aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorAndrzej Zaborowski <andrew.zaborowski@intel.com>2011-10-27 01:02:46 +0200
committerAndrzej Zaborowski <andrew.zaborowski@intel.com>2011-10-27 01:02:46 +0200
commit9f60639b848944200c3d33a89233d808de0b5a43 (patch)
tree2346754fc52e973ce6d6122c9310fa293595fa79
parentfafd8bceb58afb2da179efd8266b6df38a8719a9 (diff)
parent12b1de3a3f026a2e27993b60749122b02509533c (diff)
downloadqemu-9f60639b848944200c3d33a89233d808de0b5a43.zip
qemu-9f60639b848944200c3d33a89233d808de0b5a43.tar.gz
qemu-9f60639b848944200c3d33a89233d808de0b5a43.tar.bz2
Merge branch 'target-arm.for-upstream' of git://git.linaro.org/people/pmaydell/qemu-arm
-rw-r--r--fpu/softfloat-specialize.h178
-rw-r--r--fpu/softfloat.c427
-rw-r--r--fpu/softfloat.h14
-rw-r--r--target-arm/cpu.h4
-rw-r--r--target-arm/helper.c26
-rw-r--r--target-arm/helper.h3
-rw-r--r--target-arm/machine.c2
-rw-r--r--target-arm/translate.c118
8 files changed, 760 insertions, 12 deletions
diff --git a/fpu/softfloat-specialize.h b/fpu/softfloat-specialize.h
index c165205..c5e2dab 100644
--- a/fpu/softfloat-specialize.h
+++ b/fpu/softfloat-specialize.h
@@ -420,6 +420,82 @@ static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
#endif
/*----------------------------------------------------------------------------
+| Select which NaN to propagate for a three-input operation.
+| For the moment we assume that no CPU needs the 'larger significand'
+| information.
+| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
+*----------------------------------------------------------------------------*/
+#if defined(TARGET_ARM)
+static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
+ flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
+{
+ /* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
+ * the default NaN
+ */
+ if (infzero && cIsQNaN) {
+ float_raise(float_flag_invalid STATUS_VAR);
+ return 3;
+ }
+
+ /* This looks different from the ARM ARM pseudocode, because the ARM ARM
+ * puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
+ */
+ if (cIsSNaN) {
+ return 2;
+ } else if (aIsSNaN) {
+ return 0;
+ } else if (bIsSNaN) {
+ return 1;
+ } else if (cIsQNaN) {
+ return 2;
+ } else if (aIsQNaN) {
+ return 0;
+ } else {
+ return 1;
+ }
+}
+#elif defined(TARGET_PPC)
+static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
+ flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
+{
+ /* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
+ * to return an input NaN if we have one (ie c) rather than generating
+ * a default NaN
+ */
+ if (infzero) {
+ float_raise(float_flag_invalid STATUS_VAR);
+ return 2;
+ }
+
+ /* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
+ * otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
+ */
+ if (aIsSNaN || aIsQNaN) {
+ return 0;
+ } else if (cIsSNaN || cIsQNaN) {
+ return 2;
+ } else {
+ return 1;
+ }
+}
+#else
+/* A default implementation: prefer a to b to c.
+ * This is unlikely to actually match any real implementation.
+ */
+static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
+ flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
+{
+ if (aIsSNaN || aIsQNaN) {
+ return 0;
+ } else if (bIsSNaN || bIsQNaN) {
+ return 1;
+ } else {
+ return 2;
+ }
+}
+#endif
+
+/*----------------------------------------------------------------------------
| Takes two single-precision floating-point values `a' and `b', one of which
| is a NaN, and returns the appropriate NaN result. If either `a' or `b' is a
| signaling NaN, the invalid exception is raised.
@@ -460,6 +536,57 @@ static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
}
/*----------------------------------------------------------------------------
+| Takes three single-precision floating-point values `a', `b' and `c', one of
+| which is a NaN, and returns the appropriate NaN result. If any of `a',
+| `b' or `c' is a signaling NaN, the invalid exception is raised.
+| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
+| obviously c is a NaN, and whether to propagate c or some other NaN is
+| implementation defined).
+*----------------------------------------------------------------------------*/
+
+static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
+ float32 c, flag infzero STATUS_PARAM)
+{
+ flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
+ cIsQuietNaN, cIsSignalingNaN;
+ int which;
+
+ aIsQuietNaN = float32_is_quiet_nan(a);
+ aIsSignalingNaN = float32_is_signaling_nan(a);
+ bIsQuietNaN = float32_is_quiet_nan(b);
+ bIsSignalingNaN = float32_is_signaling_nan(b);
+ cIsQuietNaN = float32_is_quiet_nan(c);
+ cIsSignalingNaN = float32_is_signaling_nan(c);
+
+ if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
+ float_raise(float_flag_invalid STATUS_VAR);
+ }
+
+ which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
+ bIsQuietNaN, bIsSignalingNaN,
+ cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
+
+ if (STATUS(default_nan_mode)) {
+ /* Note that this check is after pickNaNMulAdd so that function
+ * has an opportunity to set the Invalid flag.
