:
+ // Initialise CPU support.
+ static void SetUp();
+
+ // Ensures the data at a given address and with a given size is the same for
+ // the I and D caches. I and D caches are not automatically coherent on ARM
+ // so this operation is required before any dynamically generated code can
+ // safely run.
+ static void EnsureIAndDCacheCoherency(void *address, size_t length);
+
+ private:
+ // Return the content of the cache type register.
+ static uint32_t GetCacheType();
+
+ // I and D cache line size in bytes.
+ static unsigned icache_line_size_;
+ static unsigned dcache_line_size_;
+};
+
+} // namespace vixl
+
+#endif // VIXL_CPU_A64_H
diff --git a/disas/libvixl/a64/decoder-a64.cc b/disas/libvixl/a64/decoder-a64.cc
new file mode 100644
index 0000000..9e9033c
--- /dev/null
+++ b/disas/libvixl/a64/decoder-a64.cc
@@ -0,0 +1,712 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "globals.h"
+#include "utils.h"
+#include "a64/decoder-a64.h"
+
+namespace vixl {
+// Top-level instruction decode function.
+void Decoder::Decode(Instruction *instr) {
+ if (instr->Bits(28, 27) == 0) {
+ VisitUnallocated(instr);
+ } else {
+ switch (instr->Bits(27, 24)) {
+ // 0: PC relative addressing.
+ case 0x0: DecodePCRelAddressing(instr); break;
+
+ // 1: Add/sub immediate.
+ case 0x1: DecodeAddSubImmediate(instr); break;
+
+ // A: Logical shifted register.
+ // Add/sub with carry.
+ // Conditional compare register.
+ // Conditional compare immediate.
+ // Conditional select.
+ // Data processing 1 source.
+ // Data processing 2 source.
+ // B: Add/sub shifted register.
+ // Add/sub extended register.
+ // Data processing 3 source.
+ case 0xA:
+ case 0xB: DecodeDataProcessing(instr); break;
+
+ // 2: Logical immediate.
+ // Move wide immediate.
+ case 0x2: DecodeLogical(instr); break;
+
+ // 3: Bitfield.
+ // Extract.
+ case 0x3: DecodeBitfieldExtract(instr); break;
+
+ // 4: Unconditional branch immediate.
+ // Exception generation.
+ // Compare and branch immediate.
+ // 5: Compare and branch immediate.
+ // Conditional branch.
+ // System.
+ // 6,7: Unconditional branch.
+ // Test and branch immediate.
+ case 0x4:
+ case 0x5:
+ case 0x6:
+ case 0x7: DecodeBranchSystemException(instr); break;
+
+ // 8,9: Load/store register pair post-index.
+ // Load register literal.
+ // Load/store register unscaled immediate.
+ // Load/store register immediate post-index.
+ // Load/store register immediate pre-index.
+ // Load/store register offset.
+ // Load/store exclusive.
+ // C,D: Load/store register pair offset.
+ // Load/store register pair pre-index.
+ // Load/store register unsigned immediate.
+ // Advanced SIMD.
+ case 0x8:
+ case 0x9:
+ case 0xC:
+ case 0xD: DecodeLoadStore(instr); break;
+
+ // E: FP fixed point conversion.
+ // FP integer conversion.
+ // FP data processing 1 source.
+ // FP compare.
+ // FP immediate.
+ // FP data processing 2 source.
+ // FP conditional compare.
+ // FP conditional select.
+ // Advanced SIMD.
+ // F: FP data processing 3 source.
+ // Advanced SIMD.
+ case 0xE:
+ case 0xF: DecodeFP(instr); break;
+ }
+ }
+}
+
+void Decoder::AppendVisitor(DecoderVisitor* new_visitor) {
+ visitors_.remove(new_visitor);
+ visitors_.push_front(new_visitor);
+}
+
+
+void Decoder::PrependVisitor(DecoderVisitor* new_visitor) {
+ visitors_.remove(new_visitor);
+ visitors_.push_back(new_visitor);
+}
+
+
+void Decoder::InsertVisitorBefore(DecoderVisitor* new_visitor,
+ DecoderVisitor* registered_visitor) {
+ visitors_.remove(new_visitor);
+ std::list<DecoderVisitor*>::iterator it;
+ for (it = visitors_.begin(); it != visitors_.end(); it++) {
+ if (*it == registered_visitor) {
+ visitors_.insert(it, new_visitor);
+ return;
+ }
+ }
+ // We reached the end of the list. The last element must be
+ // registered_visitor.
+ ASSERT(*it == registered_visitor);
+ visitors_.insert(it, new_visitor);
+}
+
+
+void Decoder::InsertVisitorAfter(DecoderVisitor* new_visitor,
+ DecoderVisitor* registered_visitor) {
+ visitors_.remove(new_visitor);
+ std::list<DecoderVisitor*>::iterator it;
+ for (it = visitors_.begin(); it != visitors_.end(); it++) {
+ if (*it == registered_visitor) {
+ it++;
+ visitors_.insert(it, new_visitor);
+ return;
+ }
+ }
+ // We reached the end of the list. The last element must be
+ // registered_visitor.
+ ASSERT(*it == registered_visitor);
+ visitors_.push_back(new_visitor);
+}
+
+
+void Decoder::RemoveVisitor(DecoderVisitor* visitor) {
+ visitors_.remove(visitor);
+}
+
+
+void Decoder::DecodePCRelAddressing(Instruction* instr) {
+ ASSERT(instr->Bits(27, 24) == 0x0);
+ // We know bit 28 is set, as <b28:b27> = 0 is filtered out at the top level
+ // decode.
+ ASSERT(instr->Bit(28) == 0x1);
+ VisitPCRelAddressing(instr);
+}
+
+
+void Decoder::DecodeBranchSystemException(Instruction* instr) {
+ ASSERT((instr->Bits(27, 24) == 0x4) ||
+ (instr->Bits(27, 24) == 0x5) ||
+ (instr->Bits(27, 24) == 0x6) ||
+ (instr->Bits(27, 24) == 0x7) );
+
+ switch (instr->Bits(31, 29)) {
+ case 0:
+ case 4: {
+ VisitUnconditionalBranch(instr);
+ break;
+ }
+ case 1:
+ case 5: {
+ if (instr->Bit(25) == 0) {
+ VisitCompareBranch(instr);
+ } else {
+ VisitTestBranch(instr);
+ }
+ break;
+ }
+ case 2: {
+ if (instr->Bit(25) == 0) {
+ if ((instr->Bit(24) == 0x1) ||
+ (instr->Mask(0x01000010) == 0x00000010)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitConditionalBranch(instr);
+ }
+ } else {
+ VisitUnallocated(instr);
+ }
+ break;
+ }
+ case 6: {
+ if (instr->Bit(25) == 0) {
+ if (instr->Bit(24) == 0) {
+ if ((instr->Bits(4, 2) != 0) ||
+ (instr->Mask(0x00E0001D) == 0x00200001) ||
+ (instr->Mask(0x00E0001D) == 0x00400001) ||
+ (instr->Mask(0x00E0001E) == 0x00200002) ||
+ (instr->Mask(0x00E0001E) == 0x00400002) ||
+ (instr->Mask(0x00E0001C) == 0x00600000) ||
+ (instr->Mask(0x00E0001C) == 0x00800000) ||
+ (instr->Mask(0x00E0001F) == 0x00A00000) ||
+ (instr->Mask(0x00C0001C) == 0x00C00000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitException(instr);
+ }
+ } else {
+ if (instr->Bits(23, 22) == 0) {
+ const Instr masked_003FF0E0 = instr->Mask(0x003FF0E0);
+ if ((instr->Bits(21, 19) == 0x4) ||
+ (masked_003FF0E0 == 0x00033000) ||
+ (masked_003FF0E0 == 0x003FF020) ||
+ (masked_003FF0E0 == 0x003FF060) ||
+ (masked_003FF0E0 == 0x003FF0E0) ||
+ (instr->Mask(0x00388000) == 0x00008000) ||
+ (instr->Mask(0x0038E000) == 0x00000000) ||
+ (instr->Mask(0x0039E000) == 0x00002000) ||
+ (instr->Mask(0x003AE000) == 0x00002000) ||
+ (instr->Mask(0x003CE000) == 0x00042000) ||
+ (instr->Mask(0x003FFFC0) == 0x000320C0) ||
+ (instr->Mask(0x003FF100) == 0x00032100) ||
+ (instr->Mask(0x003FF200) == 0x00032200) ||
+ (instr->Mask(0x003FF400) == 0x00032400) ||
+ (instr->Mask(0x003FF800) == 0x00032800) ||
+ (instr->Mask(0x0038F000) == 0x00005000) ||
+ (instr->Mask(0x0038E000) == 0x00006000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitSystem(instr);
+ }
+ } else {
+ VisitUnallocated(instr);
+ }
+ }
+ } else {
+ if ((instr->Bit(24) == 0x1) ||
+ (instr->Bits(20, 16) != 0x1F) ||
+ (instr->Bits(15, 10) != 0) ||
+ (instr->Bits(4, 0) != 0) ||
+ (instr->Bits(24, 21) == 0x3) ||
+ (instr->Bits(24, 22) == 0x3)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitUnconditionalBranchToRegister(instr);
+ }
+ }
+ break;
+ }
+ case 3:
+ case 7: {
+ VisitUnallocated(instr);
+ break;
+ }
+ }
+}
+
+
+void Decoder::DecodeLoadStore(Instruction* instr) {
+ ASSERT((instr->Bits(27, 24) == 0x8) ||
+ (instr->Bits(27, 24) == 0x9) ||
+ (instr->Bits(27, 24) == 0xC) ||
+ (instr->Bits(27, 24) == 0xD) );
+
+ if (instr->Bit(24) == 0) {
+ if (instr->Bit(28) == 0) {
+ if (instr->Bit(29) == 0) {
+ if (instr->Bit(26) == 0) {
+ // TODO: VisitLoadStoreExclusive.
+ VisitUnimplemented(instr);
+ } else {
+ DecodeAdvSIMDLoadStore(instr);
+ }
+ } else {
+ if ((instr->Bits(31, 30) == 0x3) ||
+ (instr->Mask(0xC4400000) == 0x40000000)) {
+ VisitUnallocated(instr);
+ } else {
+ if (instr->Bit(23) == 0) {
+ if (instr->Mask(0xC4400000) == 0xC0400000) {
+ VisitUnallocated(instr);
+ } else {
+ VisitLoadStorePairNonTemporal(instr);
+ }
+ } else {
+ VisitLoadStorePairPostIndex(instr);
+ }
+ }
+ }
+ } else {
+ if (instr->Bit(29) == 0) {
+ if (instr->Mask(0xC4000000) == 0xC4000000) {
+ VisitUnallocated(instr);
+ } else {
+ VisitLoadLiteral(instr);
+ }
+ } else {
+ if ((instr->Mask(0x84C00000) == 0x80C00000) ||
+ (instr->Mask(0x44800000) == 0x44800000) ||
+ (instr->Mask(0x84800000) == 0x84800000)) {
+ VisitUnallocated(instr);
+ } else {
+ if (instr->Bit(21) == 0) {
+ switch (instr->Bits(11, 10)) {
+ case 0: {
+ VisitLoadStoreUnscaledOffset(instr);
+ break;
+ }
+ case 1: {
+ if (instr->Mask(0xC4C00000) == 0xC0800000) {
+ VisitUnallocated(instr);
+ } else {
+ VisitLoadStorePostIndex(instr);
+ }
+ break;
+ }
+ case 2: {
+ // TODO: VisitLoadStoreRegisterOffsetUnpriv.