+ */
+ return float32_default_nan;
+ }
+
+ switch (which) {
+ case 0:
+ return float32_maybe_silence_nan(a);
+ case 1:
+ return float32_maybe_silence_nan(b);
+ case 2:
+ return float32_maybe_silence_nan(c);
+ case 3:
+ default:
+ return float32_default_nan;
+ }
+}
+
+/*----------------------------------------------------------------------------
| Returns 1 if the double-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
@@ -596,6 +723,57 @@ static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
}
/*----------------------------------------------------------------------------
+| Takes three double-precision floating-point values `a', `b' and `c', one of
+| which is a NaN, and returns the appropriate NaN result. If any of `a',
+| `b' or `c' is a signaling NaN, the invalid exception is raised.
+| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
+| obviously c is a NaN, and whether to propagate c or some other NaN is
+| implementation defined).
+*----------------------------------------------------------------------------*/
+
+static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
+ float64 c, flag infzero STATUS_PARAM)
+{
+ flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
+ cIsQuietNaN, cIsSignalingNaN;
+ int which;
+
+ aIsQuietNaN = float64_is_quiet_nan(a);
+ aIsSignalingNaN = float64_is_signaling_nan(a);
+ bIsQuietNaN = float64_is_quiet_nan(b);
+ bIsSignalingNaN = float64_is_signaling_nan(b);
+ cIsQuietNaN = float64_is_quiet_nan(c);
+ cIsSignalingNaN = float64_is_signaling_nan(c);
+
+ if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
+ float_raise(float_flag_invalid STATUS_VAR);
+ }
+
+ which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
+ bIsQuietNaN, bIsSignalingNaN,
+ cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
+
+ if (STATUS(default_nan_mode)) {
+ /* Note that this check is after pickNaNMulAdd so that function
+ * has an opportunity to set the Invalid flag.
+ */
+ return float64_default_nan;
+ }
+
+ switch (which) {
+ case 0:
+ return float64_maybe_silence_nan(a);
+ case 1:
+ return float64_maybe_silence_nan(b);
+ case 2:
+ return float64_maybe_silence_nan(c);
+ case 3:
+ default:
+ return float64_default_nan;
+ }
+}
+
+/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
| quiet NaN; otherwise returns 0. This slightly differs from the same
| function for other types as floatx80 has an explicit bit.
diff --git a/fpu/softfloat.c b/fpu/softfloat.c
index 3aafa81..81a7d1a 100644
--- a/fpu/softfloat.c
+++ b/fpu/softfloat.c
@@ -2118,6 +2118,213 @@ float32 float32_rem( float32 a, float32 b STATUS_PARAM )
}
/*----------------------------------------------------------------------------
+| Returns the result of multiplying the single-precision floating-point values
+| `a' and `b' then adding 'c', with no intermediate rounding step after the
+| multiplication. The operation is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic 754-2008.
+| The flags argument allows the caller to select negation of the
+| addend, the intermediate product, or the final result. (The difference
+| between this and having the caller do a separate negation is that negating
+| externally will flip the sign bit on NaNs.)
+*----------------------------------------------------------------------------*/
+
+float32 float32_muladd(float32 a, float32 b, float32 c, int flags STATUS_PARAM)
+{
+ flag aSign, bSign, cSign, zSign;
+ int aExp, bExp, cExp, pExp, zExp, expDiff;
+ uint32_t aSig, bSig, cSig;
+ flag pInf, pZero, pSign;
+ uint64_t pSig64, cSig64, zSig64;
+ uint32_t pSig;
+ int shiftcount;
+ flag signflip, infzero;
+
+ a = float32_squash_input_denormal(a STATUS_VAR);
+ b = float32_squash_input_denormal(b STATUS_VAR);
+ c = float32_squash_input_denormal(c STATUS_VAR);
+ aSig = extractFloat32Frac(a);
+ aExp = extractFloat32Exp(a);
+ aSign = extractFloat32Sign(a);
+ bSig = extractFloat32Frac(b);
+ bExp = extractFloat32Exp(b);
+ bSign = extractFloat32Sign(b);
+ cSig = extractFloat32Frac(c);
+ cExp = extractFloat32Exp(c);
+ cSign = extractFloat32Sign(c);
+
+ infzero = ((aExp == 0 && aSig == 0 && bExp == 0xff && bSig == 0) ||
+ (aExp == 0xff && aSig == 0 && bExp == 0 && bSig == 0));
+
+ /* It is implementation-defined whether the cases of (0,inf,qnan)
+ * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
+ * they return if they do), so we have to hand this information
+ * off to the target-specific pick-a-NaN routine.
+ */
+ if (((aExp == 0xff) && aSig) ||
+ ((bExp == 0xff) && bSig) ||
+ ((cExp == 0xff) && cSig)) {
+ return propagateFloat32MulAddNaN(a, b, c, infzero STATUS_VAR);
+ }
+
+ if (infzero) {
+ float_raise(float_flag_invalid STATUS_VAR);
+ return float32_default_nan;
+ }
+
+ if (flags & float_muladd_negate_c) {
+ cSign ^= 1;
+ }
+
+ signflip = (flags & float_muladd_negate_result) ? 1 : 0;
+
+ /* Work out the sign and type of the product */
+ pSign = aSign ^ bSign;
+ if (flags & float_muladd_negate_product) {
+ pSign ^= 1;
+ }
+ pInf = (aExp == 0xff) || (bExp == 0xff);
+ pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
+
+ if (cExp == 0xff) {
+ if (pInf && (pSign ^ cSign)) {
+ /* addition of opposite-signed infinities => InvalidOperation */
+ float_raise(float_flag_invalid STATUS_VAR);
+ return float32_default_nan;
+ }
+ /* Otherwise generate an infinity of the same sign */
+ return packFloat32(cSign ^ signflip, 0xff, 0);
+ }
+
+ if (pInf) {
+ return packFloat32(pSign ^ signflip, 0xff, 0);
+ }
+
+ if (pZero) {
+ if (cExp == 0) {
+ if (cSig == 0) {
+ /* Adding two exact zeroes */
+ if (pSign == cSign) {
+ zSign = pSign;
+ } else if (STATUS(float_rounding_mode) == float_round_down) {
+ zSign = 1;
+ } else {
+ zSign = 0;
+ }
+ return packFloat32(zSign ^ signflip, 0, 0);
+ }
+ /* Exact zero plus a denorm */
+ if (STATUS(flush_to_zero)) {
+ float_raise(float_flag_output_denormal STATUS_VAR);
+ return packFloat32(cSign ^ signflip, 0, 0);
+ }
+ }
+ /* Zero plus something non-zero : just return the something */
+ return c ^ (signflip << 31);
+ }
+
+ if (aExp == 0) {
+ normalizeFloat32Subnormal(aSig, &aExp, &aSig);
+ }
+ if (bExp == 0) {
+ normalizeFloat32Subnormal(bSig, &bExp, &bSig);
+ }
+
+ /* Calculate the actual result a * b + c */
+
+ /* Multiply first; this is easy. */
+ /* NB: we subtract 0x7e where float32_mul() subtracts 0x7f
+ * because we want the true exponent, not the "one-less-than"
+ * flavour that roundAndPackFloat32() takes.
+ */
+ pExp = aExp + bExp - 0x7e;
+ aSig = (aSig | 0x00800000) << 7;
+ bSig = (bSig | 0x00800000) << 8;
+ pSig64 = (uint64_t)aSig * bSig;
+ if ((int64_t)(pSig64 << 1) >= 0) {
+ pSig64 <<= 1;
+ pExp--;
+ }
+
+ zSign = pSign ^ signflip;
+
+ /* Now pSig64 is the significand of the multiply, with the explicit bit in
+ * position 62.
+ */
+ if (cExp == 0) {
+ if (!cSig) {
+ /* Throw out the special case of c being an exact zero now */
+ shift64RightJamming(pSig64, 32, &pSig64);
+ pSig = pSig64;
+ return roundAndPackFloat32(zSign, pExp - 1,
+ pSig STATUS_VAR);
+ }
+ normalizeFloat32Subnormal(cSig, &cExp, &cSig);
+ }
+
+ cSig64 = (uint64_t)cSig << (62 - 23);
+ cSig64 |= LIT64(0x4000000000000000);
+ expDiff = pExp - cExp;
+
+ if (pSign == cSign) {
+ /* Addition */
+ if (expDiff > 0) {
+ /* scale c to match p */
+ shift64RightJamming(cSig64, expDiff, &cSig64);
+ zExp = pExp;
+ } else if (expDiff < 0) {
+ /* scale p to match c */
+ shift64RightJamming(pSig64, -expDiff, &pSig64);
+ zExp = cExp;
+ } else {
+ /* no scaling needed */
+ zExp = cExp;
+ }
+ /* Add significands and make sure explicit bit ends up in posn 62 */
+ zSig64 = pSig64 + cSig64;
+ if ((int64_t)zSig64 < 0) {
+ shift64RightJamming(zSig64, 1, &zSig64);
+ } else {
+ zExp--;
+ }
+ } else {
+ /* Subtraction */
+ if (expDiff > 0) {
+ shift64RightJamming(cSig64, expDiff, &cSig64);
+ zSig64 = pSig64 - cSig64;
+ zExp = pExp;
+ } else if (expDiff < 0) {
+ shift64RightJamming(pSig64, -expDiff, &pSig64);
+ zSig64 = cSig64 - pSig64;
+ zExp = cExp;
+ zSign ^= 1;
+ } else {
+ zExp = pExp;
+ if (cSig64 < pSig64) {
+ zSig64 = pSig64 - cSig64;
+ } else if (pSig64 < cSig64) {
+ zSig64 = cSig64 - pSig64;
+ zSign ^= 1;
+ } else {
+ /* Exact zero */
+ zSign = signflip;
+ if (STATUS(float_rounding_mode) == float_round_down) {
+ zSign ^= 1;
+ }
+ return packFloat32(zSign, 0, 0);
+ }
+ }
+ --zExp;
+ /* Normalize to put the explicit bit back into bit 62. */
+ shiftcount = countLeadingZeros64(zSig64) - 1;
+ zSig64 <<= shiftcount;
+ zExp -= shiftcount;
+ }
+ shift64RightJamming(zSig64, 32, &zSig64);
+ return roundAndPackFloat32(zSign, zExp, zSig64 STATUS_VAR);
+}
+
+
+/*----------------------------------------------------------------------------
| Returns the square root of the single-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
@@ -3465,6 +3672,226 @@ float64 float64_rem( float64 a, float64 b STATUS_PARAM )
}
/*----------------------------------------------------------------------------
+| Returns the result of multiplying the double-precision floating-point values
+| `a' and `b' then adding 'c', with no intermediate rounding step after the
+| multiplication. The operation is performed according to the IEC/IEEE
+| Standard for Binary Floating-Point Arithmetic 754-2008.