+ VisitUnimplemented(instr);
+ break;
+ }
+ case 3: {
+ if (instr->Mask(0xC4C00000) == 0xC0800000) {
+ VisitUnallocated(instr);
+ } else {
+ VisitLoadStorePreIndex(instr);
+ }
+ break;
+ }
+ }
+ } else {
+ if (instr->Bits(11, 10) == 0x2) {
+ if (instr->Bit(14) == 0) {
+ VisitUnallocated(instr);
+ } else {
+ VisitLoadStoreRegisterOffset(instr);
+ }
+ } else {
+ VisitUnallocated(instr);
+ }
+ }
+ }
+ }
+ }
+ } else {
+ if (instr->Bit(28) == 0) {
+ if (instr->Bit(29) == 0) {
+ VisitUnallocated(instr);
+ } else {
+ if ((instr->Bits(31, 30) == 0x3) ||
+ (instr->Mask(0xC4400000) == 0x40000000)) {
+ VisitUnallocated(instr);
+ } else {
+ if (instr->Bit(23) == 0) {
+ VisitLoadStorePairOffset(instr);
+ } else {
+ VisitLoadStorePairPreIndex(instr);
+ }
+ }
+ }
+ } else {
+ if (instr->Bit(29) == 0) {
+ VisitUnallocated(instr);
+ } else {
+ if ((instr->Mask(0x84C00000) == 0x80C00000) ||
+ (instr->Mask(0x44800000) == 0x44800000) ||
+ (instr->Mask(0x84800000) == 0x84800000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitLoadStoreUnsignedOffset(instr);
+ }
+ }
+ }
+ }
+}
+
+
+void Decoder::DecodeLogical(Instruction* instr) {
+ ASSERT(instr->Bits(27, 24) == 0x2);
+
+ if (instr->Mask(0x80400000) == 0x00400000) {
+ VisitUnallocated(instr);
+ } else {
+ if (instr->Bit(23) == 0) {
+ VisitLogicalImmediate(instr);
+ } else {
+ if (instr->Bits(30, 29) == 0x1) {
+ VisitUnallocated(instr);
+ } else {
+ VisitMoveWideImmediate(instr);
+ }
+ }
+ }
+}
+
+
+void Decoder::DecodeBitfieldExtract(Instruction* instr) {
+ ASSERT(instr->Bits(27, 24) == 0x3);
+
+ if ((instr->Mask(0x80400000) == 0x80000000) ||
+ (instr->Mask(0x80400000) == 0x00400000) ||
+ (instr->Mask(0x80008000) == 0x00008000)) {
+ VisitUnallocated(instr);
+ } else if (instr->Bit(23) == 0) {
+ if ((instr->Mask(0x80200000) == 0x00200000) ||
+ (instr->Mask(0x60000000) == 0x60000000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitBitfield(instr);
+ }
+ } else {
+ if ((instr->Mask(0x60200000) == 0x00200000) ||
+ (instr->Mask(0x60000000) != 0x00000000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitExtract(instr);
+ }
+ }
+}
+
+
+void Decoder::DecodeAddSubImmediate(Instruction* instr) {
+ ASSERT(instr->Bits(27, 24) == 0x1);
+ if (instr->Bit(23) == 1) {
+ VisitUnallocated(instr);
+ } else {
+ VisitAddSubImmediate(instr);
+ }
+}
+
+
+void Decoder::DecodeDataProcessing(Instruction* instr) {
+ ASSERT((instr->Bits(27, 24) == 0xA) ||
+ (instr->Bits(27, 24) == 0xB) );
+
+ if (instr->Bit(24) == 0) {
+ if (instr->Bit(28) == 0) {
+ if (instr->Mask(0x80008000) == 0x00008000) {
+ VisitUnallocated(instr);
+ } else {
+ VisitLogicalShifted(instr);
+ }
+ } else {
+ switch (instr->Bits(23, 21)) {
+ case 0: {
+ if (instr->Mask(0x0000FC00) != 0) {
+ VisitUnallocated(instr);
+ } else {
+ VisitAddSubWithCarry(instr);
+ }
+ break;
+ }
+ case 2: {
+ if ((instr->Bit(29) == 0) ||
+ (instr->Mask(0x00000410) != 0)) {
+ VisitUnallocated(instr);
+ } else {
+ if (instr->Bit(11) == 0) {
+ VisitConditionalCompareRegister(instr);
+ } else {
+ VisitConditionalCompareImmediate(instr);
+ }
+ }
+ break;
+ }
+ case 4: {
+ if (instr->Mask(0x20000800) != 0x00000000) {
+ VisitUnallocated(instr);
+ } else {
+ VisitConditionalSelect(instr);
+ }
+ break;
+ }
+ case 6: {
+ if (instr->Bit(29) == 0x1) {
+ VisitUnallocated(instr);
+ } else {
+ if (instr->Bit(30) == 0) {
+ if ((instr->Bit(15) == 0x1) ||
+ (instr->Bits(15, 11) == 0) ||
+ (instr->Bits(15, 12) == 0x1) ||
+ (instr->Bits(15, 12) == 0x3) ||
+ (instr->Bits(15, 13) == 0x3) ||
+ (instr->Mask(0x8000EC00) == 0x00004C00) ||
+ (instr->Mask(0x8000E800) == 0x80004000) ||
+ (instr->Mask(0x8000E400) == 0x80004000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitDataProcessing2Source(instr);
+ }
+ } else {
+ if ((instr->Bit(13) == 1) ||
+ (instr->Bits(20, 16) != 0) ||
+ (instr->Bits(15, 14) != 0) ||
+ (instr->Mask(0xA01FFC00) == 0x00000C00) ||
+ (instr->Mask(0x201FF800) == 0x00001800)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitDataProcessing1Source(instr);
+ }
+ }
+ break;
+ }
+ }
+ case 1:
+ case 3:
+ case 5:
+ case 7: VisitUnallocated(instr); break;
+ }
+ }
+ } else {
+ if (instr->Bit(28) == 0) {
+ if (instr->Bit(21) == 0) {
+ if ((instr->Bits(23, 22) == 0x3) ||
+ (instr->Mask(0x80008000) == 0x00008000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitAddSubShifted(instr);
+ }
+ } else {
+ if ((instr->Mask(0x00C00000) != 0x00000000) ||
+ (instr->Mask(0x00001400) == 0x00001400) ||
+ (instr->Mask(0x00001800) == 0x00001800)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitAddSubExtended(instr);
+ }
+ }
+ } else {
+ if ((instr->Bit(30) == 0x1) ||
+ (instr->Bits(30, 29) == 0x1) ||
+ (instr->Mask(0xE0600000) == 0x00200000) ||
+ (instr->Mask(0xE0608000) == 0x00400000) ||
+ (instr->Mask(0x60608000) == 0x00408000) ||
+ (instr->Mask(0x60E00000) == 0x00E00000) ||
+ (instr->Mask(0x60E00000) == 0x00800000) ||
+ (instr->Mask(0x60E00000) == 0x00600000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitDataProcessing3Source(instr);
+ }
+ }
+ }
+}
+
+
+void Decoder::DecodeFP(Instruction* instr) {
+ ASSERT((instr->Bits(27, 24) == 0xE) ||
+ (instr->Bits(27, 24) == 0xF) );
+
+ if (instr->Bit(28) == 0) {
+ DecodeAdvSIMDDataProcessing(instr);
+ } else {
+ if (instr->Bit(29) == 1) {
+ VisitUnallocated(instr);
+ } else {
+ if (instr->Bits(31, 30) == 0x3) {
+ VisitUnallocated(instr);
+ } else if (instr->Bits(31, 30) == 0x1) {
+ DecodeAdvSIMDDataProcessing(instr);
+ } else {
+ if (instr->Bit(24) == 0) {
+ if (instr->Bit(21) == 0) {
+ if ((instr->Bit(23) == 1) ||
+ (instr->Bit(18) == 1) ||
+ (instr->Mask(0x80008000) == 0x00000000) ||
+ (instr->Mask(0x000E0000) == 0x00000000) ||
+ (instr->Mask(0x000E0000) == 0x000A0000) ||
+ (instr->Mask(0x00160000) == 0x00000000) ||
+ (instr->Mask(0x00160000) == 0x00120000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitFPFixedPointConvert(instr);
+ }
+ } else {
+ if (instr->Bits(15, 10) == 32) {
+ VisitUnallocated(instr);
+ } else if (instr->Bits(15, 10) == 0) {
+ if ((instr->Bits(23, 22) == 0x3) ||
+ (instr->Mask(0x000E0000) == 0x000A0000) ||
+ (instr->Mask(0x000E0000) == 0x000C0000) ||
+ (instr->Mask(0x00160000) == 0x00120000) ||
+ (instr->Mask(0x00160000) == 0x00140000) ||
+ (instr->Mask(0x20C40000) == 0x00800000) ||
+ (instr->Mask(0x20C60000) == 0x00840000) ||
+ (instr->Mask(0xA0C60000) == 0x80060000) ||
+ (instr->Mask(0xA0C60000) == 0x00860000) ||
+ (instr->Mask(0xA0C60000) == 0x00460000) ||
+ (instr->Mask(0xA0CE0000) == 0x80860000) ||
+ (instr->Mask(0xA0CE0000) == 0x804E0000) ||
+ (instr->Mask(0xA0CE0000) == 0x000E0000) ||
+ (instr->Mask(0xA0D60000) == 0x00160000) ||
+ (instr->Mask(0xA0D60000) == 0x80560000) ||
+ (instr->Mask(0xA0D60000) == 0x80960000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitFPIntegerConvert(instr);
+ }
+ } else if (instr->Bits(14, 10) == 16) {
+ const Instr masked_A0DF8000 = instr->Mask(0xA0DF8000);
+ if ((instr->Mask(0x80180000) != 0) ||
+ (masked_A0DF8000 == 0x00020000) ||
+ (masked_A0DF8000 == 0x00030000) ||
+ (masked_A0DF8000 == 0x00068000) ||
+ (masked_A0DF8000 == 0x00428000) ||
+ (masked_A0DF8000 == 0x00430000) ||
+ (masked_A0DF8000 == 0x00468000) ||
+ (instr->Mask(0xA0D80000) == 0x00800000) ||
+ (instr->Mask(0xA0DE0000) == 0x00C00000) ||
+ (instr->Mask(0xA0DF0000) == 0x00C30000) ||
+ (instr->Mask(0xA0DC0000) == 0x00C40000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitFPDataProcessing1Source(instr);
+ }
+ } else if (instr->Bits(13, 10) == 8) {
+ if ((instr->Bits(15, 14) != 0) ||
+ (instr->Bits(2, 0) != 0) ||
+ (instr->Mask(0x80800000) != 0x00000000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitFPCompare(instr);
+ }
+ } else if (instr->Bits(12, 10) == 4) {
+ if ((instr->Bits(9, 5) != 0) ||
+ (instr->Mask(0x80800000) != 0x00000000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitFPImmediate(instr);
+ }
+ } else {
+ if (instr->Mask(0x80800000) != 0x00000000) {
+ VisitUnallocated(instr);
+ } else {
+ switch (instr->Bits(11, 10)) {
+ case 1: {
+ VisitFPConditionalCompare(instr);
+ break;
+ }
+ case 2: {
+ if ((instr->Bits(15, 14) == 0x3) ||
+ (instr->Mask(0x00009000) == 0x00009000) ||
+ (instr->Mask(0x0000A000) == 0x0000A000)) {
+ VisitUnallocated(instr);
+ } else {
+ VisitFPDataProcessing2Source(instr);
+ }
+ break;
+ }
+ case 3: {
+ VisitFPConditionalSelect(instr);
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ }
+ }
+ }
+ } else {
+ // Bit 30 == 1 has been handled earlier.
+ ASSERT(instr->Bit(30) == 0);
+ if (instr->Mask(0xA0800000) != 0) {
+ VisitUnallocated(instr);
+ } else {
+ VisitFPDataProcessing3Source(instr);
+ }
+ }
+ }
+ }
+ }
+}
+
+
+void Decoder::DecodeAdvSIMDLoadStore(Instruction* instr) {
+ // TODO: Implement Advanced SIMD load/store instruction decode.
+ ASSERT(instr->Bits(29, 25) == 0x6);
+ VisitUnimplemented(instr);
+}
+
+
+void Decoder::DecodeAdvSIMDDataProcessing(Instruction* instr) {
+ // TODO: Implement Advanced SIMD data processing instruction decode.
+ ASSERT(instr->Bits(27, 25) == 0x7);
+ VisitUnimplemented(instr);
+}
+
+
+#define DEFINE_VISITOR_CALLERS(A) \
+ void Decoder::Visit##A(Instruction *instr) { \
+ ASSERT(instr->Mask(A##FMask) == A##Fixed); \
+ std::list<DecoderVisitor*>::iterator it; \
+ for (it = visitors_.begin(); it != visitors_.end(); it++) { \
+ (*it)->Visit##A(instr); \
+ } \
+ }
+VISITOR_LIST(DEFINE_VISITOR_CALLERS)
+#undef DEFINE_VISITOR_CALLERS
+} // namespace vixl
diff --git a/disas/libvixl/a64/decoder-a64.h b/disas/libvixl/a64/decoder-a64.h
new file mode 100644
index 0000000..bbbbd81
--- /dev/null
+++ b/disas/libvixl/a64/decoder-a64.h
@@ -0,0 +1,198 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_DECODER_A64_H_
+#define VIXL_A64_DECODER_A64_H_
+
+#include <list>
+
+#include "globals.h"
+#include "a64/instructions-a64.h"
+
+
+// List macro containing all visitors needed by the decoder class.
+
+#define VISITOR_LIST(V) \
+ V(PCRelAddressing) \
+ V(AddSubImmediate) \
+ V(LogicalImmediate) \
+ V(MoveWideImmediate) \
+ V(Bitfield) \
+ V(Extract) \
+ V(UnconditionalBranch) \
+ V(UnconditionalBranchToRegister) \
+ V(CompareBranch) \
+ V(TestBranch) \
+ V(ConditionalBranch) \
+ V(System) \
+ V(Exception) \
+ V(LoadStorePairPostIndex) \
+ V(LoadStorePairOffset) \
+ V(LoadStorePairPreIndex) \
+ V(LoadStorePairNonTemporal) \
+ V(LoadLiteral) \
+ V(LoadStoreUnscaledOffset) \
+ V(LoadStorePostIndex) \
+ V(LoadStorePreIndex) \
+ V(LoadStoreRegisterOffset) \
+ V(LoadStoreUnsignedOffset) \
+ V(LogicalShifted) \
+ V(AddSubShifted) \
+ V(AddSubExtended) \
+ V(AddSubWithCarry) \
+ V(ConditionalCompareRegister) \
+ V(ConditionalCompareImmediate) \
+ V(ConditionalSelect) \
+ V(DataProcessing1Source) \
+ V(DataProcessing2Source) \
+ V(DataProcessing3Source) \
+ V(FPCompare) \
+ V(FPConditionalCompare) \
+ V(FPConditionalSelect) \
+ V(FPImmediate) \
+ V(FPDataProcessing1Source) \
+ V(FPDataProcessing2Source) \
+ V(FPDataProcessing3Source) \
+ V(FPIntegerConvert) \
+ V(FPFixedPointConvert) \
+ V(Unallocated) \
+ V(Unimplemented)
+
+namespace vixl {
+
+// The Visitor interface. Disassembler and simulator (and other tools)
+// must provide implementations for all of these functions.
+class DecoderVisitor {
+ public:
+ #define DECLARE(A) virtual void Visit##A(Instruction* instr) = 0;
+ VISITOR_LIST(DECLARE)
+ #undef DECLARE
+
+ virtual ~DecoderVisitor() {}
+
+ private:
+ // Visitors are registered in a list.