+| The flags argument allows the caller to select negation of the
+| addend, the intermediate product, or the final result. (The difference
+| between this and having the caller do a separate negation is that negating
+| externally will flip the sign bit on NaNs.)
+*----------------------------------------------------------------------------*/
+
+float64 float64_muladd(float64 a, float64 b, float64 c, int flags STATUS_PARAM)
+{
+ flag aSign, bSign, cSign, zSign;
+ int aExp, bExp, cExp, pExp, zExp, expDiff;
+ uint64_t aSig, bSig, cSig;
+ flag pInf, pZero, pSign;
+ uint64_t pSig0, pSig1, cSig0, cSig1, zSig0, zSig1;
+ int shiftcount;
+ flag signflip, infzero;
+
+ a = float64_squash_input_denormal(a STATUS_VAR);
+ b = float64_squash_input_denormal(b STATUS_VAR);
+ c = float64_squash_input_denormal(c STATUS_VAR);
+ aSig = extractFloat64Frac(a);
+ aExp = extractFloat64Exp(a);
+ aSign = extractFloat64Sign(a);
+ bSig = extractFloat64Frac(b);
+ bExp = extractFloat64Exp(b);
+ bSign = extractFloat64Sign(b);
+ cSig = extractFloat64Frac(c);
+ cExp = extractFloat64Exp(c);
+ cSign = extractFloat64Sign(c);
+
+ infzero = ((aExp == 0 && aSig == 0 && bExp == 0x7ff && bSig == 0) ||
+ (aExp == 0x7ff && aSig == 0 && bExp == 0 && bSig == 0));
+
+ /* It is implementation-defined whether the cases of (0,inf,qnan)
+ * and (inf,0,qnan) raise InvalidOperation or not (and what QNaN
+ * they return if they do), so we have to hand this information
+ * off to the target-specific pick-a-NaN routine.
+ */
+ if (((aExp == 0x7ff) && aSig) ||
+ ((bExp == 0x7ff) && bSig) ||
+ ((cExp == 0x7ff) && cSig)) {
+ return propagateFloat64MulAddNaN(a, b, c, infzero STATUS_VAR);
+ }
+
+ if (infzero) {
+ float_raise(float_flag_invalid STATUS_VAR);
+ return float64_default_nan;
+ }
+
+ if (flags & float_muladd_negate_c) {
+ cSign ^= 1;
+ }
+
+ signflip = (flags & float_muladd_negate_result) ? 1 : 0;
+
+ /* Work out the sign and type of the product */
+ pSign = aSign ^ bSign;
+ if (flags & float_muladd_negate_product) {
+ pSign ^= 1;
+ }
+ pInf = (aExp == 0x7ff) || (bExp == 0x7ff);
+ pZero = ((aExp | aSig) == 0) || ((bExp | bSig) == 0);
+
+ if (cExp == 0x7ff) {
+ if (pInf && (pSign ^ cSign)) {
+ /* addition of opposite-signed infinities => InvalidOperation */
+ float_raise(float_flag_invalid STATUS_VAR);
+ return float64_default_nan;
+ }
+ /* Otherwise generate an infinity of the same sign */
+ return packFloat64(cSign ^ signflip, 0x7ff, 0);
+ }
+
+ if (pInf) {
+ return packFloat64(pSign ^ signflip, 0x7ff, 0);
+ }
+
+ if (pZero) {
+ if (cExp == 0) {
+ if (cSig == 0) {
+ /* Adding two exact zeroes */
+ if (pSign == cSign) {
+ zSign = pSign;
+ } else if (STATUS(float_rounding_mode) == float_round_down) {
+ zSign = 1;
+ } else {
+ zSign = 0;
+ }
+ return packFloat64(zSign ^ signflip, 0, 0);
+ }
+ /* Exact zero plus a denorm */
+ if (STATUS(flush_to_zero)) {
+ float_raise(float_flag_output_denormal STATUS_VAR);
+ return packFloat64(cSign ^ signflip, 0, 0);
+ }
+ }
+ /* Zero plus something non-zero : just return the something */
+ return c ^ ((uint64_t)signflip << 63);
+ }
+
+ if (aExp == 0) {
+ normalizeFloat64Subnormal(aSig, &aExp, &aSig);
+ }
+ if (bExp == 0) {
+ normalizeFloat64Subnormal(bSig, &bExp, &bSig);
+ }
+
+ /* Calculate the actual result a * b + c */
+
+ /* Multiply first; this is easy. */
+ /* NB: we subtract 0x3fe where float64_mul() subtracts 0x3ff
+ * because we want the true exponent, not the "one-less-than"
+ * flavour that roundAndPackFloat64() takes.
+ */
+ pExp = aExp + bExp - 0x3fe;
+ aSig = (aSig | LIT64(0x0010000000000000))<<10;
+ bSig = (bSig | LIT64(0x0010000000000000))<<11;
+ mul64To128(aSig, bSig, &pSig0, &pSig1);
+ if ((int64_t)(pSig0 << 1) >= 0) {
+ shortShift128Left(pSig0, pSig1, 1, &pSig0, &pSig1);
+ pExp--;
+ }
+
+ zSign = pSign ^ signflip;
+
+ /* Now [pSig0:pSig1] is the significand of the multiply, with the explicit
+ * bit in position 126.
+ */
+ if (cExp == 0) {
+ if (!cSig) {
+ /* Throw out the special case of c being an exact zero now */
+ shift128RightJamming(pSig0, pSig1, 64, &pSig0, &pSig1);
+ return roundAndPackFloat64(zSign, pExp - 1,
+ pSig1 STATUS_VAR);
+ }
+ normalizeFloat64Subnormal(cSig, &cExp, &cSig);
+ }
+
+ /* Shift cSig and add the explicit bit so [cSig0:cSig1] is the
+ * significand of the addend, with the explicit bit in position 126.
+ */
+ cSig0 = cSig << (126 - 64 - 52);
+ cSig1 = 0;
+ cSig0 |= LIT64(0x4000000000000000);
+ expDiff = pExp - cExp;
+
+ if (pSign == cSign) {
+ /* Addition */
+ if (expDiff > 0) {
+ /* scale c to match p */
+ shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
+ zExp = pExp;
+ } else if (expDiff < 0) {
+ /* scale p to match c */
+ shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
+ zExp = cExp;
+ } else {
+ /* no scaling needed */
+ zExp = cExp;
+ }
+ /* Add significands and make sure explicit bit ends up in posn 126 */
+ add128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
+ if ((int64_t)zSig0 < 0) {
+ shift128RightJamming(zSig0, zSig1, 1, &zSig0, &zSig1);
+ } else {
+ zExp--;
+ }
+ shift128RightJamming(zSig0, zSig1, 64, &zSig0, &zSig1);
+ return roundAndPackFloat64(zSign, zExp, zSig1 STATUS_VAR);
+ } else {
+ /* Subtraction */
+ if (expDiff > 0) {
+ shift128RightJamming(cSig0, cSig1, expDiff, &cSig0, &cSig1);
+ sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
+ zExp = pExp;
+ } else if (expDiff < 0) {
+ shift128RightJamming(pSig0, pSig1, -expDiff, &pSig0, &pSig1);
+ sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
+ zExp = cExp;
+ zSign ^= 1;
+ } else {
+ zExp = pExp;
+ if (lt128(cSig0, cSig1, pSig0, pSig1)) {
+ sub128(pSig0, pSig1, cSig0, cSig1, &zSig0, &zSig1);
+ } else if (lt128(pSig0, pSig1, cSig0, cSig1)) {
+ sub128(cSig0, cSig1, pSig0, pSig1, &zSig0, &zSig1);
+ zSign ^= 1;
+ } else {
+ /* Exact zero */
+ zSign = signflip;
+ if (STATUS(float_rounding_mode) == float_round_down) {
+ zSign ^= 1;
+ }
+ return packFloat64(zSign, 0, 0);
+ }
+ }
+ --zExp;
+ /* Do the equivalent of normalizeRoundAndPackFloat64() but
+ * starting with the significand in a pair of uint64_t.
+ */
+ if (zSig0) {
+ shiftcount = countLeadingZeros64(zSig0) - 1;
+ shortShift128Left(zSig0, zSig1, shiftcount, &zSig0, &zSig1);
+ if (zSig1) {
+ zSig0 |= 1;
+ }
+ zExp -= shiftcount;
+ } else {
+ shiftcount = countLeadingZeros64(zSig1) - 1;
+ zSig0 = zSig1 << shiftcount;
+ zExp -= (shiftcount + 64);
+ }
+ return roundAndPackFloat64(zSign, zExp, zSig0 STATUS_VAR);
+ }
+}
+
+/*----------------------------------------------------------------------------
| Returns the square root of the double-precision floating-point value `a'.
| The operation is performed according to the IEC/IEEE Standard for Binary
| Floating-Point Arithmetic.
diff --git a/fpu/softfloat.h b/fpu/softfloat.h
index 618ddee..07c2929 100644
--- a/fpu/softfloat.h
+++ b/fpu/softfloat.h
@@ -212,6 +212,18 @@ void set_floatx80_rounding_precision(int val STATUS_PARAM);
void float_raise( int8 flags STATUS_PARAM);
/*----------------------------------------------------------------------------
+| Options to indicate which negations to perform in float*_muladd()
+| Using these differs from negating an input or output before calling
+| the muladd function in that this means that a NaN doesn't have its
+| sign bit inverted before it is propagated.