+ std::list<DecoderVisitor*> visitors_;
+
+ friend class Decoder;
+};
+
+
+class Decoder: public DecoderVisitor {
+ public:
+ Decoder() {}
+
+ // Top-level instruction decoder function. Decodes an instruction and calls
+ // the visitor functions registered with the Decoder class.
+ void Decode(Instruction *instr);
+
+ // Register a new visitor class with the decoder.
+ // Decode() will call the corresponding visitor method from all registered
+ // visitor classes when decoding reaches the leaf node of the instruction
+ // decode tree.
+ // Visitors are called in the order.
+ // A visitor can only be registered once.
+ // Registering an already registered visitor will update its position.
+ //
+ // d.AppendVisitor(V1);
+ // d.AppendVisitor(V2);
+ // d.PrependVisitor(V2); // Move V2 at the start of the list.
+ // d.InsertVisitorBefore(V3, V2);
+ // d.AppendVisitor(V4);
+ // d.AppendVisitor(V4); // No effect.
+ //
+ // d.Decode(i);
+ //
+ // will call in order visitor methods in V3, V2, V1, V4.
+ void AppendVisitor(DecoderVisitor* visitor);
+ void PrependVisitor(DecoderVisitor* visitor);
+ void InsertVisitorBefore(DecoderVisitor* new_visitor,
+ DecoderVisitor* registered_visitor);
+ void InsertVisitorAfter(DecoderVisitor* new_visitor,
+ DecoderVisitor* registered_visitor);
+
+ // Remove a previously registered visitor class from the list of visitors
+ // stored by the decoder.
+ void RemoveVisitor(DecoderVisitor* visitor);
+
+ #define DECLARE(A) void Visit##A(Instruction* instr);
+ VISITOR_LIST(DECLARE)
+ #undef DECLARE
+
+ private:
+ // Decode the PC relative addressing instruction, and call the corresponding
+ // visitors.
+ // On entry, instruction bits 27:24 = 0x0.
+ void DecodePCRelAddressing(Instruction* instr);
+
+ // Decode the add/subtract immediate instruction, and call the correspoding
+ // visitors.
+ // On entry, instruction bits 27:24 = 0x1.
+ void DecodeAddSubImmediate(Instruction* instr);
+
+ // Decode the branch, system command, and exception generation parts of
+ // the instruction tree, and call the corresponding visitors.
+ // On entry, instruction bits 27:24 = {0x4, 0x5, 0x6, 0x7}.
+ void DecodeBranchSystemException(Instruction* instr);
+
+ // Decode the load and store parts of the instruction tree, and call
+ // the corresponding visitors.
+ // On entry, instruction bits 27:24 = {0x8, 0x9, 0xC, 0xD}.
+ void DecodeLoadStore(Instruction* instr);
+
+ // Decode the logical immediate and move wide immediate parts of the
+ // instruction tree, and call the corresponding visitors.
+ // On entry, instruction bits 27:24 = 0x2.
+ void DecodeLogical(Instruction* instr);
+
+ // Decode the bitfield and extraction parts of the instruction tree,
+ // and call the corresponding visitors.
+ // On entry, instruction bits 27:24 = 0x3.
+ void DecodeBitfieldExtract(Instruction* instr);
+
+ // Decode the data processing parts of the instruction tree, and call the
+ // corresponding visitors.
+ // On entry, instruction bits 27:24 = {0x1, 0xA, 0xB}.
+ void DecodeDataProcessing(Instruction* instr);
+
+ // Decode the floating point parts of the instruction tree, and call the
+ // corresponding visitors.
+ // On entry, instruction bits 27:24 = {0xE, 0xF}.
+ void DecodeFP(Instruction* instr);
+
+ // Decode the Advanced SIMD (NEON) load/store part of the instruction tree,
+ // and call the corresponding visitors.
+ // On entry, instruction bits 29:25 = 0x6.
+ void DecodeAdvSIMDLoadStore(Instruction* instr);
+
+ // Decode the Advanced SIMD (NEON) data processing part of the instruction
+ // tree, and call the corresponding visitors.
+ // On entry, instruction bits 27:25 = 0x7.
+ void DecodeAdvSIMDDataProcessing(Instruction* instr);
+};
+} // namespace vixl
+
+#endif // VIXL_A64_DECODER_A64_H_
diff --git a/disas/libvixl/a64/disasm-a64.cc b/disas/libvixl/a64/disasm-a64.cc
new file mode 100644
index 0000000..4a49748
--- /dev/null
+++ b/disas/libvixl/a64/disasm-a64.cc
@@ -0,0 +1,1678 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "a64/disasm-a64.h"
+
+namespace vixl {
+
+Disassembler::Disassembler() {
+ buffer_size_ = 256;
+ buffer_ = reinterpret_cast<char*>(malloc(buffer_size_));
+ buffer_pos_ = 0;
+ own_buffer_ = true;
+}
+
+
+Disassembler::Disassembler(char* text_buffer, int buffer_size) {
+ buffer_size_ = buffer_size;
+ buffer_ = text_buffer;
+ buffer_pos_ = 0;
+ own_buffer_ = false;
+}
+
+
+Disassembler::~Disassembler() {
+ if (own_buffer_) {
+ free(buffer_);
+ }
+}
+
+
+char* Disassembler::GetOutput() {
+ return buffer_;
+}
+
+
+void Disassembler::VisitAddSubImmediate(Instruction* instr) {
+ bool rd_is_zr = RdIsZROrSP(instr);
+ bool stack_op = (rd_is_zr || RnIsZROrSP(instr)) &&
+ (instr->ImmAddSub() == 0) ? true : false;
+ const char *mnemonic = "";
+ const char *form = "'Rds, 'Rns, 'IAddSub";
+ const char *form_cmp = "'Rns, 'IAddSub";
+ const char *form_mov = "'Rds, 'Rns";
+
+ switch (instr->Mask(AddSubImmediateMask)) {
+ case ADD_w_imm:
+ case ADD_x_imm: {
+ mnemonic = "add";
+ if (stack_op) {
+ mnemonic = "mov";
+ form = form_mov;
+ }
+ break;
+ }
+ case ADDS_w_imm:
+ case ADDS_x_imm: {
+ mnemonic = "adds";
+ if (rd_is_zr) {
+ mnemonic = "cmn";
+ form = form_cmp;
+ }
+ break;
+ }
+ case SUB_w_imm:
+ case SUB_x_imm: mnemonic = "sub"; break;
+ case SUBS_w_imm:
+ case SUBS_x_imm: {
+ mnemonic = "subs";
+ if (rd_is_zr) {
+ mnemonic = "cmp";
+ form = form_cmp;
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitAddSubShifted(Instruction* instr) {
+ bool rd_is_zr = RdIsZROrSP(instr);
+ bool rn_is_zr = RnIsZROrSP(instr);
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn, 'Rm'HDP";
+ const char *form_cmp = "'Rn, 'Rm'HDP";
+ const char *form_neg = "'Rd, 'Rm'HDP";
+
+ switch (instr->Mask(AddSubShiftedMask)) {
+ case ADD_w_shift:
+ case ADD_x_shift: mnemonic = "add"; break;
+ case ADDS_w_shift:
+ case ADDS_x_shift: {
+ mnemonic = "adds";
+ if (rd_is_zr) {
+ mnemonic = "cmn";
+ form = form_cmp;
+ }
+ break;
+ }
+ case SUB_w_shift:
+ case SUB_x_shift: {
+ mnemonic = "sub";
+ if (rn_is_zr) {
+ mnemonic = "neg";
+ form = form_neg;
+ }
+ break;
+ }
+ case SUBS_w_shift:
+ case SUBS_x_shift: {
+ mnemonic = "subs";
+ if (rd_is_zr) {
+ mnemonic = "cmp";
+ form = form_cmp;
+ } else if (rn_is_zr) {
+ mnemonic = "negs";
+ form = form_neg;
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitAddSubExtended(Instruction* instr) {
+ bool rd_is_zr = RdIsZROrSP(instr);
+ const char *mnemonic = "";
+ Extend mode = static_cast<Extend>(instr->ExtendMode());
+ const char *form = ((mode == UXTX) || (mode == SXTX)) ?
+ "'Rds, 'Rns, 'Xm'Ext" : "'Rds, 'Rns, 'Wm'Ext";
+ const char *form_cmp = ((mode == UXTX) || (mode == SXTX)) ?
+ "'Rns, 'Xm'Ext" : "'Rns, 'Wm'Ext";
+
+ switch (instr->Mask(AddSubExtendedMask)) {
+ case ADD_w_ext:
+ case ADD_x_ext: mnemonic = "add"; break;
+ case ADDS_w_ext:
+ case ADDS_x_ext: {
+ mnemonic = "adds";
+ if (rd_is_zr) {
+ mnemonic = "cmn";
+ form = form_cmp;
+ }
+ break;
+ }
+ case SUB_w_ext:
+ case SUB_x_ext: mnemonic = "sub"; break;
+ case SUBS_w_ext:
+ case SUBS_x_ext: {
+ mnemonic = "subs";
+ if (rd_is_zr) {
+ mnemonic = "cmp";
+ form = form_cmp;
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitAddSubWithCarry(Instruction* instr) {
+ bool rn_is_zr = RnIsZROrSP(instr);
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn, 'Rm";
+ const char *form_neg = "'Rd, 'Rm";
+
+ switch (instr->Mask(AddSubWithCarryMask)) {
+ case ADC_w:
+ case ADC_x: mnemonic = "adc"; break;
+ case ADCS_w:
+ case ADCS_x: mnemonic = "adcs"; break;
+ case SBC_w:
+ case SBC_x: {
+ mnemonic = "sbc";
+ if (rn_is_zr) {
+ mnemonic = "ngc";
+ form = form_neg;
+ }
+ break;
+ }
+ case SBCS_w:
+ case SBCS_x: {
+ mnemonic = "sbcs";
+ if (rn_is_zr) {
+ mnemonic = "ngcs";
+ form = form_neg;
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLogicalImmediate(Instruction* instr) {
+ bool rd_is_zr = RdIsZROrSP(instr);
+ bool rn_is_zr = RnIsZROrSP(instr);
+ const char *mnemonic = "";
+ const char *form = "'Rds, 'Rn, 'ITri";
+
+ if (instr->ImmLogical() == 0) {
+ // The immediate encoded in the instruction is not in the expected format.
+ Format(instr, "unallocated", "(LogicalImmediate)");
+ return;
+ }
+
+ switch (instr->Mask(LogicalImmediateMask)) {
+ case AND_w_imm:
+ case AND_x_imm: mnemonic = "and"; break;
+ case ORR_w_imm:
+ case ORR_x_imm: {
+ mnemonic = "orr";
+ unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize
+ : kWRegSize;
+ if (rn_is_zr && !IsMovzMovnImm(reg_size, instr->ImmLogical())) {
+ mnemonic = "mov";
+ form = "'Rds, 'ITri";
+ }
+ break;
+ }
+ case EOR_w_imm:
+ case EOR_x_imm: mnemonic = "eor"; break;
+ case ANDS_w_imm:
+ case ANDS_x_imm: {
+ mnemonic = "ands";
+ if (rd_is_zr) {
+ mnemonic = "tst";
+ form = "'Rn, 'ITri";
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+bool Disassembler::IsMovzMovnImm(unsigned reg_size, uint64_t value) {
+ ASSERT((reg_size == kXRegSize) ||
+ ((reg_size == kWRegSize) && (value <= 0xffffffff)));
+
+ // Test for movz: 16 bits set at positions 0, 16, 32 or 48.
+ if (((value & 0xffffffffffff0000UL) == 0UL) ||
+ ((value & 0xffffffff0000ffffUL) == 0UL) ||
+ ((value & 0xffff0000ffffffffUL) == 0UL) ||
+ ((value & 0x0000ffffffffffffUL) == 0UL)) {
+ return true;
+ }
+
+ // Test for movn: NOT(16 bits set at positions 0, 16, 32 or 48).
+ if ((reg_size == kXRegSize) &&
+ (((value & 0xffffffffffff0000UL) == 0xffffffffffff0000UL) ||
+ ((value & 0xffffffff0000ffffUL) == 0xffffffff0000ffffUL) ||
+ ((value & 0xffff0000ffffffffUL) == 0xffff0000ffffffffUL) ||
+ ((value & 0x0000ffffffffffffUL) == 0x0000ffffffffffffUL))) {
+ return true;
+ }
+ if ((reg_size == kWRegSize) &&
+ (((value & 0xffff0000) == 0xffff0000) ||
+ ((value & 0x0000ffff) == 0x0000ffff))) {
+ return true;
+ }
+ return false;
+}
+
+
+void Disassembler::VisitLogicalShifted(Instruction* instr) {
+ bool rd_is_zr = RdIsZROrSP(instr);
+ bool rn_is_zr = RnIsZROrSP(instr);
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn, 'Rm'HLo";
+
+ switch (instr->Mask(LogicalShiftedMask)) {
+ case AND_w:
+ case AND_x: mnemonic = "and"; break;
+ case BIC_w:
+ case BIC_x: mnemonic = "bic"; break;
+ case EOR_w:
+ case EOR_x: mnemonic = "eor"; break;
+ case EON_w:
+ case EON_x: mnemonic = "eon"; break;
+ case BICS_w:
+ case BICS_x: mnemonic = "bics"; break;
+ case ANDS_w:
+ case ANDS_x: {
+ mnemonic = "ands";
+ if (rd_is_zr) {
+ mnemonic = "tst";
+ form = "'Rn, 'Rm'HLo";
+ }
+ break;
+ }
+ case ORR_w:
+ case ORR_x: {
+ mnemonic = "orr";
+ if (rn_is_zr && (instr->ImmDPShift() == 0) && (instr->ShiftDP() == LSL)) {
+ mnemonic = "mov";
+ form = "'Rd, 'Rm";
+ }
+ break;
+ }
+ case ORN_w:
+ case ORN_x: {
+ mnemonic = "orn";
+ if (rn_is_zr) {
+ mnemonic = "mvn";
+ form = "'Rd, 'Rm'HLo";
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitConditionalCompareRegister(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rn, 'Rm, 'INzcv, 'Cond";
+
+ switch (instr->Mask(ConditionalCompareRegisterMask)) {
+ case CCMN_w:
+ case CCMN_x: mnemonic = "ccmn"; break;
+ case CCMP_w:
+ case CCMP_x: mnemonic = "ccmp"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitConditionalCompareImmediate(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rn, 'IP, 'INzcv, 'Cond";
+
+ switch (instr->Mask(ConditionalCompareImmediateMask)) {
+ case CCMN_w_imm:
+ case CCMN_x_imm: mnemonic = "ccmn"; break;
+ case CCMP_w_imm:
+ case CCMP_x_imm: mnemonic = "ccmp"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitConditionalSelect(Instruction* instr) {
+ bool rnm_is_zr = (RnIsZROrSP(instr) && RmIsZROrSP(instr));
+ bool rn_is_rm = (instr->Rn() == instr->Rm());
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn, 'Rm, 'Cond";
+ const char *form_test = "'Rd, 'CInv";
+ const char *form_update = "'Rd, 'Rn, 'CInv";
+
+ Condition cond = static_cast<Condition>(instr->Condition());
+ bool invertible_cond = (cond != al) && (cond != nv);
+
+ switch (instr->Mask(ConditionalSelectMask)) {
+ case CSEL_w:
+ case CSEL_x: mnemonic = "csel"; break;
+ case CSINC_w:
+ case CSINC_x: {
+ mnemonic = "csinc";
+ if (rnm_is_zr && invertible_cond) {
+ mnemonic = "cset";
+ form = form_test;
+ } else if (rn_is_rm && invertible_cond) {
+ mnemonic = "cinc";
+ form = form_update;
+ }
+ break;
+ }
+ case CSINV_w:
+ case CSINV_x: {
+ mnemonic = "csinv";
+ if (rnm_is_zr && invertible_cond) {
+ mnemonic = "csetm";
+ form = form_test;
+ } else if (rn_is_rm && invertible_cond) {
+ mnemonic = "cinv";
+ form = form_update;
+ }
+ break;
+ }
+ case CSNEG_w:
+ case CSNEG_x: {
+ mnemonic = "csneg";
+ if (rn_is_rm && invertible_cond) {
+ mnemonic = "cneg";
+ form = form_update;
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitBitfield(Instruction* instr) {
+ unsigned s = instr->ImmS();
+ unsigned r = instr->ImmR();
+ unsigned rd_size_minus_1 =
+ ((instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize) - 1;
+ const char *mnemonic = "";
+ const char *form = "";
+ const char *form_shift_right = "'Rd, 'Rn, 'IBr";
+ const char *form_extend = "'Rd, 'Wn";
+ const char *form_bfiz = "'Rd, 'Rn, 'IBZ-r, 'IBs+1";
+ const char *form_bfx = "'Rd, 'Rn, 'IBr, 'IBs-r+1";
+ const char *form_lsl = "'Rd, 'Rn, 'IBZ-r";
+
+ switch (instr->Mask(BitfieldMask)) {
+ case SBFM_w:
+ case SBFM_x: {
+ mnemonic = "sbfx";
+ form = form_bfx;
+ if (r == 0) {
+ form = form_extend;
+ if (s == 7) {
+ mnemonic = "sxtb";
+ } else if (s == 15) {
+ mnemonic = "sxth";
+ } else if ((s == 31) && (instr->SixtyFourBits() == 1)) {
+ mnemonic = "sxtw";
+ } else {
+ form = form_bfx;
+ }
+ } else if (s == rd_size_minus_1) {
+ mnemonic = "asr";
+ form = form_shift_right;
+ } else if (s < r) {
+ mnemonic = "sbfiz";
+ form = form_bfiz;
+ }
+ break;
+ }
+ case UBFM_w:
+ case UBFM_x: {
+ mnemonic = "ubfx";
+ form = form_bfx;
+ if (r == 0) {
+ form = form_extend;
+ if (s == 7) {
+ mnemonic = "uxtb";
+ } else if (s == 15) {
+ mnemonic = "uxth";
+ } else {
+ form = form_bfx;
+ }
+ }
+ if (s == rd_size_minus_1) {
+ mnemonic = "lsr";
+ form = form_shift_right;
+ } else if (r == s + 1) {
+ mnemonic = "lsl";
+ form = form_lsl;
+ } else if (s < r) {
+ mnemonic = "ubfiz";
+ form = form_bfiz;
+ }
+ break;
+ }
+ case BFM_w:
+ case BFM_x: {
+ mnemonic = "bfxil";
+ form = form_bfx;
+ if (s < r) {
+ mnemonic = "bfi";
+ form = form_bfiz;
+ }
+ }
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitExtract(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn, 'Rm, 'IExtract";
+
+ switch (instr->Mask(ExtractMask)) {
+ case EXTR_w:
+ case EXTR_x: {
+ if (instr->Rn() == instr->Rm()) {
+ mnemonic = "ror";
+ form = "'Rd, 'Rn, 'IExtract";
+ } else {
+ mnemonic = "extr";
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitPCRelAddressing(Instruction* instr) {
+ switch (instr->Mask(PCRelAddressingMask)) {
+ case ADR: Format(instr, "adr", "'Xd, 'AddrPCRelByte"); break;
+ // ADRP is not implemented.
+ default: Format(instr, "unimplemented", "(PCRelAddressing)");
+ }
+}
+
+
+void Disassembler::VisitConditionalBranch(Instruction* instr) {
+ switch (instr->Mask(ConditionalBranchMask)) {
+ case B_cond: Format(instr, "b.'CBrn", "'BImmCond"); break;
+ default: UNREACHABLE();
+ }
+}
+
+
+void Disassembler::VisitUnconditionalBranchToRegister(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Xn";
+
+ switch (instr->Mask(UnconditionalBranchToRegisterMask)) {
+ case BR: mnemonic = "br"; break;
+ case BLR: mnemonic = "blr"; break;
+ case RET: {
+ mnemonic = "ret";
+ if (instr->Rn() == kLinkRegCode) {
+ form = NULL;
+ }
+ break;
+ }
+ default: form = "(UnconditionalBranchToRegister)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitUnconditionalBranch(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'BImmUncn";
+
+ switch (instr->Mask(UnconditionalBranchMask)) {
+ case B: mnemonic = "b"; break;
+ case BL: mnemonic = "bl"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitDataProcessing1Source(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Rn";
+
+ switch (instr->Mask(DataProcessing1SourceMask)) {
+ #define FORMAT(A, B) \
+ case A##_w: \
+ case A##_x: mnemonic = B; break;
+ FORMAT(RBIT, "rbit");
+ FORMAT(REV16, "rev16");
+ FORMAT(REV, "rev");
+ FORMAT(CLZ, "clz");
+ FORMAT(CLS, "cls");
+ #undef FORMAT
+ case REV32_x: mnemonic = "rev32"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitDataProcessing2Source(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Rd, 'Rn, 'Rm";
+
+ switch (instr->Mask(DataProcessing2SourceMask)) {
+ #define FORMAT(A, B) \
+ case A##_w: \
+ case A##_x: mnemonic = B; break;
+ FORMAT(UDIV, "udiv");
+ FORMAT(SDIV, "sdiv");
+ FORMAT(LSLV, "lsl");
+ FORMAT(LSRV, "lsr");
+ FORMAT(ASRV, "asr");
+ FORMAT(RORV, "ror");
+ #undef FORMAT
+ default: form = "(DataProcessing2Source)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitDataProcessing3Source(Instruction* instr) {
+ bool ra_is_zr = RaIsZROrSP(instr);
+ const char *mnemonic = "";
+ const char *form = "'Xd, 'Wn, 'Wm, 'Xa";
+ const char *form_rrr = "'Rd, 'Rn, 'Rm";
+ const char *form_rrrr = "'Rd, 'Rn, 'Rm, 'Ra";
+ const char *form_xww = "'Xd, 'Wn, 'Wm";
+ const char *form_xxx = "'Xd, 'Xn, 'Xm";
+
+ switch (instr->Mask(DataProcessing3SourceMask)) {
+ case MADD_w:
+ case MADD_x: {
+ mnemonic = "madd";
+ form = form_rrrr;
+ if (ra_is_zr) {
+ mnemonic = "mul";
+ form = form_rrr;
+ }
+ break;
+ }
+ case MSUB_w:
+ case MSUB_x: {
+ mnemonic = "msub";
+ form = form_rrrr;
+ if (ra_is_zr) {
+ mnemonic = "mneg";
+ form = form_rrr;
+ }
+ break;
+ }
+ case SMADDL_x: {
+ mnemonic = "smaddl";
+ if (ra_is_zr) {
+ mnemonic = "smull";
+ form = form_xww;
+ }
+ break;
+ }
+ case SMSUBL_x: {
+ mnemonic = "smsubl";
+ if (ra_is_zr) {
+ mnemonic = "smnegl";
+ form = form_xww;
+ }
+ break;
+ }
+ case UMADDL_x: {
+ mnemonic = "umaddl";
+ if (ra_is_zr) {
+ mnemonic = "umull";
+ form = form_xww;
+ }
+ break;
+ }
+ case UMSUBL_x: {
+ mnemonic = "umsubl";
+ if (ra_is_zr) {
+ mnemonic = "umnegl";
+ form = form_xww;
+ }
+ break;
+ }
+ case SMULH_x: {
+ mnemonic = "smulh";
+ form = form_xxx;
+ break;
+ }
+ case UMULH_x: {
+ mnemonic = "umulh";
+ form = form_xxx;
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitCompareBranch(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rt, 'BImmCmpa";
+
+ switch (instr->Mask(CompareBranchMask)) {
+ case CBZ_w:
+ case CBZ_x: mnemonic = "cbz"; break;
+ case CBNZ_w:
+ case CBNZ_x: mnemonic = "cbnz"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitTestBranch(Instruction* instr) {
+ const char *mnemonic = "";
+ // If the top bit of the immediate is clear, the tested register is
+ // disassembled as Wt, otherwise Xt. As the top bit of the immediate is
+ // encoded in bit 31 of the instruction, we can reuse the Rt form, which
+ // uses bit 31 (normally "sf") to choose the register size.
+ const char *form = "'Rt, 'IS, 'BImmTest";
+
+ switch (instr->Mask(TestBranchMask)) {
+ case TBZ: mnemonic = "tbz"; break;
+ case TBNZ: mnemonic = "tbnz"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitMoveWideImmediate(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'IMoveImm";
+
+ // Print the shift separately for movk, to make it clear which half word will
+ // be overwritten. Movn and movz print the computed immediate, which includes
+ // shift calculation.
+ switch (instr->Mask(MoveWideImmediateMask)) {
+ case MOVN_w:
+ case MOVN_x: mnemonic = "movn"; break;
+ case MOVZ_w:
+ case MOVZ_x: mnemonic = "movz"; break;
+ case MOVK_w:
+ case MOVK_x: mnemonic = "movk"; form = "'Rd, 'IMoveLSL"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+#define LOAD_STORE_LIST(V) \
+ V(STRB_w, "strb", "'Wt") \
+ V(STRH_w, "strh", "'Wt") \
+ V(STR_w, "str", "'Wt") \
+ V(STR_x, "str", "'Xt") \
+ V(LDRB_w, "ldrb", "'Wt") \
+ V(LDRH_w, "ldrh", "'Wt") \
+ V(LDR_w, "ldr", "'Wt") \
+ V(LDR_x, "ldr", "'Xt") \
+ V(LDRSB_x, "ldrsb", "'Xt") \
+ V(LDRSH_x, "ldrsh", "'Xt") \
+ V(LDRSW_x, "ldrsw", "'Xt") \
+ V(LDRSB_w, "ldrsb", "'Wt") \
+ V(LDRSH_w, "ldrsh", "'Wt") \
+ V(STR_s, "str", "'St") \
+ V(STR_d, "str", "'Dt") \
+ V(LDR_s, "ldr", "'St") \
+ V(LDR_d, "ldr", "'Dt")
+
+void Disassembler::VisitLoadStorePreIndex(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStorePreIndex)";
+
+ switch (instr->Mask(LoadStorePreIndexMask)) {
+ #define LS_PREINDEX(A, B, C) \
+ case A##_pre: mnemonic = B; form = C ", ['Xns'ILS]!"; break;
+ LOAD_STORE_LIST(LS_PREINDEX)
+ #undef LS_PREINDEX
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStorePostIndex(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStorePostIndex)";
+
+ switch (instr->Mask(LoadStorePostIndexMask)) {
+ #define LS_POSTINDEX(A, B, C) \
+ case A##_post: mnemonic = B; form = C ", ['Xns]'ILS"; break;
+ LOAD_STORE_LIST(LS_POSTINDEX)
+ #undef LS_POSTINDEX
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStoreUnsignedOffset(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStoreUnsignedOffset)";
+
+ switch (instr->Mask(LoadStoreUnsignedOffsetMask)) {
+ #define LS_UNSIGNEDOFFSET(A, B, C) \
+ case A##_unsigned: mnemonic = B; form = C ", ['Xns'ILU]"; break;
+ LOAD_STORE_LIST(LS_UNSIGNEDOFFSET)
+ #undef LS_UNSIGNEDOFFSET
+ case PRFM_unsigned: mnemonic = "prfm"; form = "'PrefOp, ['Xn'ILU]";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStoreRegisterOffset(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStoreRegisterOffset)";
+
+ switch (instr->Mask(LoadStoreRegisterOffsetMask)) {
+ #define LS_REGISTEROFFSET(A, B, C) \
+ case A##_reg: mnemonic = B; form = C ", ['Xns, 'Offsetreg]"; break;
+ LOAD_STORE_LIST(LS_REGISTEROFFSET)
+ #undef LS_REGISTEROFFSET
+ case PRFM_reg: mnemonic = "prfm"; form = "'PrefOp, ['Xns, 'Offsetreg]";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStoreUnscaledOffset(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Wt, ['Xns'ILS]";
+ const char *form_x = "'Xt, ['Xns'ILS]";
+ const char *form_s = "'St, ['Xns'ILS]";
+ const char *form_d = "'Dt, ['Xns'ILS]";
+
+ switch (instr->Mask(LoadStoreUnscaledOffsetMask)) {
+ case STURB_w: mnemonic = "sturb"; break;
+ case STURH_w: mnemonic = "sturh"; break;
+ case STUR_w: mnemonic = "stur"; break;
+ case STUR_x: mnemonic = "stur"; form = form_x; break;
+ case STUR_s: mnemonic = "stur"; form = form_s; break;
+ case STUR_d: mnemonic = "stur"; form = form_d; break;
+ case LDURB_w: mnemonic = "ldurb"; break;
+ case LDURH_w: mnemonic = "ldurh"; break;
+ case LDUR_w: mnemonic = "ldur"; break;
+ case LDUR_x: mnemonic = "ldur"; form = form_x; break;
+ case LDUR_s: mnemonic = "ldur"; form = form_s; break;
+ case LDUR_d: mnemonic = "ldur"; form = form_d; break;
+ case LDURSB_x: form = form_x; // Fall through.