+*----------------------------------------------------------------------------*/
+enum {
+ float_muladd_negate_c = 1,
+ float_muladd_negate_product = 2,
+ float_muladd_negate_result = 3,
+};
+
+/*----------------------------------------------------------------------------
| Software IEC/IEEE integer-to-floating-point conversion routines.
*----------------------------------------------------------------------------*/
float32 int32_to_float32( int32 STATUS_PARAM );
@@ -269,6 +281,7 @@ float32 float32_sub( float32, float32 STATUS_PARAM );
float32 float32_mul( float32, float32 STATUS_PARAM );
float32 float32_div( float32, float32 STATUS_PARAM );
float32 float32_rem( float32, float32 STATUS_PARAM );
+float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
float32 float32_sqrt( float32 STATUS_PARAM );
float32 float32_exp2( float32 STATUS_PARAM );
float32 float32_log2( float32 STATUS_PARAM );
@@ -375,6 +388,7 @@ float64 float64_sub( float64, float64 STATUS_PARAM );
float64 float64_mul( float64, float64 STATUS_PARAM );
float64 float64_div( float64, float64 STATUS_PARAM );
float64 float64_rem( float64, float64 STATUS_PARAM );
+float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
float64 float64_sqrt( float64 STATUS_PARAM );
float64 float64_log2( float64 STATUS_PARAM );
int float64_eq( float64, float64 STATUS_PARAM );
diff --git a/target-arm/cpu.h b/target-arm/cpu.h
index 6ab780d..c4d742f 100644
--- a/target-arm/cpu.h
+++ b/target-arm/cpu.h
@@ -366,7 +366,7 @@ enum arm_features {
ARM_FEATURE_VFP3,
ARM_FEATURE_VFP_FP16,
ARM_FEATURE_NEON,
- ARM_FEATURE_DIV,
+ ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
ARM_FEATURE_M, /* Microcontroller profile. */
ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling. */
ARM_FEATURE_THUMB2EE,
@@ -375,6 +375,8 @@ enum arm_features {
ARM_FEATURE_V5,
ARM_FEATURE_STRONGARM,
ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
+ ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
+ ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
};
static inline int arm_feature(CPUARMState *env, int feature)
diff --git a/target-arm/helper.c b/target-arm/helper.c
index e2428eb..97af4d0 100644
--- a/target-arm/helper.c
+++ b/target-arm/helper.c
@@ -193,7 +193,7 @@ static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
set_feature(env, ARM_FEATURE_THUMB2);
set_feature(env, ARM_FEATURE_V7);
set_feature(env, ARM_FEATURE_M);
- set_feature(env, ARM_FEATURE_DIV);
+ set_feature(env, ARM_FEATURE_THUMB_DIV);
break;
case ARM_CPUID_ANY: /* For userspace emulation. */
set_feature(env, ARM_FEATURE_V4T);
@@ -204,10 +204,11 @@ static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
set_feature(env, ARM_FEATURE_THUMB2);
set_feature(env, ARM_FEATURE_VFP);
set_feature(env, ARM_FEATURE_VFP3);
+ set_feature(env, ARM_FEATURE_VFP4);
set_feature(env, ARM_FEATURE_VFP_FP16);
set_feature(env, ARM_FEATURE_NEON);
set_feature(env, ARM_FEATURE_THUMB2EE);
- set_feature(env, ARM_FEATURE_DIV);
+ set_feature(env, ARM_FEATURE_ARM_DIV);
set_feature(env, ARM_FEATURE_V7MP);
break;
case ARM_CPUID_TI915T:
@@ -261,6 +262,9 @@ static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
if (arm_feature(env, ARM_FEATURE_V7)) {
set_feature(env, ARM_FEATURE_VAPA);
}
+ if (arm_feature(env, ARM_FEATURE_ARM_DIV)) {
+ set_feature(env, ARM_FEATURE_THUMB_DIV);
+ }
}
void cpu_reset(CPUARMState *env)
@@ -471,7 +475,7 @@ static uint32_t cpu_arm_find_by_name(const char *name)
void cpu_arm_close(CPUARMState *env)
{
- free(env);
+ g_free(env);
}