+ case LDURSB_w: mnemonic = "ldursb"; break;
+ case LDURSH_x: form = form_x; // Fall through.
+ case LDURSH_w: mnemonic = "ldursh"; break;
+ case LDURSW_x: mnemonic = "ldursw"; form = form_x; break;
+ default: form = "(LoadStoreUnscaledOffset)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadLiteral(Instruction* instr) {
+ const char *mnemonic = "ldr";
+ const char *form = "(LoadLiteral)";
+
+ switch (instr->Mask(LoadLiteralMask)) {
+ case LDR_w_lit: form = "'Wt, 'ILLiteral 'LValue"; break;
+ case LDR_x_lit: form = "'Xt, 'ILLiteral 'LValue"; break;
+ case LDR_s_lit: form = "'St, 'ILLiteral 'LValue"; break;
+ case LDR_d_lit: form = "'Dt, 'ILLiteral 'LValue"; break;
+ default: mnemonic = "unimplemented";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+#define LOAD_STORE_PAIR_LIST(V) \
+ V(STP_w, "stp", "'Wt, 'Wt2", "4") \
+ V(LDP_w, "ldp", "'Wt, 'Wt2", "4") \
+ V(LDPSW_x, "ldpsw", "'Xt, 'Xt2", "4") \
+ V(STP_x, "stp", "'Xt, 'Xt2", "8") \
+ V(LDP_x, "ldp", "'Xt, 'Xt2", "8") \
+ V(STP_s, "stp", "'St, 'St2", "4") \
+ V(LDP_s, "ldp", "'St, 'St2", "4") \
+ V(STP_d, "stp", "'Dt, 'Dt2", "8") \
+ V(LDP_d, "ldp", "'Dt, 'Dt2", "8")
+
+void Disassembler::VisitLoadStorePairPostIndex(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStorePairPostIndex)";
+
+ switch (instr->Mask(LoadStorePairPostIndexMask)) {
+ #define LSP_POSTINDEX(A, B, C, D) \
+ case A##_post: mnemonic = B; form = C ", ['Xns]'ILP" D; break;
+ LOAD_STORE_PAIR_LIST(LSP_POSTINDEX)
+ #undef LSP_POSTINDEX
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStorePairPreIndex(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStorePairPreIndex)";
+
+ switch (instr->Mask(LoadStorePairPreIndexMask)) {
+ #define LSP_PREINDEX(A, B, C, D) \
+ case A##_pre: mnemonic = B; form = C ", ['Xns'ILP" D "]!"; break;
+ LOAD_STORE_PAIR_LIST(LSP_PREINDEX)
+ #undef LSP_PREINDEX
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStorePairOffset(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(LoadStorePairOffset)";
+
+ switch (instr->Mask(LoadStorePairOffsetMask)) {
+ #define LSP_OFFSET(A, B, C, D) \
+ case A##_off: mnemonic = B; form = C ", ['Xns'ILP" D "]"; break;
+ LOAD_STORE_PAIR_LIST(LSP_OFFSET)
+ #undef LSP_OFFSET
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitLoadStorePairNonTemporal(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form;
+
+ switch (instr->Mask(LoadStorePairNonTemporalMask)) {
+ case STNP_w: mnemonic = "stnp"; form = "'Wt, 'Wt2, ['Xns'ILP4]"; break;
+ case LDNP_w: mnemonic = "ldnp"; form = "'Wt, 'Wt2, ['Xns'ILP4]"; break;
+ case STNP_x: mnemonic = "stnp"; form = "'Xt, 'Xt2, ['Xns'ILP8]"; break;
+ case LDNP_x: mnemonic = "ldnp"; form = "'Xt, 'Xt2, ['Xns'ILP8]"; break;
+ case STNP_s: mnemonic = "stnp"; form = "'St, 'St2, ['Xns'ILP4]"; break;
+ case LDNP_s: mnemonic = "ldnp"; form = "'St, 'St2, ['Xns'ILP4]"; break;
+ case STNP_d: mnemonic = "stnp"; form = "'Dt, 'Dt2, ['Xns'ILP8]"; break;
+ case LDNP_d: mnemonic = "ldnp"; form = "'Dt, 'Dt2, ['Xns'ILP8]"; break;
+ default: form = "(LoadStorePairNonTemporal)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPCompare(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Fn, 'Fm";
+ const char *form_zero = "'Fn, #0.0";
+
+ switch (instr->Mask(FPCompareMask)) {
+ case FCMP_s_zero:
+ case FCMP_d_zero: form = form_zero; // Fall through.
+ case FCMP_s:
+ case FCMP_d: mnemonic = "fcmp"; break;
+ default: form = "(FPCompare)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPConditionalCompare(Instruction* instr) {
+ const char *mnemonic = "unmplemented";
+ const char *form = "'Fn, 'Fm, 'INzcv, 'Cond";
+
+ switch (instr->Mask(FPConditionalCompareMask)) {
+ case FCCMP_s:
+ case FCCMP_d: mnemonic = "fccmp"; break;
+ case FCCMPE_s:
+ case FCCMPE_d: mnemonic = "fccmpe"; break;
+ default: form = "(FPConditionalCompare)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPConditionalSelect(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Fd, 'Fn, 'Fm, 'Cond";
+
+ switch (instr->Mask(FPConditionalSelectMask)) {
+ case FCSEL_s:
+ case FCSEL_d: mnemonic = "fcsel"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPDataProcessing1Source(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'Fd, 'Fn";
+
+ switch (instr->Mask(FPDataProcessing1SourceMask)) {
+ #define FORMAT(A, B) \
+ case A##_s: \
+ case A##_d: mnemonic = B; break;
+ FORMAT(FMOV, "fmov");
+ FORMAT(FABS, "fabs");
+ FORMAT(FNEG, "fneg");
+ FORMAT(FSQRT, "fsqrt");
+ FORMAT(FRINTN, "frintn");
+ FORMAT(FRINTP, "frintp");
+ FORMAT(FRINTM, "frintm");
+ FORMAT(FRINTZ, "frintz");
+ FORMAT(FRINTA, "frinta");
+ FORMAT(FRINTX, "frintx");
+ FORMAT(FRINTI, "frinti");
+ #undef FORMAT
+ case FCVT_ds: mnemonic = "fcvt"; form = "'Dd, 'Sn"; break;
+ case FCVT_sd: mnemonic = "fcvt"; form = "'Sd, 'Dn"; break;
+ default: form = "(FPDataProcessing1Source)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPDataProcessing2Source(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Fd, 'Fn, 'Fm";
+
+ switch (instr->Mask(FPDataProcessing2SourceMask)) {
+ #define FORMAT(A, B) \
+ case A##_s: \
+ case A##_d: mnemonic = B; break;
+ FORMAT(FMUL, "fmul");
+ FORMAT(FDIV, "fdiv");
+ FORMAT(FADD, "fadd");
+ FORMAT(FSUB, "fsub");
+ FORMAT(FMAX, "fmax");
+ FORMAT(FMIN, "fmin");
+ FORMAT(FMAXNM, "fmaxnm");
+ FORMAT(FMINNM, "fminnm");
+ FORMAT(FNMUL, "fnmul");
+ #undef FORMAT
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPDataProcessing3Source(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Fd, 'Fn, 'Fm, 'Fa";
+
+ switch (instr->Mask(FPDataProcessing3SourceMask)) {
+ #define FORMAT(A, B) \
+ case A##_s: \
+ case A##_d: mnemonic = B; break;
+ FORMAT(FMADD, "fmadd");
+ FORMAT(FMSUB, "fmsub");
+ FORMAT(FNMADD, "fnmadd");
+ FORMAT(FNMSUB, "fnmsub");
+ #undef FORMAT
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPImmediate(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "(FPImmediate)";
+
+ switch (instr->Mask(FPImmediateMask)) {
+ case FMOV_s_imm: mnemonic = "fmov"; form = "'Sd, 'IFPSingle"; break;
+ case FMOV_d_imm: mnemonic = "fmov"; form = "'Dd, 'IFPDouble"; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPIntegerConvert(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "(FPIntegerConvert)";
+ const char *form_rf = "'Rd, 'Fn";
+ const char *form_fr = "'Fd, 'Rn";
+
+ switch (instr->Mask(FPIntegerConvertMask)) {
+ case FMOV_ws:
+ case FMOV_xd: mnemonic = "fmov"; form = form_rf; break;
+ case FMOV_sw:
+ case FMOV_dx: mnemonic = "fmov"; form = form_fr; break;
+ case FCVTMS_ws:
+ case FCVTMS_xs:
+ case FCVTMS_wd:
+ case FCVTMS_xd: mnemonic = "fcvtms"; form = form_rf; break;
+ case FCVTMU_ws:
+ case FCVTMU_xs:
+ case FCVTMU_wd:
+ case FCVTMU_xd: mnemonic = "fcvtmu"; form = form_rf; break;
+ case FCVTNS_ws:
+ case FCVTNS_xs:
+ case FCVTNS_wd:
+ case FCVTNS_xd: mnemonic = "fcvtns"; form = form_rf; break;
+ case FCVTNU_ws:
+ case FCVTNU_xs:
+ case FCVTNU_wd:
+ case FCVTNU_xd: mnemonic = "fcvtnu"; form = form_rf; break;
+ case FCVTZU_xd:
+ case FCVTZU_ws:
+ case FCVTZU_wd:
+ case FCVTZU_xs: mnemonic = "fcvtzu"; form = form_rf; break;
+ case FCVTZS_xd:
+ case FCVTZS_wd:
+ case FCVTZS_xs:
+ case FCVTZS_ws: mnemonic = "fcvtzs"; form = form_rf; break;
+ case SCVTF_sw:
+ case SCVTF_sx:
+ case SCVTF_dw:
+ case SCVTF_dx: mnemonic = "scvtf"; form = form_fr; break;
+ case UCVTF_sw:
+ case UCVTF_sx:
+ case UCVTF_dw:
+ case UCVTF_dx: mnemonic = "ucvtf"; form = form_fr; break;
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitFPFixedPointConvert(Instruction* instr) {
+ const char *mnemonic = "";
+ const char *form = "'Rd, 'Fn, 'IFPFBits";
+ const char *form_fr = "'Fd, 'Rn, 'IFPFBits";
+
+ switch (instr->Mask(FPFixedPointConvertMask)) {
+ case FCVTZS_ws_fixed:
+ case FCVTZS_xs_fixed:
+ case FCVTZS_wd_fixed:
+ case FCVTZS_xd_fixed: mnemonic = "fcvtzs"; break;
+ case FCVTZU_ws_fixed:
+ case FCVTZU_xs_fixed:
+ case FCVTZU_wd_fixed:
+ case FCVTZU_xd_fixed: mnemonic = "fcvtzu"; break;
+ case SCVTF_sw_fixed:
+ case SCVTF_sx_fixed:
+ case SCVTF_dw_fixed:
+ case SCVTF_dx_fixed: mnemonic = "scvtf"; form = form_fr; break;
+ case UCVTF_sw_fixed:
+ case UCVTF_sx_fixed:
+ case UCVTF_dw_fixed:
+ case UCVTF_dx_fixed: mnemonic = "ucvtf"; form = form_fr; break;
+ default: UNREACHABLE();
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitSystem(Instruction* instr) {
+ // Some system instructions hijack their Op and Cp fields to represent a
+ // range of immediates instead of indicating a different instruction. This
+ // makes the decoding tricky.