uint32_t cpsr_read(CPUARMState *env)
@@ -3039,8 +3043,7 @@ float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
val64 = float64_val(f64);
- val = ((val64 >> 63) & 0x80000000)
- | ((result_exp & 0xff) << 23)
+ val = ((result_exp & 0xff) << 23)
| ((val64 >> 29) & 0x7fffff);
return make_float32(val);
}
@@ -3082,6 +3085,19 @@ uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
}
+/* VFPv4 fused multiply-accumulate */
+float32 VFP_HELPER(muladd, s)(float32 a, float32 b, float32 c, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ return float32_muladd(a, b, c, 0, fpst);
+}
+
+float64 VFP_HELPER(muladd, d)(float64 a, float64 b, float64 c, void *fpstp)
+{
+ float_status *fpst = fpstp;
+ return float64_muladd(a, b, c, 0, fpst);
+}
+
void HELPER(set_teecr)(CPUState *env, uint32_t val)
{
val &= 1;
diff --git a/target-arm/helper.h b/target-arm/helper.h
index 3ad1cb0..16dd5fc 100644
--- a/target-arm/helper.h
+++ b/target-arm/helper.h
@@ -132,6 +132,9 @@ DEF_HELPER_2(vfp_fcvt_f32_to_f16, i32, f32, env)
DEF_HELPER_2(neon_fcvt_f16_to_f32, f32, i32, env)
DEF_HELPER_2(neon_fcvt_f32_to_f16, i32, f32, env)
+DEF_HELPER_4(vfp_muladdd, f64, f64, f64, f64, ptr)
+DEF_HELPER_4(vfp_muladds, f32, f32, f32, f32, ptr)
+
DEF_HELPER_3(recps_f32, f32, f32, f32, env)
DEF_HELPER_3(rsqrts_f32, f32, f32, f32, env)
DEF_HELPER_2(recpe_f32, f32, f32, env)
diff --git a/target-arm/machine.c b/target-arm/machine.c
index 7d4fc54..aaee9b9 100644
--- a/target-arm/machine.c
+++ b/target-arm/machine.c
@@ -189,7 +189,7 @@ int cpu_load(QEMUFile *f, void *opaque, int version_id)
env->vfp.vec_stride = qemu_get_be32(f);
if (arm_feature(env, ARM_FEATURE_VFP3)) {
- for (i = 0; i < 16; i++) {
+ for (i = 16; i < 32; i++) {
CPU_DoubleU u;
u.l.upper = qemu_get_be32(f);
u.l.lower = qemu_get_be32(f);
diff --git a/target-arm/translate.c b/target-arm/translate.c
index 75c0ad4..0f35b60 100644
--- a/target-arm/translate.c
+++ b/target-arm/translate.c
@@ -3141,6 +3141,57 @@ static int disas_vfp_insn(CPUState * env, DisasContext *s, uint32_t insn)
case 8: /* div: fn / fm */
gen_vfp_div(dp);
break;
+ case 10: /* VFNMA : fd = muladd(-fd, fn, fm) */
+ case 11: /* VFNMS : fd = muladd(-fd, -fn, fm) */
+ case 12: /* VFMA : fd = muladd( fd, fn, fm) */
+ case 13: /* VFMS : fd = muladd( fd, -fn, fm) */
+ /* These are fused multiply-add, and must be done as one
+ * floating point operation with no rounding between the
+ * multiplication and addition steps.
+ * NB that doing the negations here as separate steps is
+ * correct : an input NaN should come out with its sign bit
+ * flipped if it is a negated-input.
+ */
+ if (!arm_feature(env, ARM_FEATURE_VFP4)) {
+ return 1;
+ }
+ if (dp) {
+ TCGv_ptr fpst;
+ TCGv_i64 frd;
+ if (op & 1) {
+ /* VFNMS, VFMS */
+ gen_helper_vfp_negd(cpu_F0d, cpu_F0d);
+ }
+ frd = tcg_temp_new_i64();
+ tcg_gen_ld_f64(frd, cpu_env, vfp_reg_offset(dp, rd));
+ if (op & 2) {
+ /* VFNMA, VFNMS */
+ gen_helper_vfp_negd(frd, frd);
+ }
+ fpst = get_fpstatus_ptr(0);
+ gen_helper_vfp_muladdd(cpu_F0d, cpu_F0d,
+ cpu_F1d, frd, fpst);
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i64(frd);
+ } else {
+ TCGv_ptr fpst;
+ TCGv_i32 frd;
+ if (op & 1) {
+ /* VFNMS, VFMS */
+ gen_helper_vfp_negs(cpu_F0s, cpu_F0s);
+ }
+ frd = tcg_temp_new_i32();
+ tcg_gen_ld_f32(frd, cpu_env, vfp_reg_offset(dp, rd));
+ if (op & 2) {
+ gen_helper_vfp_negs(frd, frd);
+ }
+ fpst = get_fpstatus_ptr(0);
+ gen_helper_vfp_muladds(cpu_F0s, cpu_F0s,
+ cpu_F1s, frd, fpst);
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i32(frd);