+ const char *mnemonic = "unimplemented";
+ const char *form = "(System)";
+
+ if (instr->Mask(SystemSysRegFMask) == SystemSysRegFixed) {
+ switch (instr->Mask(SystemSysRegMask)) {
+ case MRS: {
+ mnemonic = "mrs";
+ switch (instr->ImmSystemRegister()) {
+ case NZCV: form = "'Xt, nzcv"; break;
+ case FPCR: form = "'Xt, fpcr"; break;
+ default: form = "'Xt, (unknown)"; break;
+ }
+ break;
+ }
+ case MSR: {
+ mnemonic = "msr";
+ switch (instr->ImmSystemRegister()) {
+ case NZCV: form = "nzcv, 'Xt"; break;
+ case FPCR: form = "fpcr, 'Xt"; break;
+ default: form = "(unknown), 'Xt"; break;
+ }
+ break;
+ }
+ }
+ } else if (instr->Mask(SystemHintFMask) == SystemHintFixed) {
+ ASSERT(instr->Mask(SystemHintMask) == HINT);
+ switch (instr->ImmHint()) {
+ case NOP: {
+ mnemonic = "nop";
+ form = NULL;
+ break;
+ }
+ }
+ }
+
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitException(Instruction* instr) {
+ const char *mnemonic = "unimplemented";
+ const char *form = "'IDebug";
+
+ switch (instr->Mask(ExceptionMask)) {
+ case HLT: mnemonic = "hlt"; break;
+ case BRK: mnemonic = "brk"; break;
+ case SVC: mnemonic = "svc"; break;
+ case HVC: mnemonic = "hvc"; break;
+ case SMC: mnemonic = "smc"; break;
+ case DCPS1: mnemonic = "dcps1"; form = "{'IDebug}"; break;
+ case DCPS2: mnemonic = "dcps2"; form = "{'IDebug}"; break;
+ case DCPS3: mnemonic = "dcps3"; form = "{'IDebug}"; break;
+ default: form = "(Exception)";
+ }
+ Format(instr, mnemonic, form);
+}
+
+
+void Disassembler::VisitUnimplemented(Instruction* instr) {
+ Format(instr, "unimplemented", "(Unimplemented)");
+}
+
+
+void Disassembler::VisitUnallocated(Instruction* instr) {
+ Format(instr, "unallocated", "(Unallocated)");
+}
+
+
+void Disassembler::ProcessOutput(Instruction* /*instr*/) {
+ // The base disasm does nothing more than disassembling into a buffer.
+}
+
+
+void Disassembler::Format(Instruction* instr, const char* mnemonic,
+ const char* format) {
+ ASSERT(mnemonic != NULL);
+ ResetOutput();
+ Substitute(instr, mnemonic);
+ if (format != NULL) {
+ buffer_[buffer_pos_++] = ' ';
+ Substitute(instr, format);
+ }
+ buffer_[buffer_pos_] = 0;
+ ProcessOutput(instr);
+}
+
+
+void Disassembler::Substitute(Instruction* instr, const char* string) {
+ char chr = *string++;
+ while (chr != '\0') {
+ if (chr == '\'') {
+ string += SubstituteField(instr, string);
+ } else {
+ buffer_[buffer_pos_++] = chr;
+ }
+ chr = *string++;
+ }
+}
+
+
+int Disassembler::SubstituteField(Instruction* instr, const char* format) {
+ switch (format[0]) {
+ case 'R': // Register. X or W, selected by sf bit.
+ case 'F': // FP Register. S or D, selected by type field.
+ case 'W':
+ case 'X':
+ case 'S':
+ case 'D': return SubstituteRegisterField(instr, format);
+ case 'I': return SubstituteImmediateField(instr, format);
+ case 'L': return SubstituteLiteralField(instr, format);
+ case 'H': return SubstituteShiftField(instr, format);
+ case 'P': return SubstitutePrefetchField(instr, format);
+ case 'C': return SubstituteConditionField(instr, format);
+ case 'E': return SubstituteExtendField(instr, format);
+ case 'A': return SubstitutePCRelAddressField(instr, format);
+ case 'B': return SubstituteBranchTargetField(instr, format);
+ case 'O': return SubstituteLSRegOffsetField(instr, format);
+ default: {
+ UNREACHABLE();
+ return 1;
+ }
+ }
+}
+
+
+int Disassembler::SubstituteRegisterField(Instruction* instr,
+ const char* format) {
+ unsigned reg_num = 0;
+ unsigned field_len = 2;
+ switch (format[1]) {
+ case 'd': reg_num = instr->Rd(); break;
+ case 'n': reg_num = instr->Rn(); break;
+ case 'm': reg_num = instr->Rm(); break;
+ case 'a': reg_num = instr->Ra(); break;
+ case 't': {
+ if (format[2] == '2') {
+ reg_num = instr->Rt2();
+ field_len = 3;
+ } else {
+ reg_num = instr->Rt();
+ }
+ break;
+ }
+ default: UNREACHABLE();
+ }
+
+ // Increase field length for registers tagged as stack.
+ if (format[2] == 's') {
+ field_len = 3;
+ }
+
+ char reg_type;
+ if (format[0] == 'R') {
+ // Register type is R: use sf bit to choose X and W.
+ reg_type = instr->SixtyFourBits() ? 'x' : 'w';
+ } else if (format[0] == 'F') {
+ // Floating-point register: use type field to choose S or D.
+ reg_type = ((instr->FPType() & 1) == 0) ? 's' : 'd';
+ } else {
+ // Register type is specified. Make it lower case.
+ reg_type = format[0] + 0x20;
+ }
+
+ if ((reg_num != kZeroRegCode) || (reg_type == 's') || (reg_type == 'd')) {
+ // A normal register: w0 - w30, x0 - x30, s0 - s31, d0 - d31.
+ AppendToOutput("%c%d", reg_type, reg_num);
+ } else if (format[2] == 's') {
+ // Disassemble w31/x31 as stack pointer wsp/sp.
+ AppendToOutput("%s", (reg_type == 'w') ? "wsp" : "sp");
+ } else {
+ // Disassemble w31/x31 as zero register wzr/xzr.
+ AppendToOutput("%czr", reg_type);
+ }
+
+ return field_len;
+}
+
+
+int Disassembler::SubstituteImmediateField(Instruction* instr,
+ const char* format) {
+ ASSERT(format[0] == 'I');
+
+ switch (format[1]) {
+ case 'M': { // IMoveImm or IMoveLSL.
+ if (format[5] == 'I') {
+ uint64_t imm = instr->ImmMoveWide() << (16 * instr->ShiftMoveWide());
+ AppendToOutput("#0x%" PRIx64, imm);
+ } else {
+ ASSERT(format[5] == 'L');
+ AppendToOutput("#0x%" PRIx64, instr->ImmMoveWide());
+ if (instr->ShiftMoveWide() > 0) {
+ AppendToOutput(", lsl #%d", 16 * instr->ShiftMoveWide());
+ }
+ }
+ return 8;
+ }
+ case 'L': {
+ switch (format[2]) {
+ case 'L': { // ILLiteral - Immediate Load Literal.
+ AppendToOutput("pc%+" PRId64,
+ instr->ImmLLiteral() << kLiteralEntrySizeLog2);
+ return 9;
+ }
+ case 'S': { // ILS - Immediate Load/Store.
+ if (instr->ImmLS() != 0) {
+ AppendToOutput(", #%" PRId64, instr->ImmLS());
+ }
+ return 3;
+ }
+ case 'P': { // ILPx - Immediate Load/Store Pair, x = access size.
+ if (instr->ImmLSPair() != 0) {
+ // format[3] is the scale value. Convert to a number.
+ int scale = format[3] - 0x30;
+ AppendToOutput(", #%" PRId64, instr->ImmLSPair() * scale);
+ }
+ return 4;
+ }
+ case 'U': { // ILU - Immediate Load/Store Unsigned.
+ if (instr->ImmLSUnsigned() != 0) {
+ AppendToOutput(", #%" PRIu64,
+ instr->ImmLSUnsigned() << instr->SizeLS());
+ }
+ return 3;
+ }
+ }
+ }
+ case 'C': { // ICondB - Immediate Conditional Branch.
+ int64_t offset = instr->ImmCondBranch() << 2;
+ char sign = (offset >= 0) ? '+' : '-';
+ AppendToOutput("#%c0x%" PRIx64, sign, offset);
+ return 6;
+ }
+ case 'A': { // IAddSub.
+ ASSERT(instr->ShiftAddSub() <= 1);
+ int64_t imm = instr->ImmAddSub() << (12 * instr->ShiftAddSub());
+ AppendToOutput("#0x%" PRIx64 " (%" PRId64 ")", imm, imm);
+ return 7;
+ }
+ case 'F': { // IFPSingle, IFPDouble or IFPFBits.
+ if (format[3] == 'F') { // IFPFbits.
+ AppendToOutput("#%d", 64 - instr->FPScale());
+ return 8;
+ } else {
+ AppendToOutput("#0x%" PRIx64 " (%.4f)", instr->ImmFP(),
+ format[3] == 'S' ? instr->ImmFP32() : instr->ImmFP64());
+ return 9;
+ }
+ }
+ case 'T': { // ITri - Immediate Triangular Encoded.
+ AppendToOutput("#0x%" PRIx64, instr->ImmLogical());
+ return 4;
+ }
+ case 'N': { // INzcv.
+ int nzcv = (instr->Nzcv() << Flags_offset);
+ AppendToOutput("#%c%c%c%c", ((nzcv & NFlag) == 0) ? 'n' : 'N',
+ ((nzcv & ZFlag) == 0) ? 'z' : 'Z',
+ ((nzcv & CFlag) == 0) ? 'c' : 'C',
+ ((nzcv & VFlag) == 0) ? 'v' : 'V');
+ return 5;
+ }
+ case 'P': { // IP - Conditional compare.
+ AppendToOutput("#%d", instr->ImmCondCmp());
+ return 2;
+ }
+ case 'B': { // Bitfields.
+ return SubstituteBitfieldImmediateField(instr, format);
+ }
+ case 'E': { // IExtract.
+ AppendToOutput("#%d", instr->ImmS());
+ return 8;
+ }
+ case 'S': { // IS - Test and branch bit.
+ AppendToOutput("#%d", (instr->ImmTestBranchBit5() << 5) |
+ instr->ImmTestBranchBit40());
+ return 2;
+ }
+ case 'D': { // IDebug - HLT and BRK instructions.
+ AppendToOutput("#0x%x", instr->ImmException());
+ return 6;
+ }
+ default: {
+ UNIMPLEMENTED();
+ return 0;
+ }
+ }
+}
+
+
+int Disassembler::SubstituteBitfieldImmediateField(Instruction* instr,
+ const char* format) {
+ ASSERT((format[0] == 'I') && (format[1] == 'B'));
+ unsigned r = instr->ImmR();
+ unsigned s = instr->ImmS();
+
+ switch (format[2]) {
+ case 'r': { // IBr.
+ AppendToOutput("#%d", r);
+ return 3;
+ }
+ case 's': { // IBs+1 or IBs-r+1.
+ if (format[3] == '+') {
+ AppendToOutput("#%d", s + 1);
+ return 5;
+ } else {
+ ASSERT(format[3] == '-');
+ AppendToOutput("#%d", s - r + 1);
+ return 7;
+ }
+ }
+ case 'Z': { // IBZ-r.
+ ASSERT((format[3] == '-') && (format[4] == 'r'));
+ unsigned reg_size = (instr->SixtyFourBits() == 1) ? kXRegSize : kWRegSize;
+ AppendToOutput("#%d", reg_size - r);
+ return 5;
+ }
+ default: {
+ UNREACHABLE();
+ return 0;
+ }
+ }
+}
+
+
+int Disassembler::SubstituteLiteralField(Instruction* instr,
+ const char* format) {
+ ASSERT(strncmp(format, "LValue", 6) == 0);
+ USE(format);
+
+ switch (instr->Mask(LoadLiteralMask)) {
+ case LDR_w_lit:
+ case LDR_x_lit:
+ case LDR_s_lit:
+ case LDR_d_lit: AppendToOutput("(addr %p)", instr->LiteralAddress()); break;
+ default: UNREACHABLE();
+ }
+
+ return 6;
+}
+
+
+int Disassembler::SubstituteShiftField(Instruction* instr, const char* format) {
+ ASSERT(format[0] == 'H');
+ ASSERT(instr->ShiftDP() <= 0x3);
+
+ switch (format[1]) {
+ case 'D': { // HDP.
+ ASSERT(instr->ShiftDP() != ROR);
+ } // Fall through.
+ case 'L': { // HLo.
+ if (instr->ImmDPShift() != 0) {
+ const char* shift_type[] = {"lsl", "lsr", "asr", "ror"};
+ AppendToOutput(", %s #%" PRId64, shift_type[instr->ShiftDP()],
+ instr->ImmDPShift());
+ }
+ return 3;
+ }
+ default:
+ UNIMPLEMENTED();
+ return 0;
+ }
+}
+
+
+int Disassembler::SubstituteConditionField(Instruction* instr,
+ const char* format) {
+ ASSERT(format[0] == 'C');
+ const char* condition_code[] = { "eq", "ne", "hs", "lo",
+ "mi", "pl", "vs", "vc",
+ "hi", "ls", "ge", "lt",
+ "gt", "le", "al", "nv" };
+ int cond;
+ switch (format[1]) {
+ case 'B': cond = instr->ConditionBranch(); break;
+ case 'I': {
+ cond = InvertCondition(static_cast<Condition>(instr->Condition()));
+ break;
+ }
+ default: cond = instr->Condition();
+ }
+ AppendToOutput("%s", condition_code[cond]);
+ return 4;
+}
+
+
+int Disassembler::SubstitutePCRelAddressField(Instruction* instr,
+ const char* format) {
+ USE(format);
+ ASSERT(strncmp(format, "AddrPCRel", 9) == 0);
+
+ int offset = instr->ImmPCRel();
+
+ // Only ADR (AddrPCRelByte) is supported.
+ ASSERT(strcmp(format, "AddrPCRelByte") == 0);
+
+ char sign = '+';
+ if (offset < 0) {
+ offset = -offset;
+ sign = '-';
+ }
+ // TODO: Extend this to support printing the target address.
+ AppendToOutput("#%c0x%x", sign, offset);
+ return 13;
+}
+
+
+int Disassembler::SubstituteBranchTargetField(Instruction* instr,
+ const char* format) {
+ ASSERT(strncmp(format, "BImm", 4) == 0);
+
+ int64_t offset = 0;
+ switch (format[5]) {
+ // BImmUncn - unconditional branch immediate.
+ case 'n': offset = instr->ImmUncondBranch(); break;
+ // BImmCond - conditional branch immediate.
+ case 'o': offset = instr->ImmCondBranch(); break;
+ // BImmCmpa - compare and branch immediate.
+ case 'm': offset = instr->ImmCmpBranch(); break;
+ // BImmTest - test and branch immediate.
+ case 'e': offset = instr->ImmTestBranch(); break;
+ default: UNIMPLEMENTED();
+ }
+ offset <<= kInstructionSizeLog2;
+ char sign = '+';
+ if (offset < 0) {
+ offset = -offset;
+ sign = '-';
+ }
+ AppendToOutput("#%c0x%" PRIx64, sign, offset);
+ return 8;
+}
+
+
+int Disassembler::SubstituteExtendField(Instruction* instr,
+ const char* format) {
+ ASSERT(strncmp(format, "Ext", 3) == 0);
+ ASSERT(instr->ExtendMode() <= 7);
+ USE(format);
+
+ const char* extend_mode[] = { "uxtb", "uxth", "uxtw", "uxtx",
+ "sxtb", "sxth", "sxtw", "sxtx" };
+
+ // If rd or rn is SP, uxtw on 32-bit registers and uxtx on 64-bit
+ // registers becomes lsl.
+ if (((instr->Rd() == kZeroRegCode) || (instr->Rn() == kZeroRegCode)) &&
+ (((instr->ExtendMode() == UXTW) && (instr->SixtyFourBits() == 0)) ||
+ (instr->ExtendMode() == UXTX))) {
+ if (instr->ImmExtendShift() > 0) {
+ AppendToOutput(", lsl #%d", instr->ImmExtendShift());
+ }
+ } else {
+ AppendToOutput(", %s", extend_mode[instr->ExtendMode()]);
+ if (instr->ImmExtendShift() > 0) {
+ AppendToOutput(" #%d", instr->ImmExtendShift());
+ }
+ }
+ return 3;
+}
+
+
+int Disassembler::SubstituteLSRegOffsetField(Instruction* instr,
+ const char* format) {
+ ASSERT(strncmp(format, "Offsetreg", 9) == 0);
+ const char* extend_mode[] = { "undefined", "undefined", "uxtw", "lsl",
+ "undefined", "undefined", "sxtw", "sxtx" };
+ USE(format);
+
+ unsigned shift = instr->ImmShiftLS();
+ Extend ext = static_cast<Extend>(instr->ExtendMode());
+ char reg_type = ((ext == UXTW) || (ext == SXTW)) ? 'w' : 'x';
+
+ unsigned rm = instr->Rm();
+ if (rm == kZeroRegCode) {
+ AppendToOutput("%czr", reg_type);
+ } else {
+ AppendToOutput("%c%d", reg_type, rm);
+ }
+
+ // Extend mode UXTX is an alias for shift mode LSL here.
+ if (!((ext == UXTX) && (shift == 0))) {
+ AppendToOutput(", %s", extend_mode[ext]);
+ if (shift != 0) {
+ AppendToOutput(" #%d", instr->SizeLS());
+ }
+ }
+ return 9;
+}
+
+
+int Disassembler::SubstitutePrefetchField(Instruction* instr,
+ const char* format) {
+ ASSERT(format[0] == 'P');
+ USE(format);
+
+ int prefetch_mode = instr->PrefetchMode();
+
+ const char* ls = (prefetch_mode & 0x10) ? "st" : "ld";
+ int level = (prefetch_mode >> 1) + 1;
+ const char* ks = (prefetch_mode & 1) ? "strm" : "keep";
+
+ AppendToOutput("p%sl%d%s", ls, level, ks);
+ return 6;
+}
+
+
+void Disassembler::ResetOutput() {
+ buffer_pos_ = 0;
+ buffer_[buffer_pos_] = 0;
+}
+
+
+void Disassembler::AppendToOutput(const char* format, ...) {
+ va_list args;
+ va_start(args, format);
+ buffer_pos_ += vsnprintf(&buffer_[buffer_pos_], buffer_size_, format, args);
+ va_end(args);
+}
+
+
+void PrintDisassembler::ProcessOutput(Instruction* instr) {
+ fprintf(stream_, "0x%016" PRIx64 " %08" PRIx32 "\t\t%s\n",
+ reinterpret_cast<uint64_t>(instr),
+ instr->InstructionBits(),
+ GetOutput());
+}
+} // namespace vixl
diff --git a/disas/libvixl/a64/disasm-a64.h b/disas/libvixl/a64/disasm-a64.h
new file mode 100644
index 0000000..857a5ac
--- /dev/null
+++ b/disas/libvixl/a64/disasm-a64.h
@@ -0,0 +1,109 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_DISASM_A64_H
+#define VIXL_A64_DISASM_A64_H
+
+#include "globals.h"
+#include "utils.h"
+#include "instructions-a64.h"
+#include "decoder-a64.h"
+
+namespace vixl {
+
+class Disassembler: public DecoderVisitor {
+ public:
+ Disassembler();
+ Disassembler(char* text_buffer, int buffer_size);
+ virtual ~Disassembler();
+ char* GetOutput();
+
+ // Declare all Visitor functions.
+ #define DECLARE(A) void Visit##A(Instruction* instr);
+ VISITOR_LIST(DECLARE)
+ #undef DECLARE
+
+ protected:
+ virtual void ProcessOutput(Instruction* instr);
+
+ private:
+ void Format(Instruction* instr, const char* mnemonic, const char* format);
+ void Substitute(Instruction* instr, const char* string);
+ int SubstituteField(Instruction* instr, const char* format);
+ int SubstituteRegisterField(Instruction* instr, const char* format);
+ int SubstituteImmediateField(Instruction* instr, const char* format);
+ int SubstituteLiteralField(Instruction* instr, const char* format);
+ int SubstituteBitfieldImmediateField(Instruction* instr, const char* format);
+ int SubstituteShiftField(Instruction* instr, const char* format);
+ int SubstituteExtendField(Instruction* instr, const char* format);
+ int SubstituteConditionField(Instruction* instr, const char* format);
+ int SubstitutePCRelAddressField(Instruction* instr, const char* format);
+ int SubstituteBranchTargetField(Instruction* instr, const char* format);
+ int SubstituteLSRegOffsetField(Instruction* instr, const char* format);
+ int SubstitutePrefetchField(Instruction* instr, const char* format);
+
+ inline bool RdIsZROrSP(Instruction* instr) const {
+ return (instr->Rd() == kZeroRegCode);
+ }
+
+ inline bool RnIsZROrSP(Instruction* instr) const {
+ return (instr->Rn() == kZeroRegCode);
+ }
+
+ inline bool RmIsZROrSP(Instruction* instr) const {
+ return (instr->Rm() == kZeroRegCode);
+ }
+
+ inline bool RaIsZROrSP(Instruction* instr) const {
+ return (instr->Ra() == kZeroRegCode);
+ }
+
+ bool IsMovzMovnImm(unsigned reg_size, uint64_t value);
+
+ void ResetOutput();
+ void AppendToOutput(const char* string, ...);
+
+ char* buffer_;
+ uint32_t buffer_pos_;
+ uint32_t buffer_size_;
+ bool own_buffer_;
+};
+
+
+class PrintDisassembler: public Disassembler {
+ public:
+ explicit PrintDisassembler(FILE* stream) : stream_(stream) { }
+ ~PrintDisassembler() { }
+
+ protected:
+ virtual void ProcessOutput(Instruction* instr);
+
+ private:
+ FILE *stream_;
+};
+} // namespace vixl
+
+#endif // VIXL_A64_DISASM_A64_H
diff --git a/disas/libvixl/a64/instructions-a64.cc b/disas/libvixl/a64/instructions-a64.cc
new file mode 100644
index 0000000..e87fa3a
--- /dev/null
+++ b/disas/libvixl/a64/instructions-a64.cc
@@ -0,0 +1,238 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "a64/instructions-a64.h"
+#include "a64/assembler-a64.h"
+
+namespace vixl {
+
+
+static uint64_t RotateRight(uint64_t value,
+ unsigned int rotate,
+ unsigned int width) {
+ ASSERT(width <= 64);
+ rotate &= 63;
+ return ((value & ((1UL << rotate) - 1UL)) << (width - rotate)) |
+ (value >> rotate);
+}
+
+
+static uint64_t RepeatBitsAcrossReg(unsigned reg_size,
+ uint64_t value,
+ unsigned width) {
+ ASSERT((width == 2) || (width == 4) || (width == 8) || (width == 16) ||
+ (width == 32));
+ ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+ uint64_t result = value & ((1UL << width) - 1UL);
+ for (unsigned i = width; i < reg_size; i *= 2) {
+ result |= (result << i);
+ }
+ return result;
+}
+
+
+// Logical immediates can't encode zero, so a return value of zero is used to
+// indicate a failure case. Specifically, where the constraints on imm_s are
+// not met.
+uint64_t Instruction::ImmLogical() {
+ unsigned reg_size = SixtyFourBits() ? kXRegSize : kWRegSize;
+ int64_t n = BitN();
+ int64_t imm_s = ImmSetBits();
+ int64_t imm_r = ImmRotate();
+
+ // An integer is constructed from the n, imm_s and imm_r bits according to
+ // the following table:
+ //
+ // N imms immr size S R
+ // 1 ssssss rrrrrr 64 UInt(ssssss) UInt(rrrrrr)
+ // 0 0sssss xrrrrr 32 UInt(sssss) UInt(rrrrr)
+ // 0 10ssss xxrrrr 16 UInt(ssss) UInt(rrrr)
+ // 0 110sss xxxrrr 8 UInt(sss) UInt(rrr)
+ // 0 1110ss xxxxrr 4 UInt(ss) UInt(rr)
+ // 0 11110s xxxxxr 2 UInt(s) UInt(r)
+ // (s bits must not be all set)
+ //
+ // A pattern is constructed of size bits, where the least significant S+1
+ // bits are set. The pattern is rotated right by R, and repeated across a
+ // 32 or 64-bit value, depending on destination register width.
+ //
+
+ if (n == 1) {
+ if (imm_s == 0x3F) {
+ return 0;
+ }
+ uint64_t bits = (1UL << (imm_s + 1)) - 1;
+ return RotateRight(bits, imm_r, 64);
+ } else {
+ if ((imm_s >> 1) == 0x1F) {
+ return 0;
+ }
+ for (int width = 0x20; width >= 0x2; width >>= 1) {
+ if ((imm_s & width) == 0) {
+ int mask = width - 1;
+ if ((imm_s & mask) == mask) {
+ return 0;
+ }
+ uint64_t bits = (1UL << ((imm_s & mask) + 1)) - 1;
+ return RepeatBitsAcrossReg(reg_size,
+ RotateRight(bits, imm_r & mask, width),
+ width);
+ }
+ }
+ }
+ UNREACHABLE();
+ return 0;
+}
+
+
+float Instruction::ImmFP32() {
+ // ImmFP: abcdefgh (8 bits)
+ // Single: aBbb.bbbc.defg.h000.0000.0000.0000.0000 (32 bits)
+ // where B is b ^ 1
+ uint32_t bits = ImmFP();
+ uint32_t bit7 = (bits >> 7) & 0x1;
+ uint32_t bit6 = (bits >> 6) & 0x1;
+ uint32_t bit5_to_0 = bits & 0x3f;
+ uint32_t result = (bit7 << 31) | ((32 - bit6) << 25) | (bit5_to_0 << 19);
+
+ return rawbits_to_float(result);
+}
+
+
+double Instruction::ImmFP64() {
+ // ImmFP: abcdefgh (8 bits)
+ // Double: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
+ // 0000.0000.0000.0000.0000.0000.0000.0000 (64 bits)
+ // where B is b ^ 1
+ uint32_t bits = ImmFP();
+ uint64_t bit7 = (bits >> 7) & 0x1;
+ uint64_t bit6 = (bits >> 6) & 0x1;
+ uint64_t bit5_to_0 = bits & 0x3f;
+ uint64_t result = (bit7 << 63) | ((256 - bit6) << 54) | (bit5_to_0 << 48);
+
+ return rawbits_to_double(result);
+}
+
+
+LSDataSize CalcLSPairDataSize(LoadStorePairOp op) {
+ switch (op) {
+ case STP_x:
+ case LDP_x:
+ case STP_d:
+ case LDP_d: return LSDoubleWord;
+ default: return LSWord;
+ }
+}
+
+
+Instruction* Instruction::ImmPCOffsetTarget() {
+ ptrdiff_t offset;
+ if (IsPCRelAddressing()) {
+ // PC-relative addressing. Only ADR is supported.
+ offset = ImmPCRel();
+ } else {
+ // All PC-relative branches.
+ ASSERT(BranchType() != UnknownBranchType);
+ // Relative branch offsets are instruction-size-aligned.