+ }
+ break;
case 14: /* fconst */
if (!arm_feature(env, ARM_FEATURE_VFP3))
return 1;
@@ -4417,6 +4468,7 @@ static void gen_neon_narrow_op(int op, int u, int size, TCGv dest, TCGv_i64 src)
#define NEON_3R_VPMIN 21
#define NEON_3R_VQDMULH_VQRDMULH 22
#define NEON_3R_VPADD 23
+#define NEON_3R_VFM 25 /* VFMA, VFMS : float fused multiply-add */
#define NEON_3R_FLOAT_ARITH 26 /* float VADD, VSUB, VPADD, VABD */
#define NEON_3R_FLOAT_MULTIPLY 27 /* float VMLA, VMLS, VMUL */
#define NEON_3R_FLOAT_CMP 28 /* float VCEQ, VCGE, VCGT */
@@ -4449,6 +4501,7 @@ static const uint8_t neon_3r_sizes[] = {
[NEON_3R_VPMIN] = 0x7,
[NEON_3R_VQDMULH_VQRDMULH] = 0x6,
[NEON_3R_VPADD] = 0x7,
+ [NEON_3R_VFM] = 0x5, /* size bit 1 encodes op */
[NEON_3R_FLOAT_ARITH] = 0x5, /* size bit 1 encodes op */
[NEON_3R_FLOAT_MULTIPLY] = 0x5, /* size bit 1 encodes op */
[NEON_3R_FLOAT_CMP] = 0x5, /* size bit 1 encodes op */
@@ -4726,6 +4779,11 @@ static int disas_neon_data_insn(CPUState * env, DisasContext *s, uint32_t insn)
return 1;
}
break;
+ case NEON_3R_VFM:
+ if (!arm_feature(env, ARM_FEATURE_VFP4) || u) {
+ return 1;
+ }
+ break;
default:
break;
}
@@ -5006,6 +5064,20 @@ static int disas_neon_data_insn(CPUState * env, DisasContext *s, uint32_t insn)
else
gen_helper_rsqrts_f32(tmp, tmp, tmp2, cpu_env);
break;
+ case NEON_3R_VFM:
+ {
+ /* VFMA, VFMS: fused multiply-add */
+ TCGv_ptr fpstatus = get_fpstatus_ptr(1);
+ TCGv_i32 tmp3 = neon_load_reg(rd, pass);
+ if (size) {
+ /* VFMS */
+ gen_helper_vfp_negs(tmp, tmp);
+ }
+ gen_helper_vfp_muladds(tmp, tmp, tmp2, tmp3, fpstatus);
+ tcg_temp_free_i32(tmp3);
+ tcg_temp_free_ptr(fpstatus);
+ break;
+ }
default:
abort();
}
@@ -7569,11 +7641,16 @@ static void disas_arm_insn(CPUState * env, DisasContext *s)
}
break;
case 2: /* Multiplies (Type 3). */
- tmp = load_reg(s, rm);
- tmp2 = load_reg(s, rs);
- if (insn & (1 << 20)) {
+ switch ((insn >> 20) & 0x7) {
+ case 5:
+ if (((insn >> 6) ^ (insn >> 7)) & 1) {
+ /* op2 not 00x or 11x : UNDEF */
+ goto illegal_op;
+ }
/* Signed multiply most significant [accumulate].
(SMMUL, SMMLA, SMMLS) */
+ tmp = load_reg(s, rm);
+ tmp2 = load_reg(s, rs);
tmp64 = gen_muls_i64_i32(tmp, tmp2);
if (rd != 15) {
@@ -7592,7 +7669,15 @@ static void disas_arm_insn(CPUState * env, DisasContext *s)
tcg_gen_trunc_i64_i32(tmp, tmp64);
tcg_temp_free_i64(tmp64);
store_reg(s, rn, tmp);
- } else {
+ break;
+ case 0:
+ case 4:
+ /* SMLAD, SMUAD, SMLSD, SMUSD, SMLALD, SMLSLD */
+ if (insn & (1 << 7)) {
+ goto illegal_op;
+ }
+ tmp = load_reg(s, rm);
+ tmp2 = load_reg(s, rs);
if (insn & (1 << 5))
gen_swap_half(tmp2);
gen_smul_dual(tmp, tmp2);
@@ -7625,6 +7710,28 @@ static void disas_arm_insn(CPUState * env, DisasContext *s)
}
store_reg(s, rn, tmp);
}
+ break;
+ case 1:
+ case 3:
+ /* SDIV, UDIV */
+ if (!arm_feature(env, ARM_FEATURE_ARM_DIV)) {
+ goto illegal_op;
+ }
+ if (((insn >> 5) & 7) || (rd != 15)) {
+ goto illegal_op;
+ }
+ tmp = load_reg(s, rm);
+ tmp2 = load_reg(s, rs);
+ if (insn & (1 << 21)) {
+ gen_helper_udiv(tmp, tmp, tmp2);
+ } else {
+ gen_helper_sdiv(tmp, tmp, tmp2);
+ }
+ tcg_temp_free_i32(tmp2);
+ store_reg(s, rn, tmp);
+ break;
+ default:
+ goto illegal_op;
}
break;
case 3:
@@ -8497,8 +8604,9 @@ static int disas_thumb2_insn(CPUState *env, DisasContext *s, uint16_t insn_hw1)
tmp2 = load_reg(s, rm);
if ((op & 0x50) == 0x10) {
/* sdiv, udiv */
- if (!arm_feature(env, ARM_FEATURE_DIV))
+ if (!arm_feature(env, ARM_FEATURE_THUMB_DIV)) {
goto illegal_op;
+ }
if (op & 0x20)
gen_helper_udiv(tmp, tmp, tmp2);
else