+ offset = ImmBranch() << kInstructionSizeLog2;
+ }
+ return this + offset;
+}
+
+
+inline int Instruction::ImmBranch() const {
+ switch (BranchType()) {
+ case CondBranchType: return ImmCondBranch();
+ case UncondBranchType: return ImmUncondBranch();
+ case CompareBranchType: return ImmCmpBranch();
+ case TestBranchType: return ImmTestBranch();
+ default: UNREACHABLE();
+ }
+ return 0;
+}
+
+
+void Instruction::SetImmPCOffsetTarget(Instruction* target) {
+ if (IsPCRelAddressing()) {
+ SetPCRelImmTarget(target);
+ } else {
+ SetBranchImmTarget(target);
+ }
+}
+
+
+void Instruction::SetPCRelImmTarget(Instruction* target) {
+ // ADRP is not supported, so 'this' must point to an ADR instruction.
+ ASSERT(Mask(PCRelAddressingMask) == ADR);
+
+ Instr imm = Assembler::ImmPCRelAddress(target - this);
+
+ SetInstructionBits(Mask(~ImmPCRel_mask) | imm);
+}
+
+
+void Instruction::SetBranchImmTarget(Instruction* target) {
+ ASSERT(((target - this) & 3) == 0);
+ Instr branch_imm = 0;
+ uint32_t imm_mask = 0;
+ int offset = (target - this) >> kInstructionSizeLog2;
+ switch (BranchType()) {
+ case CondBranchType: {
+ branch_imm = Assembler::ImmCondBranch(offset);
+ imm_mask = ImmCondBranch_mask;
+ break;
+ }
+ case UncondBranchType: {
+ branch_imm = Assembler::ImmUncondBranch(offset);
+ imm_mask = ImmUncondBranch_mask;
+ break;
+ }
+ case CompareBranchType: {
+ branch_imm = Assembler::ImmCmpBranch(offset);
+ imm_mask = ImmCmpBranch_mask;
+ break;
+ }
+ case TestBranchType: {
+ branch_imm = Assembler::ImmTestBranch(offset);
+ imm_mask = ImmTestBranch_mask;
+ break;
+ }
+ default: UNREACHABLE();
+ }
+ SetInstructionBits(Mask(~imm_mask) | branch_imm);
+}
+
+
+void Instruction::SetImmLLiteral(Instruction* source) {
+ ASSERT(((source - this) & 3) == 0);
+ int offset = (source - this) >> kLiteralEntrySizeLog2;
+ Instr imm = Assembler::ImmLLiteral(offset);
+ Instr mask = ImmLLiteral_mask;
+
+ SetInstructionBits(Mask(~mask) | imm);
+}
+} // namespace vixl
+
diff --git a/disas/libvixl/a64/instructions-a64.h b/disas/libvixl/a64/instructions-a64.h
new file mode 100644
index 0000000..0f31fcd
--- /dev/null
+++ b/disas/libvixl/a64/instructions-a64.h
@@ -0,0 +1,344 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+// * Redistributions of source code must retain the above copyright notice,
+// this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above copyright notice,
+// this list of conditions and the following disclaimer in the documentation
+// and/or other materials provided with the distribution.
+// * Neither the name of ARM Limited nor the names of its contributors may be
+// used to endorse or promote products derived from this software without
+// specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_INSTRUCTIONS_A64_H_
+#define VIXL_A64_INSTRUCTIONS_A64_H_
+
+#include "globals.h"
+#include "utils.h"
+#include "a64/constants-a64.h"
+
+namespace vixl {
+// ISA constants. --------------------------------------------------------------
+
+typedef uint32_t Instr;
+const unsigned kInstructionSize = 4;
+const unsigned kInstructionSizeLog2 = 2;
+const unsigned kLiteralEntrySize = 4;
+const unsigned kLiteralEntrySizeLog2 = 2;
+const unsigned kMaxLoadLiteralRange = 1 * MBytes;
+
+const unsigned kWRegSize = 32;
+const unsigned kWRegSizeLog2 = 5;
+const unsigned kWRegSizeInBytes = kWRegSize / 8;
+const unsigned kXRegSize = 64;
+const unsigned kXRegSizeLog2 = 6;
+const unsigned kXRegSizeInBytes = kXRegSize / 8;
+const unsigned kSRegSize = 32;
+const unsigned kSRegSizeLog2 = 5;
+const unsigned kSRegSizeInBytes = kSRegSize / 8;
+const unsigned kDRegSize = 64;
+const unsigned kDRegSizeLog2 = 6;
+const unsigned kDRegSizeInBytes = kDRegSize / 8;
+const int64_t kWRegMask = 0x00000000ffffffffL;
+const int64_t kXRegMask = 0xffffffffffffffffL;
+const int64_t kSRegMask = 0x00000000ffffffffL;
+const int64_t kDRegMask = 0xffffffffffffffffL;
+const int64_t kXSignMask = 0x1L << 63;
+const int64_t kWSignMask = 0x1L << 31;
+const int64_t kByteMask = 0xffL;
+const int64_t kHalfWordMask = 0xffffL;
+const int64_t kWordMask = 0xffffffffL;
+const uint64_t kXMaxUInt = 0xffffffffffffffffUL;
+const uint64_t kWMaxUInt = 0xffffffffUL;
+const int64_t kXMaxInt = 0x7fffffffffffffffL;
+const int64_t kXMinInt = 0x8000000000000000L;
+const int32_t kWMaxInt = 0x7fffffff;
+const int32_t kWMinInt = 0x80000000;
+const unsigned kLinkRegCode = 30;
+const unsigned kZeroRegCode = 31;
+const unsigned kSPRegInternalCode = 63;
+const unsigned kRegCodeMask = 0x1f;
+
+// AArch64 floating-point specifics. These match IEEE-754.
+const unsigned kDoubleMantissaBits = 52;
+const unsigned kDoubleExponentBits = 11;
+const unsigned kFloatMantissaBits = 23;
+const unsigned kFloatExponentBits = 8;
+
+const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
+const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
+const double kFP64PositiveInfinity = rawbits_to_double(0x7ff0000000000000UL);
+const double kFP64NegativeInfinity = rawbits_to_double(0xfff0000000000000UL);
+
+// This value is a signalling NaN as both a double and as a float (taking the
+// least-significant word).
+static const double kFP64SignallingNaN = rawbits_to_double(0x7ff000007f800001);
+static const float kFP32SignallingNaN = rawbits_to_float(0x7f800001);
+
+// A similar value, but as a quiet NaN.
+static const double kFP64QuietNaN = rawbits_to_double(0x7ff800007fc00001);
+static const float kFP32QuietNaN = rawbits_to_float(0x7fc00001);
+
+enum LSDataSize {
+ LSByte = 0,
+ LSHalfword = 1,
+ LSWord = 2,
+ LSDoubleWord = 3
+};
+
+LSDataSize CalcLSPairDataSize(LoadStorePairOp op);
+
+enum ImmBranchType {
+ UnknownBranchType = 0,
+ CondBranchType = 1,
+ UncondBranchType = 2,
+ CompareBranchType = 3,
+ TestBranchType = 4
+};
+
+enum AddrMode {
+ Offset,
+ PreIndex,
+ PostIndex
+};
+
+enum FPRounding {
+ // The first four values are encodable directly by FPCR<RMode>.
+ FPTieEven = 0x0,
+ FPPositiveInfinity = 0x1,
+ FPNegativeInfinity = 0x2,
+ FPZero = 0x3,
+
+ // The final rounding mode is only available when explicitly specified by the
+ // instruction (such as with fcvta). It cannot be set in FPCR.
+ FPTieAway
+};
+
+enum Reg31Mode {
+ Reg31IsStackPointer,
+ Reg31IsZeroRegister
+};
+
+// Instructions. ---------------------------------------------------------------
+
+class Instruction {
+ public:
+ inline Instr InstructionBits() const {
+ return *(reinterpret_cast<const Instr*>(this));
+ }
+
+ inline void SetInstructionBits(Instr new_instr) {
+ *(reinterpret_cast<Instr*>(this)) = new_instr;
+ }
+
+ inline int Bit(int pos) const {
+ return (InstructionBits() >> pos) & 1;
+ }
+
+ inline uint32_t Bits(int msb, int lsb) const {
+ return unsigned_bitextract_32(msb, lsb, InstructionBits());
+ }
+
+ inline int32_t SignedBits(int msb, int lsb) const {
+ int32_t bits = *(reinterpret_cast<const int32_t*>(this));
+ return signed_bitextract_32(msb, lsb, bits);
+ }
+
+ inline Instr Mask(uint32_t mask) const {
+ return InstructionBits() & mask;
+ }
+
+ #define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
+ inline int64_t Name() const { return Func(HighBit, LowBit); }
+ INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
+ #undef DEFINE_GETTER
+
+ // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
+ // formed from ImmPCRelLo and ImmPCRelHi.
+ int ImmPCRel() const {
+ int const offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
+ int const width = ImmPCRelLo_width + ImmPCRelHi_width;
+ return signed_bitextract_32(width-1, 0, offset);
+ }
+
+ uint64_t ImmLogical();
+ float ImmFP32();
+ double ImmFP64();
+
+ inline LSDataSize SizeLSPair() const {
+ return CalcLSPairDataSize(
+ static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
+ }
+
+ // Helpers.
+ inline bool IsCondBranchImm() const {
+ return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
+ }
+
+ inline bool IsUncondBranchImm() const {
+ return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
+ }
+
+ inline bool IsCompareBranch() const {
+ return Mask(CompareBranchFMask) == CompareBranchFixed;
+ }
+
+ inline bool IsTestBranch() const {
+ return Mask(TestBranchFMask) == TestBranchFixed;
+ }
+
+ inline bool IsPCRelAddressing() const {
+ return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
+ }
+
+ inline bool IsLogicalImmediate() const {
+ return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
+ }
+
+ inline bool IsAddSubImmediate() const {
+ return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
+ }
+
+ inline bool IsAddSubExtended() const {
+ return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
+ }
+
+ inline bool IsLoadOrStore() const {
+ return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
+ }
+
+ inline bool IsMovn() const {
+ return (Mask(MoveWideImmediateMask) == MOVN_x) ||
+ (Mask(MoveWideImmediateMask) == MOVN_w);
+ }
+
+ // Indicate whether Rd can be the stack pointer or the zero register. This
+ // does not check that the instruction actually has an Rd field.
+ inline Reg31Mode RdMode() const {
+ // The following instructions use sp or wsp as Rd:
+ // Add/sub (immediate) when not setting the flags.
+ // Add/sub (extended) when not setting the flags.
+ // Logical (immediate) when not setting the flags.
+ // Otherwise, r31 is the zero register.
+ if (IsAddSubImmediate() || IsAddSubExtended()) {
+ if (Mask(AddSubSetFlagsBit)) {
+ return Reg31IsZeroRegister;
+ } else {
+ return Reg31IsStackPointer;
+ }
+ }
+ if (IsLogicalImmediate()) {
+ // Of the logical (immediate) instructions, only ANDS (and its aliases)
+ // can set the flags. The others can all write into sp.
+ // Note that some logical operations are not available to
+ // immediate-operand instructions, so we have to combine two masks here.
+ if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
+ return Reg31IsZeroRegister;
+ } else {
+ return Reg31IsStackPointer;
+ }
+ }
+ return Reg31IsZeroRegister;
+ }
+
+ // Indicate whether Rn can be the stack pointer or the zero register. This
+ // does not check that the instruction actually has an Rn field.
+ inline Reg31Mode RnMode() const {
+ // The following instructions use sp or wsp as Rn:
+ // All loads and stores.
+ // Add/sub (immediate).
+ // Add/sub (extended).
+ // Otherwise, r31 is the zero register.
+ if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
+ return Reg31IsStackPointer;
+ }
+ return Reg31IsZeroRegister;
+ }
+
+ inline ImmBranchType BranchType() const {
+ if (IsCondBranchImm()) {
+ return CondBranchType;
+ } else if (IsUncondBranchImm()) {
+ return UncondBranchType;
+ } else if (IsCompareBranch()) {
+ return CompareBranchType;
+ } else if (IsTestBranch()) {
+ return TestBranchType;
+ } else {
+ return UnknownBranchType;
+ }
+ }
+
+ // Find the target of this instruction. 'this' may be a branch or a
+ // PC-relative addressing instruction.
+ Instruction* ImmPCOffsetTarget();
+
+ // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
+ // a PC-relative addressing instruction.
+ void SetImmPCOffsetTarget(Instruction* target);
+ // Patch a literal load instruction to load from 'source'.
+ void SetImmLLiteral(Instruction* source);
+
+ inline uint8_t* LiteralAddress() {
+ int offset = ImmLLiteral() << kLiteralEntrySizeLog2;
+ return reinterpret_cast<uint8_t*>(this) + offset;
+ }
+
+ inline uint32_t Literal32() {
+ uint32_t literal;
+ memcpy(&literal, LiteralAddress(), sizeof(literal));
+
+ return literal;
+ }
+
+ inline uint64_t Literal64() {
+ uint64_t literal;
+ memcpy(&literal, LiteralAddress(), sizeof(literal));
+
+ return literal;
+ }
+
+ inline float LiteralFP32() {
+ return rawbits_to_float(Literal32());
+ }
+
+ inline double LiteralFP64() {
+ return rawbits_to_double(Literal64());
+ }
+
+ inline Instruction* NextInstruction() {
+ return this + kInstructionSize;
+ }
+
+ inline Instruction* InstructionAtOffset(int64_t offset) {
+ ASSERT(IsWordAligned(this + offset));
+ return this + offset;
+ }
+
+ template<typename T> static inline Instruction* Cast(T src) {
+ return reinterpret_cast<Instruction*>(src);
+ }
+
+ private:
+ inline int ImmBranch() const;
+
+ void SetPCRelImmTarget(Instruction* target);
+ void SetBranchImmTarget(Instruction* target);
+};
+} // namespace vixl
+
+#endif // VIXL_A64_INSTRUCTIONS_A64_H_